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Abstract: This study seeks to investigate distinct signatures and codes within different genomic
sequence locations of the human genome. The promoter and other non-coding regions contain sites
for the binding of biological particles, for processes such as transcription regulation. The specific
rules and sequence codes that govern this remain poorly understood. To derive these (codes), the
general designs of sequence are investigated. Genomic signatures are a powerful tool for assessing
the general designs of sequence, and cross-comparing different genomic regions for their distinct
sequence properties. Through these genomic signatures, the relative non-random properties of
sequences are also assessed. Furthermore, a binary components analysis is carried out making
use of information theory ideas, to study the RY (purine/pyrimidine), WS (weak/strong) and KM
(keto/amino) signatures in the sequences. From this comparison, it is possible to identify the relative
importance of these properties within the various protein-coding and non-coding genomic locations.
The results show that coding DNA has a strongly non-random WS signature, which reflects the
genetic code, and the hydrogen-bond base pairing of codon–anti-codon interactions. In contrast,
non-coding locations, such as the promoter, contain a distinct genomic signature. A prominent feature
throughout non-coding DNA is a highly non-random RY signature, which is very different in nature
to coding DNA, and suggests a structural-based RY code. This marks progress towards deciphering
the unknown code(s) in non-protein-coding DNA, and a further understanding of the coding DNA.
Additionally, it unravels how DNA carries information. These findings have implications for the
most fundamental principles of biology, including knowledge of gene regulation, development
and disease.

Keywords: general designs; genomic signature; dinucleotide; DNA codes; protein coding; non-
coding; DNA sequence; purine pyrimidine; weak strong

1. Introduction
1.1. Protein-Coding Verses Non-Coding DNA, Distinct Functionality Leads to Different Codes

Protein-coding regions of the genome comprise less than 2% of the genomic DNA
sequence in the human. This is a small, yet, critically important component of the genome.
These sequences are well-understood. These function via the famous triplet code, whereby
the information content is three bases specifying the translation of a sequence into amino
acids, which make up proteins.

Non-coding DNA comprises a huge amount of a sequence, and these have a very
a different function to protein-coding sequences. Within the non-coding category of se-
quences, there are also distinct regions with separate functionalities. However, in a general
sense, these are responsible for gene regulation. The encoding for these sequences is very
different to protein-coding sequences, and remains elusive [1].

Within the vast landscape of non-coding sequences are contained many different
elements responsible for gene regulation. As part of the transcription machinery, upstream
of the coding sequence human genes lies the promoter, which initiates transcription via
PolII, and possesses multiple transcription factor binding sites (TFBS’s) [2,3]. Non-coding
DNA is also populated with a multitude of enhancer elements which regulate transcription
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in a tissue-dependent manner [4,5], and these are also dense in potential TFBS’s. These
are typically dense around the promoter, but may also occur at great distance from it. In
addition, there are non-coding RNAs which form RNA particles which have potential roles
in transcription, post-transcription regulation and epigenetics, and more [6,7]. Therefore, a
high proportion of non-coding DNA contains sequences associated with gene regulation.

The basis of the non-coding DNA code(s) are mostly (but not exclusively) related to
protein binding to DNA, and this recognition. In contrast, the basis of protein-coding DNA
codes is the rule-driven triplet code. Since protein-coding and non-coding DNA have very
different functions, they possess distinct patterns and codes within their sequences [8,9];
therefore, the characteristics of the sequence are also expected to be distinct [10].

Experiments including very early studies assessed the various frequency measure-
ments of triplets and frequencies such as RNY > RNR > YNY > YNR were found to be
general occurrences within coding sequences [11,12], as well as the phenomenon of the
third base wobble. These relate to the triplet code, and may be due, for instance, to use of
some codons over others. Frequency measurements alone, whilst important, are in other
ways limited in what they tell us about sequence patterns and unlikely codes.

1.2. Genome Architecture and General Designs

There exists an inherent connection between sequence, structure and function [13,14];
therefore, analysis of DNA sequences and their signatures permits greater understanding of
structure and function. Genomic signatures are a powerful tool for characterizing DNA [15].
This can distinguish non-coding regulatory DNA, as well as identifying the differences to
coding DNA [16,17]. Furthermore, patterns and signatures help build rules for how these
sequences are constructed/assembled. This marks a step forward towards deciphering
more specific regulatory codes, as it provides a set of sequence characteristic “rules”, which
can be built upon in a step-wise manner.

Long-range correlations (using DNA-walk) are known to exist in DNA [18] in many
organisms, and these also have a fractal-like nature [19]. This is within intron-containing
genes, and is the case regardless of the type of protein coding sequence, and also within
non-transcribed regulatory regions. Such correlations include features such as GC-rich
isochores [20].

Genomic signatures (Dinucleotide relative abundance profiles) are pervasive and
stable in genomes [21]. It is thought that the reason for this may be the existence of
genome-wide factors. Examples include the replication and repair machinery, mutational
tendencies and structural tendencies of genomic DNA. Dinucleotides are the most basic
unit/description of a sequence, and can also be utilized to determine non-random proper-
ties of sequences. This is because dinucleotides may be suppressed (under-represented)
or enhanced (over-represented) [22,23]. Dinucleotide relative abundance profiles show a
departure from the randomness of genomic DNA sequences and collectively form a distinct
genomic signature [24]. Early research [25] has shown nearest neighbour (dinucleotide)
effects in prokaryotic and eukaryotic genomes. Here, it was observed that certain general
features occur in genomes. CpG and TpA are suppressed, and also with this an asymmetry
exists in the sequences. For instance ApT > TpA, CpT > TpC, TpG > GpT and GpC > CpG
occur in examined genomes, including both prokaryotes and eukaryotes. Chargaff’s second
parity rule states that: A~T and C~G in single stranded DNA [26], and, despite this, in the
dinucleotides we see suppression/enhancement.

Both coding and non-coding DNA sequences possess an inherent non-randomness [27].
Non-randomness may also be connected with sequence functionality. This is because
sequence function, by its nature, enlists non-random patterns or codes. It utilises a language
of DNA, so to speak. Compositional differences have also been analysed in this way
within organisms, such as the comparison between mitochondrial and nuclear genomes.
Dinucleotides and their relative abundance profiles can, therefore, be used genome-wide as
a powerful tool to analyse the general sequence designs and differences between non-coding
and coding DNA. This may also be further extended to different types of non-coding DNA.
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1.3. An in-Depth Look at DNA-Nucleic Acids: Beginning to Decipher Codes through Components

Information is stored within nucleic acids in the form of four different chemical
bases [28]. The well-known triplet code within coding sequences utilises these four chemical
bases in various combinations with some redundancy to generate specific amino-acid
sequences for peptides. This is performed via the tRNA. The same four-base information
content ‘alphabet’ is utilized, albeit differently in regulatory DNA sequences. However, in
order to understand a different “coding” system, it is helpful to break down the information
content, and simplify it as much as possible into its components.

The chemical bases, and their information content, can be sub-divided into a binary
system, much like the way in which a computer stores binary information, as described by
information theory [29]. This is extremely useful as a way to decipher underlying codes,
as it breaks down complex information into a simpler form, or components. When doing
so with DNA sequences, this sub-division of information is based on the real chemical or
physical properties of the nucleic acids and base pairs. There are three well-defined types
of property of the bases [30,31], and these are used in our research as a means to break
down the information content of DNA (see Figure 1).
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Figure 1. Diagram of base pairs of DNA, and recognition patterns for hydrogen-bond donor and
acceptor sites. This is adapted from a diagram by Höglund et al., 2004 [30] (see Appendix A for
article URL and licensing). These patterns are shown for the major and minor grooves of B-DNA.
The four DNA bases, A, T, C and G, each contain distinctive and yet overlapping chemical and
physical properties. There are three separate categories of property: The first is the weak or strong
hydrogen-bonding capacity of the DNA bases. This is with reference to the number of hydrogen
bonds between the base pairs of the DNA. A and G are weak (W) bases because these contain only
two hydrogen bonds between the complementary base pairs, and C and G are strong. The second
category is the purine or pyridine structural property. The DNA bases contain either a two-ring or
one-ring molecular structure. The two-ring structures are called purines, and A and G are purines
(R). The one-ring structures are pyrimidines; C and T are pyrimidines (Y). The third property is
the chemical property of an amino or keto group. The bases each contain one of these. The bases
A and C contain an amino (M) group, whereas G and T contain a keto (K) group. This affects the
hydrogen-bonding capability of the bases, and, specifically, the hydrogen-bonding donor/acceptor
patterns positioned at the major groove of the DNA. Hydrogen-bond acceptors are shown by green
arrows and donors are shown by yellow arrows. In the minor groove, it is only possible to distinguish
a C-G base pair from a T-A base pair via these hydrogen-bonding patterns. In the major groove, it
appears possible to distinguish all four bases.
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A conversion of DNA sequences from an ATCG sequence into each of the RY, WS, and
KM sequences represents a breakdown of information content, which isolates one property
of the bases in the process. It, therefore, binarized the sequences. This, then, permits an
analysis of each of these properties of DNA separately. It has the advantage of allowing us
to see patterns and signatures (sequence designs) in isolation.

One type of DNA property is the purine/pyrimidine chemical property. This describes
the chemical-ring structure of the bases, with purines possessing a two-ring structure, and
pyrimidines one ring. The purine/pyrimidine content of DNA is known to influence the
secondary structure of DNA [32].

Binarizing the DNA sequence for this chemical property means converting the four
(ATCG) bases into purines and pyrimidines (RY). A and G are purines (R), and C A and G
are pyrimidines (Y). The second binary conversion is into weak or strong bases (WS), which
define hydrogen bonds between the base pairs. C and G are strong (S) bases, as there are
three hydrogen bonds between the base pairs, and A and T are weak (W), as there are two
hydrogen bonds between base pairs. This property also affects potential hydrogen-bond
donor/acceptor sites in the minor groove of DNA. The third is keto and amino bases (KM),
which reflects tautomerism, and the hydrogen-bond donor–acceptor patterns in the major
groove of DNA. The bases A and C contain an amino (M) group, whereas G and T contain a
keto (K) group. In general, RY is a physical structural property whilst WS/KM is a chemical
property due to hydrogen-bonding potential.

In our previous research [33], we developed a method to analyse DNA using genomic
signatures in conjunction with binarized sequences. This method studies different se-
quences’ chemical and physical properties for relative non-random features. We called this
a components analysis, where general designs are applied to RY, WS, and KM binarized
sequences. This provided a powerful method for extracting patterns and codes from the
sequences. This was a large-scale genomic sequence analysis. The results revealed a general
and pervasive RY structural code within human chromosomal DNA. This was strongly
present in all chromosomes. Here, we extend the same components analysis and apply it
to separate categories of coding and non-coding DNA, and a variety of distinct genomic
sequence types. This is performed in order to understand the general encoding of these
distinct regions of the genome, and observe how these differ from each other.

1.4. Aim of Experiment and Importance of Findings

The aim of this research is to characterize DNA signatures within distinct coding and
non-coding regions of the human genome. These include coding DNA, transcript, the
promoter, enhancer, 5′UTR and 3′UTR. This permits progress towards deciphering DNA
codes. This is carried out via a large-scale sequence analysis, which permits general and
pervasive signatures to be observed.

The DNA sequences are converted into their binary components RY/WS/KM, as
described above, so that individual DNA/base properties could be isolated. We refer
to this as a binary components analysis. Dinucleotide relative abundance profiles are
calculated, and the non-randomness of sequences observed. This enables cross-comparisons
of general designs to be made between the three binary components. In addition, the
distinct functional genomic locations, such as coding DNA and UTRs, are cross compared.
Genomic signatures are analysed, and biological meaning is derived from sequence data,
providing a better understanding of the patterns and codes underlying genomic locations
of different functionality.

The findings of this research reveal that the promoter contains a distinct genomic
signature, which is different to other non-coding DNA, and all non-coding regions are
very distinct from coding DNA. Furthermore, the promoter region contains a highly non-
random RY signature, which is very different in nature to coding DNA, and points towards
an RY code. This result has implications for transcription regulation, and suggests that
non-coding DNA, in general, has an RY code which is more pronounced in the promoter.
The RY sequence is a strong determinant of structure, including DNA secondary structure,
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rigidity/flexibility, and ability to bend. Therefore, this result points towards a structural-
based RY code in the promoter/intergenic region. The protein-coding DNA is very different
in general designs and binary components analysis to non-coding DNA. Here, we observe
a general WS code, which connects to the hydrogen-bonding property of the bases. This
reflects the nature of the triplet code, which functions primarily via the complementary
base pairing of the tRNA.

The binary components analysis captures the inherent codes and properties of the
DNA, strongly differentiating between coding and non-coding DNA. This is a novel
investigation, utilising general designs with a binary components analysis to study distinct
sequence types, and the results obtained are novel and important. Transcription regulation
lies at the central dogma of biology, and is key to understanding basic cell function,
development and disease. Understanding the different encodings of distinct genomic
functional regions is crucial to biology, and how the genome functions.

2. Methods and Concepts
2.1. Obtaining Genomic Sequence Datasets

DNA sequence datasets using for this analyses were obtained from the Ensembl
human genome build 38 database (genome assembly GRCh38.p5). The goal was to obtain
different functional sequence types. The sequences obtained from this source include
coding, transcript, 5′UTR and 3′UTR, and these datasets were extracted utilising BioMart
queries [34]. Through these queries, coding, transcript, 5′UTR, and 3′UTR sequences
were obtained.

For the BioMart queries, the parameters were set to ‘GENES’ and the filters were Gene
type: protein_coding and Status (gene): KNOWN. This limited the results to protein-coding
genes only and to known genes. This resulted in a dataset of 22,078/66,232 genes. This filter
served to limit the output, and increase accuracy of downstream analysis. With these pa-
rameters, protein-coding and full transcript sequences were extracted as well as the 5′UTR
and 3′UTR. The transcript sequences were full transcripts including intronic sequences.

The enhancers and promoters were taken from different sources in order to obtain
datasets of optimal accuracy. The enhancers were obtained from the Vista database [35].
This contains a dataset of experimentally verified human enhancers. Whilst it is a minimal
dataset, utilizing this minimizes prediction and increases accuracy of the sequence set used.
A total of 1942 elements were downloaded from the VISTA enhancer browser. For the pro-
moters, the Eukaryotic Promoter Database (EPD) was used and human elements extracted
from this [36,37]. A total of 16,454 human promoters were obtained and utilised from
this source. This database has the advantage that it is a non-redundant set of eukaryotic
POL II promoters, with experimental verification for the TSS (transcription start site). This
verification greatly increases accuracy, and assists in removing error and noise from the
downstream analysis.

For each of the sequence datasets, coding, transcript, 5′UTR and 3′UTR, enhancer and
promoter, and equivalent random model was generated. This random model contains the
equivalent number of sequences and each one is of the same sequence length, in each of the
individual datasets. For each real sequence, a randomised or shuffled sequence is generated,
and this sequence contains the same frequency of bases; however, these are shuffled into a
randomised order. To achieve this, the EMBOSS ‘Shuffleseq’ tool was used [38,39]. Within
each sequence-type dataset, each individual sequence was randomised with Shuffleseq
to generate a random sequence, and the process was repeated for all the sequences in the
dataset. This then permitted the sequence analysis to be carried out with a randomised set,
as well as a real sequence set.

2.2. Sequence Processing

For each coding, transcript, 5′UTR, 3′UTR, promoter and enhancer sequence datasets,
a Python script was written and employed to process the DNA sequences. This was per-
formed for calculating mononucleotide and dinucleotide frequency, as well as odds ratios,
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relative abundance and distance from randomness values. For each genomic location, the
individual sequences were taken as separated entities for the calculations. The dinucleotide
frequencies, odds ratios, and relative abundance calculation, and distance from randomness
were taken for every sequence in a given dataset.

Sequence processing was carried out for the coding, transcript, 5′UTR, 3′UTR, pro-
moter and enhancer datasets separately. Within each of these six datasets, dinucleotide and
also mononucleotide frequencies were worked out for each of the individual sequences.
Mononucleotides frequencies are a count of the classic A, T, C, G chemical bases repre-
sented by these four letters. The dinucleotide formed by these are a total of 16 possible
combinations to include; ApA, ApT, ApC, ApG, TpA, TpT, TpC, TpG, CpA, CpT, CpC,
CpG, GpA, GpT, GpC and GpG, (see Supplementary Materials for definitions). Each of
these dinucleotides was determined stepwise along the sequence from the 5′ to the 3′ along
the transcribed strand. The total number of dinucleotides (and mononucleotides) depends
on the sequence length, which varies in the datasets.

Descriptive statistics were initially calculated for each of the six genomic-region
datasets. This included the mean values, median, standard deviation, variance, and
quartile, and range for all the fragments within each genomic sequence type. This resulted
in statistics and analysis for each location separately.

2.3. Genomic Signatures

The dinucleotide representation in a sequence can be used to assess dinucleotide
contrasts whilst taking into consideration the mononucleotide composition of the sequence.
This describes the proportion of each dinucleotide, above or below the random expectation.
This representation value is calculated using an odds ratio. The odds ratio can also be
referred to as a single-strand dinucleotide relative abundance ratio.

Dinucleotide odds ratio: ρXY = fXY/fXfY.
For any given nucleotide X, fx is the frequency of the X, within the sequence. fxy is the

frequency of the dinucleotide XpY within that sequence. An odds ratio value of ρxy >> 1
indicates enhancement or over-representation of the dinucleotides beyond the random
expectation. In contrast, an odds ratio value of ρxy << 1 indicates suppression or under-
representation of that dinucleotide. In a random sequence (i.e., a shuffled sequence), the ρxy
values for all the dinucleotides approach 1.0. The longer the random/shuffled sequence,
the closer the odds ratio value would approach the theoretical random expectation of 1.

The odds ratios of the 16 dinucleotides form dinucleotide relative abundance profiles,
whose difference from 1 provide a measure of deviation from randomness. Collectively, the
odds ratios are said to be the general designs of given sequences. The genomic signature
extends the use of general designs to measure the difference between two distinct sequence
types. This is called average absolute dinucleotide relative abundance difference, and it is
worked out as follows:

Average absolute dinucleotide relative abundance difference:

δ (f, g) = 1/16 ∑
XY
|ρXY (f) − ρXY (g)|

Here, f is one sequence type whereas g is another. The sum here extends over all
sixteen possible dinucleotides. o is used to demonstrate a departure from randomness of
genomic DNA sequences. In this experiment, the average absolute dinucleotide relative
abundance is further adapted to measure the difference between a real genomic sequence
and a theoretical randomized one. This permits a measure of distance from randomness, or
comparison of sequence to a random model.

Distance from randomness:

λ (f, g) = 1/16 ∑
XY
|ρXY (f) − 1|
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Here, the sum extends over all dinucleotides. Therefore, this calculation is equiva-
lent to the mean of dinucleotide odds ratio values for all 16 possible dinucleotides for
a given sequence. We refer to this calculation as the ‘distance from randomness’. The
further this value is from 0, the further away the value is from the random (or equivalent
shuffled) sequence. This total distance from randomness is calculated for each individual
sequence, within each of the six datasets (coding, transcript, 5′UTR, 3′UTR, promoter and
enhancer) examined.

2.4. Binary Components Analysis

In our previous paper, we discuss the concept of binary components analysis in
greater depth [33]. Here, we summarise the methods used: In order to analyse these
(purine/pyrimidine verses weak/strong, and keto/amino) nucleotide properties separately,
the ATCG upstream sequence was translated into two different but equivalent sequences.
Therefore, a dataset is generated for each of the three binary components, RY, KM and WS;
then, the original ATCG native DNA sequence is converted or binarized, according to these
properties. This is performed for each of the six different types of genomic sequence studied.
Therefore, the sequence datasets are ‘translated’ into three separate sets for RY, KM and WS.
The first is the translation of the original ATCG sequence to a purine/pyrimidine (R/Y)
sequence: A and G are converted to purines and C and T are converted to pyrimidines (R).
For the second set, the ATCG sequence is converted to a weak/strong (W/S) sequence,
where C and G are converted to strong (S) bases, and A and T are converted to weak (W)
bases. For the third and final conversion, the native sequence is converted to a keto/amino
(K/M) sequence. Here, the bases A and C are converted to an amino (M)-type base, whereas
G and T contain a keto (K) group base.

These conversions, or ‘translations’, result in three binarized sequences for each of
the original native ones. These are then treated as separate entities for analyses. This
is performed so that the relative importance of these three subdivisions of nucleotide
properties could be assessed individually. For each of these three binary components
datasets, RY, KM and WS, there are four possible dinucleotides (instead of the sixteen). The
dinucleotides for each of these datasets are as follows:

RY binary sequence dataset: RpR, RpY, YpR, YpY
WS binary sequence dataset: WpW, WpS, SpW, SpS
KM binary sequence dataset: KpK, KpM, MpK, MpM
For each of the RY. WS, and KM binary-components (three-sequence) types, distance

from randomness values are calculated taking into consideration its specific mononu-
cleotide and dinucleotide composition. Distance from randomness results are then aver-
aged (mean values) over the entire dataset of sequences. This is repeated for the codon,
transcript, 5′UTR, 3′UTR, promoter and enhancer.

The genomic signature and distance from randomness are adapted for the binary
components analysis, and the binary sequences. The dinucleotide frequencies, odds ratios
and genomic signature calculations are carried out on the translated sequences, with the
above-outlined 4 dinucleotides for each of the binarized sequences. This is instead of the
16 dinucleotides for the native DNA sequences. This time, though, the dinucleotides are
changed accordingly. Therefore, the distance from randomness calculation is given below:

Average absolute dinucleotide relative abundance difference for the binary compo-
nents would be:

δ (f, g) = 1/4 ∑
XY
|ρXY (f) − ρXY (g)|

Therefore, the distance from randomness is:

λ (f, g) = 1/4 ∑
XY
|ρXY (f) − 1|

The sum here extends over all four possible dinucleotides.
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2.5. Statistical Analysis: Significance Testing

Statistical testing was carried out to determine whether there is significant difference
between the RY, KM and WS binary component sequence datasets. This significance testing
was performed using IBM SPSS statistics software. The effects of the three different RY,
WS, and KM binary components were compared in each of the different genomic sequence
datasets. Therefore, the ANOVA’s were performed for each of the coding, transcript, 5′UTR
and 3′UTR, enhancer and promoter datasets. Six separate one-way within-subject ANOVA’s
were performed (at the 1% level of significance), comparing the distance from randomness
(relative abundance profiles) for RY, WS and KM in each sequence dataset separately (see
Supplementary Materials). The Maulchy test was applied to evaluate sphericity. Since the
sphericity assumption was violated in the cases, the Greenhouse–Geisser correction was
applied. The ANOVA’s were followed up with post-hoc multiple pairwise comparisons
to evaluate and then explore the differences between binary components. Here, multiple
pairwise comparisons were made and corrected by the Bonferroni method, since it does
not assume independence and was most appropriate for these datasets.

The hypothesis testing within each individual genomic sequence type is outlined as:

H0: There is no significant difference between the binary components RY, KM and WS profiles in a
given sequence type.

H1: There is a significant difference between the RY, KM and WS binary components profiles.

In addition, the difference between the distance from randomness (dinucleotide rel-
ative abundance) profiles for the real DNA sequences verses the randomised-shuffled
equivalent sequences was calculated. This was carried out for all six genomic sequence
datasets individually, using paired t-tests (two-tailed at the 1% level of significance).

The hypothesis testing for real verses random models is outlined as:

H0: The null hypothesis of is that there is no difference between the real-native, and randomized
shuffled datasets.

H1: The alternate hypothesis is that there is a significant difference between real and randomised sequences.

3. Results
3.1. Distance from Randomness of Different Genomic Locations: Original ATCG Sequence

In order to identify unique signatures and the general non-random quality of the
different sequence types, distance from randomness (dinucleotide relative abundance
profiles) measures were taken for the original ATCG native sequences. This was analysed
for the genomic locations of distinct functionality, namely; coding sequences, transcript,
promoter, enhancer, 3′UTR and 5′UTR regions (see Figure 2). The results show that all
regions possess a general non-random characteristic. The mean values range from 0.20
to 0.36, with the lowest value being for ‘Transcript’ and the highest for 5′UTR. Both the
5′UTR and 3′UTR stand at less ‘random’ than the other regions, two regions which are
or similar type. Enhancers and Promoter regions are very similar, with almost the same
value. These are both non-coding DNA responsible for gene regulation, and contain TFBS’s
(transcription factor binding sites). This means that the regions/sequences can be grouped
by functionality.



Genes 2022, 13, 1970 9 of 23

Genes 2022, 13, x FOR PEER REVIEW 9 of 24 
 

 

type. Enhancers and Promoter regions are very similar, with almost the same value. These 
are both non-coding DNA responsible for gene regulation, and contain TFBS’s 
(transcription factor binding sites). This means that the regions/sequences can be grouped 
by functionality.  

 
Figure 2. Distance from randomness of different genomic regions for the ATCG original sequence: 
The profile shows the average (mean) distance from randomness values of the different genomic 
DNA sequences, within a given region. The sequences analysed include the 3′UTR, 5′UTR, coding, 
promoter, transcript, and enhancer. A value of zero denotes the random model, and the further 
away the values from zero, the greater the distance from randomness. The different genomic regions 
each display a distinct distance from randomness value and profile; however, all are non-random 
in nature. This reflects that the difference in profiles reflects sequence properties and patterns of 
each region. The UTR’s are most distant from the random model with respect to all the possible 
dinucleotides, with the 5′UTR being the most non-random in nature, followed by the 3′UTR. This is 
then followed by coding sequences. Promoter and enhancers are relatively similar, and transcript is 
closest to ‘randomness’. Overall, this demonstrates that different genomic regions, with different 
functionalities, possess distinct sequence features, in a general sense, and this is likely due to 
functionality itself with its own encoding, as well as distinct sequence assembly and evolutionary 
constraints. The UTR’s are most distant from the random model with respect to all the possible 
dinucleotides, with the 5′UTR being the most non-random in nature, followed by the 3′UTR. This is 
then followed by coding sequences. Promoter and enhancers are relatively similar, and transcript is 
closes to ‘randomness’. 

The distance from randomness values were calculated across all dinucleotides, 
relative to an equivalent randomized sequence of the same composition. An average value 
result is in the region of 0.2, meaning that, given the mononucleotide composition of the 
sequences, the overall dinucleotide content is enhanced or suppressed at the level of 20%, 
i.e., beyond the random expectation. The result of 0.36 means that 
enhancement/suppression is 36% above random expectation. The level observed depends 
on sequence and functionality type.  

For all of the sequences analysed, equivalent shuffled and, therefore, randomised 
sequences were generated, and the dinucleotide odds ratios and relative abundance 
profiles were calculated. Paired t-tests for the real verses shuffled datasets showed that 
each of the tested genomic regions was significantly different at the 1% level to its 
equivalent shuffled dataset (see Appendix C). This again demonstrates that all genomic 

Figure 2. Distance from randomness of different genomic regions for the ATCG original sequence:
The profile shows the average (mean) distance from randomness values of the different genomic
DNA sequences, within a given region. The sequences analysed include the 3′UTR, 5′UTR, coding,
promoter, transcript, and enhancer. A value of zero denotes the random model, and the further away
the values from zero, the greater the distance from randomness. The different genomic regions each
display a distinct distance from randomness value and profile; however, all are non-random in nature.
This reflects that the difference in profiles reflects sequence properties and patterns of each region.
The UTR’s are most distant from the random model with respect to all the possible dinucleotides,
with the 5′UTR being the most non-random in nature, followed by the 3′UTR. This is then followed
by coding sequences. Promoter and enhancers are relatively similar, and transcript is closest to
‘randomness’. Overall, this demonstrates that different genomic regions, with different functionalities,
possess distinct sequence features, in a general sense, and this is likely due to functionality itself with
its own encoding, as well as distinct sequence assembly and evolutionary constraints. The UTR’s
are most distant from the random model with respect to all the possible dinucleotides, with the
5′UTR being the most non-random in nature, followed by the 3′UTR. This is then followed by coding
sequences. Promoter and enhancers are relatively similar, and transcript is closes to ‘randomness’.

The distance from randomness values were calculated across all dinucleotides, relative
to an equivalent randomized sequence of the same composition. An average value result is
in the region of 0.2, meaning that, given the mononucleotide composition of the sequences,
the overall dinucleotide content is enhanced or suppressed at the level of 20%, i.e., beyond
the random expectation. The result of 0.36 means that enhancement/suppression is 36%
above random expectation. The level observed depends on sequence and functionality type.

For all of the sequences analysed, equivalent shuffled and, therefore, randomised
sequences were generated, and the dinucleotide odds ratios and relative abundance profiles
were calculated. Paired t-tests for the real verses shuffled datasets showed that each of the
tested genomic regions was significantly different at the 1% level to its equivalent shuffled
dataset (see Supplementary Materials). This again demonstrates that all genomic regions,
whether protein coding or non-protein coding, are significantly different to their random
equivalents, and, therefore, possess non-random signatures and patterns.

The distance from randomness result shows that each genomic location has a distinct
distance from randomness value. The different functional locations each display a distinct
signature. We also observe that some non-coding DNA is less ‘random’ than protein-coding
sequence. The UTR’s are least random in this regard, and these are not protein-coding. All,
though, are significantly different to the random model.
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3.2. Distance from Randomness: Binary Components RY/WS/KM

When we view the DNA as binary-converted RY, WS, and KM sequences, and cross
compare these for dinucleotide relative abundance profiles and relative distance from
randomness, further layers of information are revealed (see Figure 3). The binary compo-
nents and the relative distance from randomness have a distinct profile in each individual
genomic region. Each is unique with respect to relative RY, WS, and KM non-randomness.
This likely reflects sequence functionality, and although each has a distinct profile, there are
certain groupings observed here. The different use and importance of each of the binary
components RY/WS/KM is demonstrated by their distinct signatures at each location.
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Figure 3. Distance from randomness for the different genomic regions, using binary components
analysis (RY/WS/KM) of sequences. The profile shows the average (mean) distance from randomness
of the different genomic regions, including; the 5′UTR, 3′UTR, protein-coding, promoter, transcript,
and enhancer sequences. The relative dinucleotide distance from randomness for each of the RY,
WS, and KM sequences for the genomic regions is shown. These are distinct sequence regions, each
with their own type of functionality, and each one displays a distinct profile which distinguishes it
from the other genomic sequence locations. The RY binary component is least random of most of
the genomic regions, including 3′UTR, 5′UTR, the promoter, transcript and enhancer. All of these
are non-protein coding sequences, with the exception of transcript. Whilst the transcript contains
protein-coding sequences, it is mostly non-coding. The WS binary component is least random only
of the coding DNA. In most other locations, this is the most random component. The KM binary
component varies depending on sequence type; however, it is never the least random feature in any
of the genomic regions analysed. A marked distinction, though, is seen between promoters and
enhancers. In the promoter, it is the most random component, whereas in the enhancer it is not. This
marks a potential distinguishing feature between these two types of non-coding DNA. This analysis
permits a within-region comparison of relative RY, WS, and KM non-randomness.

The results show that for each individual genomic locations the sequences are non-
random in character. This is true for each of the binary components. For each of the
RY, WS, and KM components, randomised-shuffled sequences were generated, which are
equivalent to the actual real sequences. The results of the paired t-tests revealed that the
sequences were significantly different (at the 1% level of significance) to the randomised
ones (see Supplementary Materials). This is true for each of the binary components, and
also in all of the genomic locations. Therefore all are non-random.

The signature and relative randomness of each RY, WS, and KM binary component
was also observed and compared within each individual genomic region. Each of the three
binary components displays a distinct signature within a given genomic locations. The
within-subject ANOVA’s for comparison of RY, WS, and KM data within a given genomic
location dataset showed that these were significantly different at the 1% level of significance.
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This result was true for and within each of the individual genomic locations, and the
same was true for coding, transcript, promoter, enhancer, 5′UTR, and 3′UTR datasets (see
Supplementary Materials). The results indicate that for all 6 sequence datasets there is a
highly significant effect of analysis type, the effect size being large in 5 out of 6 sequences
and medium in the 3-UTR instance. To further explore the differences between analysis
types, ANOVA’s were followed up in the form of post-hoc multiple pairwise comparisons
corrected by the Bonferroni method. Once again, all test results were found to be highly
statistically significant on all comparisons (Supplementary Materials—Tables SX and SY).

In a cross comparison of the profiles between the genomic locations and sequence
types, we see distinct differences in coding sequence in comparison to all other locations.
Whilst non-coding sequences share a general type of feature or code, these also possess
some distinguishing patterns.

The breakdown of these profiles into binary components reveals that each genomic
location possesses its own unique signature with respect to RY/KM/WS and that these
serve to further differentiate (beyond the ATCG relative abundance profile) each genomic
location. It also reveals that information content is distinct in the protein-coding sequence
compared to all other locations. For the RY/KM/WS relative abundance profiles, for
instance, promoter DNA contains a very different profile to coding DNA. This reflects
profoundly different information content and function. There are also differences between
the promoter and other non-coding regions; however, these are less profound.

The importance of information content in coding and also transcript DNA is: WS,
followed RY, then KM. Coding sequence has distance from randomness values of RY: 0.13,
WS: 0.11, and KM: 0.06, and, therefore, WS is least random, followed by RY and then
KM (which is most random in the sequence). It is only in the coding DNA that WS is the
least random (comparatively) of the three binary components, which indicates that WS
represents the most important information content in protein-coding regions. All non-
coding DNA analysed here have RY as the least random of all three binary components.
Therefore, in non-coding DNA in general, RY information content may be considered the
most important of the three.

Transcript values for the binary component relative abundance profiles are similar to
the promoter with respect to relative non-randomness, with RY being the least random at
0.13, followed by KM: 0.0.8, and then WS: 0.06. The transcript sequence is very different to
coding even though it contains coding DNA. In fact, its profile is more similar to non-coding
DNA, with RY being least random. Since transcript is a mixture of coding and non-coding
DNA, the general similarity, though, is likely due to the large proportion of non-coding
DNA in the transcript.

The promoter has values of RY (least random) at 0.13, followed by WS: 0.06, and then
KM: 0.05, which are more random. This implies increased RY importance at promoter, and
decreased WS and KM importance. The RY result suggests a prominent RY signature/code
in the promoter sequence. This is also in-line with genomic DNA, and non-coding DNA
in general.

The enhancer also displays RY as the least random. The values are RY: 0.12, followed
by KM: 0.09, and then WS: 0.06, which is most random. Promoters and enhancers, in terms
of functionality, have some overlap. Both are non-coding, and contain an abundance of
TFBS’s. Sequence features that distinguish these two regions are, therefore, worth noting.
Whilst RY is least random in both the promoter and enhancer, the KM and WS profiles are
different in relative randomness order. In the promoter KM is least random, and in the
enhancer WS is least random, and so these potentially mark sequence properties that make
these regions different.

The 3′UTR and 5′UTR each possess a unique binary components profile, which are
very different to one another. The 3′UTR has the following relative abundance profile
values: RY = 0.14, KM = 0.11, and WS = 0.10, and so RY is least random, followed by KM,
and WS being most random. The 5′UTR has the following values: RY: 0.16, WS: 0.14, and
KM: 0.10, and so RY is least random, followed by WS, and then KM. Both of the UTR
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regions have relatively (similar) high and non-random RY values, in line with non-coding
DNA in general. However, the non-random effect in the UTR’s is higher than any other
non-coding region studied here. The two UTR’s, though, have distinct and separate binary
profiles. The order of distance from randomness is inverted with respect to WS and KM.
This is a strong distinguishing feature, which relates directly to sequence. In the 5′UTR,
WS is most random, whereas in the 3′UTR, KM is most random.

One pattern common to almost all genomic locations is the RY binary component,
which has the highest relative abundance values (least random) compared to both KM
and WS. The protein-coding sequence is the only exception, where WS values were higher.
For the WS binary component, the results were more varied. In the case of the 3′UTR,
enhancer and transcript sequences, the lowest relative abundance levels were for the WS
binary component. In comparison, within 5′UTR and coding sequences, WS levels were
more distant from randomness compared to the KM binary component. The statistics
also showed that in the case of the promoter, while the WS measurements were still
found to be higher than KM ones, the difference was substantially less compared to other
sequence types.

In summary, considering the results for each of the binary components, RY is least
random for all non-coding regions studied. This is a feature in all the non-coding, and
genomic, DNA in general. WS is least random only for protein-coding sequence, and this
is an unusual feature which distinguishes only coding DNA. The KM property is never
the least-random feature. Either KM / WS are the most random in all regions. Information
content, though, is seen to be distinct in the different sequence types.

3.3. Odds Ratios and Genomic Signatures: Original ATCG Sequence

General design profiles were generated for the original ATCG DNA sequence, in
each of genomic sequence locations. The dinucleotides odds ratio results are given for all
possible sixteen dinucleotides (ApA, ApT, ApC, ApG, TpA, TpT, TpC, TpG, CpA, CpT,
CpC, CpG, GpA, GpT, GpC, GpG), and results here are the mean values within the given
genomic sequence type (see Figure 4). Please also see Supplementary Materials 1 for full
descriptive statistics. In addition to the actual genomic DNA sequences, equivalent odds
ratio values for random-shuffled sequences are used as a comparison. An odds ratio value
of zero denotes the theoretical random model, and the further a value is from zero, the
more distant that dinucleotide is from the random model.

The results reveal that for odds ratios and overall general designs, each genomic loca-
tion has a unique profile. Whilst there is a wide-spread tendency for specific dinucleotides
to be either over-/under-represented, the different types of DNA sequence possess varia-
tions in odds ratios. The complete profile consisting of all the 16 possible dinucleotide are
distinct in each sequence type. The structural and functional differences of the different
genomic regions are likely reflected in varying dinucleotide properties. Therefore, whilst
there are general common trends, each genomic sequence location possesses a unique
general design profile, which distinguishes regions.

An odds ratio (standardised to 1) value of zero is the random expectation, or expected
value for a randomised sequence of equivalent mononucleotide composition. Values above
zero mean that the dinucleotide is over-represented (above the random expectation), and
a negative value means that it is under-represented in the sequences. In general, the
results reveal that dinucleotides that are under-represented are under-represented in all
the different genomic regions to a greater or lesser degree. The same is true regarding
over-representation. However, there are some notable exceptions.
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Figure 4. General designs profiles for the original ATCG sequence, according to genomic location
These charts show the dinucleotide odds ratio profiles for the original ATCG sequence, in each of
genomic sequence locations. These locations include the (a) 3′UTR, (b) 5′UTR, (c) coding, (d) promoter,
(e) transcript, and (f) enhancer profiles. For each of these, the dinucleotides odds ratios are calculated
for all possible 16 dinucleotides, and results here are the mean values (then standardized to 1) within
the given genomic sequence type. In addition to the actual genomic DNA sequences, equivalent
values for random-shuffled sequences are shown. A value of zero denotes the theoretical random
model, and the further a value is from zero, the more distant that dinucleotide is from the random
model. Each genomic sequence location possess a unique general design profile, which distinguishes
it from all other sequence types. The most under-represented dinucleotide in all the sequence types is
CpG followed by TpA. This is in-line with the general observation from genomic chromosomal DNA.
The one exception is the promoter, where TpA is more strongly under-represented than CpG. This
marks an important distinguishing feature of the promoter. Other under-represented dinucleotides
include: ApT, ApC, GpT. The following dinucleotides are generally over-represented in the various
sequence types: ApG, TpG, CpA, CpT, CpC, GpG. Additional odds ratio values that distinguish the
promoter from the other genomic locations are that ApA, GpC, GpG, whilst not random, are close to
this only in promoter. Features that distinguish between the promoter and enhancer are TpG, CpA,
and CpC, which are more over-represented in the enhancer, and CpG, which is more suppressed
in the enhancer. These general designs are extremely valuable both for potentially identifying the
different sequences, and, importantly, for understanding their differences and how these relate to
their particular functions in the genome.
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The most under-represented dinucleotide in all the genomic locations examined is
CpG followed by TpA. CpG is the most suppressed and is by far the most distant from
randomness. The relatively low abundance of CpG and TpA fits well with their general
under-representation in human genomic DNA in human chromosomes, and also in most
genomes [15]. Other under-represented dinucleotides in the genomic locations examined
here include: ApT, ApC, GpT. The following dinucleotides are generally over-represented
in the various sequence types: ApG, TpG, CpA, CpT, CpC, GpG.

The results of this experiment show one exception to the general CpG ‘rule’ of being
the most suppressed dinucleotide. This is within the promoter, where TpA is more strongly
under-represented than CpG. This goes against the grain of what is commonly seen in DNA.
This is important, as it marks a distinguishing feature. Additional features that distinguish
the promoter are that ApA, GpC, GpG, whilst not random, are closer to randomness than
other locations.

Additionally, features that distinguish between the promoter and enhancer are TpG,
CpA, and CpC, which are more over-represented in the enhancer, and CpG, which is
more suppressed in the enhancer. Since both these genomic sequences contain regulatory
elements, they are differentiating features of value. The results highlight that general
designs are extremely valuable both for potentially identifying the sequence type, and for
understanding their differences and how these relate to their particular functions.

3.4. Odds Ratios and Genomic Signatures: RY/WS/KM Binary Components

The results show the general design profile for each binary component RY, WS, and
KM separately, in each of genomic sequence locations (see Figure 5). Please also see
Supplementary Materials 2 for full descriptive statistics. For each binary component, the
dinucleotides odds ratios were calculated for all possible four dinucleotides, and results
here are the mean values within the genomic sequence type. In addition to the real genomic
DNA sequences, equivalent values for the random model are presented. General trends
are observed in the data as well as some marked distinctions between genomic locations.

RY: The dinucleotides RpR and YpY are relatively strongly over-represented in most
locations, and RpY and YpR are under-represented throughout. These values are lowest
(closer to the random model) for the coding and enhancer regions.

WS: The dinucleotides WpS and SpW are over-represented, and SpS and WpW are
under-represented in all locations. However, these are much closer to the random model in
the promoter. The strongest levels of enhancement/suppression are in the coding region
for all the WS dinucleotides.

KM: The dinucleotides KpK and MpM are over-represented, and KpM and MpK are
under-represented in all locations. However, these are much closer to the random model in
the promoter and 5′UTR.

These results show that each genomic location possesses its own unique genomic
signature. The binary component odds ratio values are also distinct in each location.
However, there is a common theme for each of the RY, WS, and KM binary components.
Over-represented dinucleotides are this way in all regions, and under-represented are so
throughout. This means that the binary component odds ratios display coherence. The
difference between genomic locations is only with respect to the extent of enhancement or
suppression. The random-shuffled equivalent sequences have odds ratio values close to
zero in all the locations. These are slightly higher in the UTR, which is likely due to these
being shorter sequence segments. In longer segments, the random values are closer the
theoretical/true random value of zero.
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The results of this experiment show one exception to the general CpG ‘rule’ of being 
the most suppressed dinucleotide. This is within the promoter, where TpA is more 
strongly under-represented than CpG. This goes against the grain of what is commonly 
seen in DNA. This is important, as it marks a distinguishing feature. Additional features 
that distinguish the promoter are that ApA, GpC, GpG, whilst not random, are closer to 
randomness than other locations.  

Additionally, features that distinguish between the promoter and enhancer are TpG, 
CpA, and CpC, which are more over-represented in the enhancer, and CpG, which is more 
suppressed in the enhancer. Since both these genomic sequences contain regulatory 
elements, they are differentiating features of value. The results highlight that general 
designs are extremely valuable both for potentially identifying the sequence type, and for 
understanding their differences and how these relate to their particular functions.  

3.4. Odds Ratios and Genomic Signatures: RY/WS/KM Binary Components  
The results show the general design profile for each binary component RY, WS, and 

KM separately, in each of genomic sequence locations (see Figure 5). Please also see 
Supplementary Materials 2 for full descriptive statistics. For each binary component, the 
dinucleotides odds ratios were calculated for all possible four dinucleotides, and results 
here are the mean values within the genomic sequence type. In addition to the real 
genomic DNA sequences, equivalent values for the random model are presented. General 
trends are observed in the data as well as some marked distinctions between genomic 
locations.  
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Figure 5. General design profiles for the RY, WS, and KM binary components, according to genomic
location. These charts show the general designs profile for each binary component RY, WS, and KM
separately, in each of genomic sequence locations. These locations include the 3′UTR, 5′UTR, coding,
promoter, transcript, and enhancer. For each binary components, the dinucleotides odds ratios are
calculated for all possible four dinucleotides, and results here are the mean values within the given
genomic sequence type. Equivalent values for random-shuffled sequences are shown. A value of
zero is equivalent to the random model.

Within the RY binary component dataset, the dinucleotides RpR and YpY are strongly
over-represented in all the locations, and RpY and YpR are under-represented throughout.
These values are lowest (closer to the random model) for all the coding and enhancer
regions. This profile is consistent for all the six genomic location datasets. However, within
the coding and enhancer datasets, the odds ratios are closer to the random model than



Genes 2022, 13, 1970 16 of 23

the other sequence types. The DNA generally favours homogenous dinucleotides for this
binary component, and suppresses the heterogeneous ones.

For the WS binary component, WpS and SpW are over-represented, and SpS and
WpW are under-represented in all locations. However, these are much closer to the random
model in the promoter. The strongest levels of enhancement/suppression are in the coding
region for all the WS dinucleotides. In general for this binary component, the DNA
enhances heterogeneous dinucleotides, and suppresses homogenous ones. For the KM
binary component, KpK and MpM are over-represented, and KpM and MpK are under-
represented in all locations. However, these are much closer to the random model in
the promoter and 5′UTR. For each of the profiles, a randomised model dataset was also
analysed. The results here were close to zero, as expected. For both UTRs, however, the
odds ratio values were slightly higher, closer to zero, due to shorter sequence stretches of
the UTRs.

These results demonstrate that each location possesses a unique signature for each
binary component. The odds ratio values are distinct in each location. However, there
is a common theme for each of the RY, WS, and KM sequence sets. Over-represented
dinucleotides are this way in all genomic regions, and under-represented are also this way
throughout. This means that the binary component odds ratios display coherence, that
DNA retains these features, and this general ‘rule’ is not disobeyed. The boundary of over
and under representation is not crossed. The difference between genomic locations is only
with respect to extent of dinucleotide enhancement or suppression.

4. Discussion and Conclusions
4.1. General Designs of the ATCG Original Sequence in Different Genomic Locations

Genomic signatures are a powerful tool and method for the analysis of sequence,
and distinguishing sequence types. The genomic signature is seen to be distinct for each
of the genomic locations studied. This is in-line with past experiments [21] where the
dinucleotide genomic signature was shown to be pervasive, and capable of distinguishing
genomic DNA of different species and also the chromosomes within a given species. This
is due to the unique nature of the dinucleotide relative abundance profile. It generates a
quantitative profile that is the most basic description of a sequence. In addition, it describes
the random/non-random characteristics of the sequence. Furthermore, dinucleotides and
the relative abundance profile reflect patterns and potential codes inherent in sequences.
This makes the dinucleotide relative abundance profile a powerful tool for analysing the
large-scale differences between genomic sequences.

CpG is the most suppressed and is by far the most distant from randomness of all
the dinucleotides. TpA is also under-represented. This is true in all the genomic locations
studied. The CpG and TpA suppression fits well with their general under-representation
in the human and many other genomes [15].

The general tendencies of dinucleotides to be over- or under-represented can be due
to the sequence assembly tendencies of DNA, which generate a viable stable molecule.
Mutation events may also generate bias. For instance, in genomic DNA in general, CpG is
present at a lower level and is much more suppressed than GpC, which is not suppressed.
Under-representation of CpG is thought to be due to methylation and deamination, which
causes the mutation of CpG to either TpG or CpA. TpG and CpA occur at a higher than
random expectation (whilst CpG occurs at a lower than expected frequency).

One exception is the promoter, where TpA is slightly more suppressed than CpG,
which is unusual in DNA. One possible explanation for this very strong and unusual
under-representation of TpA is its presence as a part of regulatory motifs such as the TATA
box. Since the TATA box is a fundamental element, there would be a selective pressure
within DNA to under-represent this. This would help to prevent the inappropriate binding
of regulatory proteins to the DNA, to possess their own characteristic sequence motifs
related to their particular function. In addition, the stacking energy of TpA is the lowest of
all dinucleotides, permitting the DNA to unwind. Suppressing it makes sense in this regard,
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as easy unwinding is not generally desired, unless for a specific reason. Also suppression
helps to prevent the inappropriate binding of regulatory proteins to the DNA, or to possess
their own characteristic sequence motifs related to their particular function.

The dinucleotides odds ratios and relative abundance profiles were generated for
genomic sequences not previously analysed. This includes the promoter, enhancer, 5′UTR,
and 3′UTR. The results show distinctions between different types of non-coding DNA, as
well as the coding sequences.. There are a variety of constraints on different sequence types
related to functionality and also evolutionary pressures. Profile similarities occur where
overall constraints on DNA remain the same regardless of sequence type.

4.2. General Designs for Genomic Locations: The RY/WS/KM Binary Components

Within the category of non-coding DNA, the promoter contains its own unique signa-
ture for the binary components, and can be distinguished from the enhancer; thus, whilst
these locations share common features for gene regulation, there are also some distinct
features. Within the promoter, the genomic signature for the RY sequence was most distant
from the random model. This was followed by the WS and KM sequence signatures, with
KM being the most random. The result implies RY codes or patterns are the most prominent
or of greatest importance. Since purines/pyrimidines are determinants of structure, this
suggests a potential R/Y structural code in the promoter. The WS/KM properties are deter-
minants of hydrogen-bonding donor–acceptor patterns. The results indicate this property
is less important in the promoter than the RY property of structure. WS is relatively less
random than KM in the promoter.

In the enhancer, RY is the most distant from randomness, and we conclude the same
type of RY-structure-based code. This is followed by KM, and then WS, which is the most
random. The KM and WS relative distance from randomness mark a distinction between
the promoter and enhancer. This may be due to a difference in functionality, or it could be
due the proximity of the promoter to the UTR and protein-coding region. In the enhancer,
the most random property is the WS property, which relates to the hydrogen-bonding
potential between base pairs. In the enhancer, this property is not as necessary.

In addition, the odds ratio values show that all under-represented dinucleotides in the
promoter and enhancer are composed of a purine and a pyrimidine, whilst most of those
that are over-represented are composed of either two purines or two pyrimidines. We see
that this pattern is also true in all the other genomic locations studied, it is just the extent
which varies.

In the coding region, the WS component is most distant from randomness, followed by
RY and then KM. The WS component is connected with the chemical property of hydrogen
bonding between the base pairs of DNA, but also the specificity of tRNA binding and
codon–anti-codon interactions. In protein-coding sequences, the WS property is least
random due to this being inherent in the genetic code. Genomic signatures capture this.
RY is less important because the structural property is least relevant here. It is not needed
in this way, as the encoding is simply different. KM is the most random in the coding
sequence, as the keto-amino property and major-groove donor–acceptor patterns are not
required here, as in other locations.

In contrast, in the transcript, RY is the least random followed by KM, and then WS.
Even though transcript contains protein-coding DNA, the majority of sequence is intronic
non-coding. The profile contrast to coding sequence reflects this. It is also worth noting
that transcript has a similar distance from randomness profile to the enhancer. This also
reflects the presence of enhancer and regulatory sequences within the transcript.

The UTR’s possess a strong RY-structural code, which is much more prominent than
KM and WS, reflecting the fact that structure is the predominant feature. The KM signature,
though, is very different for the 5′UTR, where it is much closer to randomness, and 3′UTR,
where it is relatively non-random. This suggests a different type of H-bonding activity.
Since the KM signature is a determinant of major-groove hydrogen bonding, there is a
likely difference in this respect between the UTR’s.
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In the RY binary component sequence dataset, there are four possible dinucleotides,
which are RpY, RpR, YpR, and YpY. The dinucleotides YpY/RpR are enhanced above the
random expectation given the nucleotide content, and RpY/YpR are suppressed. The
RpY/YpR dinucleotides are flexible at the local level of secondary DNA structure, whilst
RpR/YpY are rigid, and so we can conclude that, in general, in all the locations investigated,
flexibility is suppressed whilst rigidity is enhanced. All in all, the RY property is a structural
one. This result is also supported by research with Erdös motifs, showing that certain RY
motifs of 10 bp length are under-represented in the human genome [40].

This general design profile is consistent for all six genomic locations studied, which
reflects a general tendency in genomic DNA. There is coherence here, and this baseline
‘rule’ is adhered to throughout. It likely related to the stability of DNA, and the way in
which it, by nature, assembles. The difference between genomic locations is in the level of
the suppression/enhancement of these RY dinucleotides. RY forms a strong feature in all
non-coding DNA. In contrast, coding DNA has a very different nature.

For the KM binary component: KpM / MpK are suppressed, whilst KpK / MpM
are enhanced all the genomic locations analysed. However, in the promoter and 5′UTR
they are much closer to randomness than all other locations. In addition, the extent of
suppression/enhancement varies greatly between the genomic locations. This property
and pattern directly affects hydrogen-bonding donor/acceptor sites, and distinguishes
these at the major groove of DNA. These binding patterns are related to the recognition and
specificity of binding to biological particles. The results show that either sequential donors
or sequential acceptors are favoured. This may be a pattern favourable for the binding of
particles to DNA.

In the WS binary component dataset, WpW and SpS are suppressed, whilst WpS and
SpW are enhanced, and this is true across all the genomic regions analysed. The only excep-
tion is the promoter, in which the level of enhancement/suppression, whilst not random, is
closest to it, of all locations. DNA in the different sequence types generally favours and
enhances dinucleotides with a heterogeneous hydrogen-bonding donor/acceptor pattern
in the minor groove, and also a heterogeneous number of hydrogen bonds between the base
pairs. In contrast, the same or homogeneous patterns are suppressed. This heterogeneous
pattern of hydrogen bonding between base pairs may be favoured, as it increases the
stability of local secondary helical structures. For coding sequences, WS is the least random
component. This reveals that within the triplet code, the hydrogen bonding between the
base-pairs is the most important property.. In other words, it functions through comple-
mentary base pairing. We see that the components analysis captures this encoding, and the
chemical boding property, namely, hydrogen bonds. In contrast, within the promoter, these
patterns are closer to randomness, as they are not needed nor as important in this location.

4.3. Binary Components Reveal Distinct Patterns/Codes in Coding and Non-Coding DNA

In our previous research [33], we established proof of principle for binary components
analysis with general designs. Here, we looked at large-scale regions of chromosomal DNA,
and discovered the presence of an RY structural code across all human chromosomes. In this
present research, we analyse distinct functional genomic regions for comparison, namely,
coding sequence, transcript, promoter, enhancer, the 5′UTR and 3′UTR. We investigate
whether the general designs are different, and seek to understand their encoding.

The binary components of the four bases reflect and separate out the chemical and
physical properties of DNA. This analysis leads to insight into patterns and codes. The RY
component is a physical property that determines secondary structure [32]. In contrast to
this, the KM and WS components determine the chemical property of the bases, including
hydrogen-bonding capability (and patterns). It is known that the RY make up of DNA
determines the relative flexibility/rigidity of the molecule, and ability to bend [41,42]. At
any given segment of the DNA, this will change depending on the particular stretch of
sequence. The analysis of the non-randomness of identical sequences with respect to each
of these three binary components here separates these properties, and then determines
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their relative importance in the different sequences. This permits the comparison of protein-
coding and non-coding DNA.

With respect to binary components profiles, the non-coding genomic regions are
generally more similar to each other than to the coding DNA. This is to be expected, since
protein-coding regions are very distinct in their task of coding for peptides. In general,
non-coding regions are much more non-random in their RY signatures, and so structural
patterns define non-coding DNA. In contrast, the coding sequences examined were much
less random in their WS/KM signatures than the RY signature. The binary-components
analysis permit us to delve into these distinct sequence features, which are due to a different
type of encoding.

The protein-coding DNA displayed the WS binary component as its most prominent
(least-random) feature. This reveals a general WS chemical code in the coding DNA. The
triplet code actually depends on hydrogen-bonding binding, since it specifies codon–anti-
codon binding. It depends on differentiating between hydrogen bonds between tRNA and
the DNA. The WS property defines this. The general designs with binary components
analysis actually captures this encoding.

All the types of non-coding DNA have the RY component as their most prominent
(least-random) feature, suggesting an RY-structural-based code in all non-coding regions.
This observation falls in line with the fact that much of the non-coding DNA function
entails binding to protein particles. This binding requires recognition specificity, which may
be largely structural in nature. The RY property is, therefore, critical to this functioning
of non-coding DNA. None of the genomic locations analysed has the KM (keto/Amino)
property as the most prominent feature; it is either the most random or second to most
random component.

The binary components analysis adds a powerful dimension to the analysis, by break-
ing down information content. Therefore, it is employed here to investigate differences
in underlying patterns and codes between genomic regions. Breaking down the DNA
nucleic acids sequence into component parts (RY/WS/KM) according to chemical and
physical properties allows us to see these properties in isolation. It permits these properties
of general designs to be compared in the coding and non-coding DNA.

4.4. The Connection between Functionality and Codes

There exists a sequence–structure–function connection, and, therefore, the sequence
patterns inherent in the non-coding DNA are expected to be different to protein-coding
DNA. The genomic signature results seen here reflect this. This signature difference
shows that different characteristic words or patterns that exist within the DNA sequence
are inherent to the different genomic regions. This, in turn, implies distinct codes. The
distinct functionality relates directly to DNA properties, and also sequence patterns and
underlying codes.

The promoter is responsible for transcription regulation, and possesses the necessary
DNA patterns or potential ‘codes‘ for this task. Transcription regulation is governed by a
biological machinery which interacts with DNA at specific locations. The basal machinery
binds around the TSS, and the promoter region contains this, as well as other TFBS’s that
regulate transcription. The enhancer is also dense in TFBS’s. The information content of
the DNA and its sequence is critically important for this process. This is because of the
inherent interrelationship between DNA sequence, structure (both secondary and tertiary),
and function. The regulatory function of this DNA makes it unique and its signatures
distinct from other genomic locations (with different functions).

The results strongly suggest an RY code which is structural in nature, in the promoter
and enhancer regions. A KM/WS chemical code is also present but of lesser importance.
Given existing knowledge of the biological function of the promoter and enhancer, this
makes sense. The promoter is extremely dense in protein binding sites, and for transcription
regulation, it is necessary for TF’s/proteins to specifically recognise their binding sites.
These are short stretches of DNA (6–20 bp’s in length). Presently, we do know how this
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specificity is attained, and what constitutes the code(s) for this. Protein–DNA binding
requires structural fit or compatibility between the DNA and protein, and is, therefore,
highly structural in nature. This explains the connection with a structural RY code. Non-
coding DNA may, in general, require more structural specificity than protein-coding DNA.
Whilst we know that there is not a direct rule-driven code in non-coding DNA, the results
do point towards complex patterns and codes. Whilst these are not simple, they are present
and require examination.

In contrast, coding DNA is very different in nature. The most prominent feature being
the triplet code. The structural motifs of the DNA sequence is less important here, in terms
of secondary and tertiary structure. Rather, the chemical properties of hydrogen-bonding
are more significant, which explains the relative importance of the WS signature.

4.5. Assumptions and Limitations

There are some limitations with the sequence datasets. These include the predictive
nature of the sequence type and boundaries of sequence locations. This limitation has
been minimised as much as possible by utilising datasets that have been well curated and
based on experimental evidence. Nevertheless, there are imperfections, particularly with
boundaries, i.e., where a sequence type begins and ends. For the promoter and 5′UTR, the
precise location of the TSS (transcription start site), may be inaccurate. The VISTA enhancer
dataset used here was specifically chosen because all these are experimentally elucidated
and not based only on prediction. However, the boundaries here are likely larger than
the true enhancer sequence. This inaccuracy may slightly alter the outcome. The various
sequence types have such inaccuracies that could affect the results, and any subsequent
sequence analysis.

Another issue or limitation is to do with length of sequences. Inherently, the dif-
ferent sequence types vary, and can be short. In order to study regions such as coding
and promoters, etc., you must deal with short sequences. Dinucleotide odds ratios and
relative abundance profiles are easier to analyse with longer sequences, as the results more
accurately approach the random model. Here, we adapt to analyse shorter stretches. To
eliminate noise we utilise very large datasets, and also generate an equivalent randomised
model to ensure accuracy of results.

Both the odds ratio values and the connected dinucleotide relative abundance profile
are a measure of the average over- or under-representation of dinucleotides in a given
sequence. The distance from randomness measure is adapted to assess the overall average
randomness (or non-randomness) of a sequence in comparison to the theoretical random
one. The binary components analysis for the RY, KM, WS binarized sequences takes this
a step further. Here, we compare the relative randomness (or non-randomness) for each
of the RY, KM, and WS properties for the exact same sequences. The assumption (and
interpretation), though, that we make here is that relative non-randomness is analogous
with greater importance of that component. We interpret this as the component having
patterns in a sequence. Whilst this is a reasonable conclusion, we must state that this is
an assumption.

It is then possible to compare the general design profiles of the coding sequences,
promoter, enhancer, etc., and correlate these with the function of those sequences. Sequence
and function are inherently linked. This means that it becomes possible to draw conclu-
sions with the binary component results with function of the sequences. There are some
assumptions. We assume that there is a connection of the RY, WS and KM component
with physical/chemical properties. This includes that the RY property of a sequence is
connected with its structure. This correlated with existing evidence for DNA structure. A
further assumption is that WS and KM are linked with the hydrogen bonding capacity.
This too makes sense and there is strong evidence in this direction. However, the coherence
is not necessarily precise. We say this because both WS and KM have other properties, and
not solely hydrogen-bonding capacity.
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4.6. Further Research

The binary components with general designs can be used to distinguish genomic
regions, and can be applied to their identification. The outcome leads to two main paths of
further research. The first is to better understand sequence patterns and codes within the
promoter and other non-coding DNA. This enables a better understanding of the DNA and
its role in transcription and gene regulation in general. The second path is the use of the
genomic signatures (with binary components) to identify and predict genomic locations.
There are other methods that may be developed for further analysis of patterns in the
promoter and other genomic sequences.

The RY structural code, particularly in the promoter (but also other locations), can be
further investigated. This would involve analysis of sequence patterns in the promoter.
Known TFBS’s and their DNA sequences may also be examined further for patterns and
related structural features. On a wider scope, different genomic locations may be studied for
DNA signatures, and a full map produced for other non-coding locations. The signatures
analysis may of course be expanded to other organisms. We strongly suspect general
principles of encoding will be similar, since these are likely common features of non-coding
DNA across genomes. In addition, structural features of the DNA can be studied and
correlated with these observations.

The second path of investigation is the prediction of genome architecture, coding/non-
coding, promoter and TSS. The results of this paper may be used to generate learning
algorithms that utilize genomic signatures with binary components to improve predictions
for differentiating coding and non-coding DNA. Further research would include the de-
velopment of algorithms that ‘reverse engineer’ these findings to accurately identify and
predict sequence type.

4.7. Concluding Remarks

The purpose of this investigation is to decipher patterns and codes in different types
of genomic DNA. These findings bring about two very significant outcomes: The first is
for building a profile of sequence patterns and signatures for the different sequence types.
This permits a deciphering of underlying codes, which are related to distinct functions
of different regions of DNA. This allows us to also understand the connection between
sequence, structure and function, which is fundamental to biology. The second is creating a
profile that distinguishes between the different genomic sequences, and this profile could
be utilised in a predictive sense.

With the binary comportments analysis, we used the principal of breaking down
the information stored within the DNA base sequence to better understand function and
decipher codes. This is much like the use of computer binary code for the transmission of
complex information. This information can be layered or multidimensional, yet transmitted
in binary code.

In summary, the findings show that there is a difference in the general designs between
protein-coding DNA and non-coding DNA. The RY, WS, and KM binary components
signatures distinguish between these. We conclude from the findings that in protein-coding
DNA there is a primarily WS-chemical-based code, whereas in non-coding DNA there is a
dominant RY-structural-based code. This is a novel and impactful result.

Furthermore, this dominant RY code is observed in the different types of non-coding
DNA. We also conclude that these codes are connected to function. In the non-coding
DNA such as the promoter, an RY-structural code is dominant, and hydrogen-bonding less
important, which likely reflects the role of this DNA in transcription regulation. In contrast,
coding DNA has a completely different binary components nature, due to the hydrogen-
bonding requirement for codon–anti-codon interaction. This research marks a step forward
towards understanding the encoding of functionally distinct locations of DNA.

This research makes use of the inherent relationship between sequence, structure and
function, and, therefore, biological meaning is successfully derived from sequence data. It
aids the deciphering of codes. These findings have implications for understanding how
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non-coding DNA functions and for gene regulation. It helps us to determine the difference
between the genetic code and other codes. These findings have implications for the most
fundamental principles of biology. Furthermore, this can assist in understanding of cellular
growth and development and in knowledge of disease states.
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