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Abstract: AML ranks second in the most common types of leukemia diagnosed in both adults and
children. Necroptosis is a programmed inflammatory cell death form reported to be an innate immune
effector against microbial and viral pathogens and recently has been found to play an eventful role in
the oncogenesis, progression, and metastasis of cancer. This study is designed to explore the potential
value of necroptosis in predicting prognostic and optimizing the current therapeutic strategies for
AML patients. We collected transcriptome and clinical data from the Cancer Genome Atlas (TCGA)
and the Genotype-Tissue Expression (GTEx) databases and selected necroptosis-related genes with
both differential significance and prognostic value. Six genes (YBX3, ZBP1, CDC37, ALK, BRAF, and
BNIP3) were incorporated to generate a risk model with the implementation of multivariate Cox
regression. The signature was proven to be an independent prognostic predictor in both training and
validation cohorts with hazard ratios (HRs) of 1.51 (95% CI: 1.33–1.72) and 1.57 (95% CI: 1.16–2.12),
respectively. Moreover, receiver operating characteristic (ROC) curve was utilized to quantify the
predictive performance of the signature and satisfying results were shown with the area under the
curve (AUC) up to 0.801 (3-year) and 0.619 (3-year), respectively. In addition, the subtyping of
AML patients based on the risk signature demonstrated a significant correlation with the immune
cell infiltration and response to immunotherapy. Finally, we incorporated risk signature with the
classical clinical features to establish a nomogram which may contribute to the improvement of
clinical management. To conclude, this study identified a necroptosis-related signature as a novel
biomarker to improve the risk stratification, to inform the immunotherapy efficacy, and to indicate
the therapeutic option of targeted therapy.

Keywords: acute myeloid leukemia; multivariate Cox regression; necroptosis; immune infiltration;
prognostic model

1. Introduction

AML is a highly heterogeneous malignant tumor featuring aberrant proliferation and
accumulation of immature myeloid hematopoietic stem or progenitor cells in bone marrow,
leading to the impairment of normal hematopoietic function [1]. The proportion of AML in
all types of leukemia almost reaches 70% and 30% in adult patients and pediatric patients,
respectively. The pathogenesis of AML has not been fully clarified and so far, it has been
generally believed that potential mechanisms include gene fusions, dysregulated signal
pathways, altered bone marrow microenvironment, etc. [2–5]. While recognized as the
standard therapy for the AML, chemotherapy remained a suboptimal therapeutic option
as more than two-thirds of adult AML patients would suffer relapse after the primary
remission [6]. Therefore, novel and synergistic therapeutic approaches are urgently needed
to improve the clinical outcomes.
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In recent years, the development of immunotherapy has gained wide attention and
holds great promise for AML treatment. As one of the immunotherapy regimens, antibody
therapy exerts anti-tumor effects based on the according ability of the antibody, such as
unconjugated antibodies prompting NK cells antibody-dependent cell-mediated cytotoxicity
(ADCC), or bi- and tri-specific antibodies engaging NK cells or T-cells to efficiently improve
the cytotoxicity against target AML cells, etc. [7]. While clinical outcomes of several un-
modified mAbs exhibited limited benefits, studies of modified antibodies such as BI836858
are under way [8]. Instead of targeting specific leukemia cells, vaccines and checkpoint
blockade strategies are centered on the reactivation of antileukemia immunity. Both peptide-
and DC-based vaccines have primarily documented antileukemia immunological responses
and improved survival outcomes in different clinical trials [9,10]. Several studies exploring
novel vaccine strategies including optimizing immunostimulatory properties of DCs are still
in progress [11,12]. Immune checkpoint blockade (ICB) has achieved durable responses in
the patients with melanoma and other solid tumors. While most studies concerning CPIs in
AML are still in the early stage of clinical trials, the combination of PD-1 or CTLA4 blocking
antibody with HMAs has already produced encouraging responses [13]. In the future, it can
be safely concluded that combination regimens of immunotherapy with chemotherapeutics
or other carcinogenic pathway inhibitors will outscore monotherapy as a prime option.

Characterized by the rapid membrane permeabilization and properties of inflam-
mation, necroptosis is defined as a combination of apoptosis and necrosis due to the
mechanistic and morphological resemblance [14]. The occurrence of necroptosis was ini-
tially thought to be RIPK1-dependent (receptor-interacting protein [RIP] kinase 1) triggered
by a plethora of upstream stimuli including tumor necrosis factor receptor (TNFR), Fas,
etc. Recently it has been discovered that in certain cases, Toll like receptor 3/4 (TLR-3/4)
and Z-DNA binding protein 1 (ZBP1) can directly induce cells to undergo necroptosis
without the involvement of RIPK1, which identifies RIPK3 and its substrate mixed-lineage
kinase-like (MLKL) as more specific molecular markers of necroptosis [15,16]. Upon the
phosphorylation of RIPK3 through the interaction with RIPK1, MLKL is phosphorylated
and oligomerized and then translocated to the cell membrane to form pores. The influx of
particular ions leads to the cell swelling, membrane lysis, and eventually cell demise [17].
Necroptosis was primarily deemed as an indispensable role in the innate immunity to
fight against viral and bacterial infections, while a growing number of studies indicated
its double-edged sword role in a lot of tumors. Liu et al. [18] found that the necroptosis
inhibitor NSA (necrosulfonamide) has a remarkable suppression effect on tumor progres-
sion in a xenograft model, suggesting the potent pro-tumor function of necroptosis. In
contrast, low or undetectable expression of RIPK3 is witnessed in numerous cancer cell lines.
Moreover, decreased expression of RIPK3 is related with a shortened OS in patients with
breast cancer [19]. The unique inflammatory microenvironment formed by the cytokines
released accompanied with necroptosis may allow its dual effect in tumors. However, the
specific role of necroptosis in AML has not been studied yet.

In this study, we systematically explored the clinical value of genes related to necrop-
tosis in AML as well as potential mechanisms. We compared the expression level of
necroptosis-related genes and constructed a risk signature based on the screened genes.
We further assessed the prognostic value of the signature and its association with the
immune microenvironment. Given the existing results, we consider the signature a reliable
prognostic predictor to improve clinical management for AML patients, a potential target
for tumor targeted therapy and an adjunct for immunotherapy to improve patient selection.

2. Materials and Methods
2.1. Data Acquisition and Preprocessing

Normalized mRNA expression data (FPKM value) along with the corresponding
clinical features of 151 AML patients were obtained from the University of California Santa
Cruz (UCSC) Xena database (https://xenabrowser.net/datapages/) (accessed on 6 April
2022) as a training set. Another dataset from UCSC Xena (RSEM count) integrating the
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TCGA-LAML and GTEx-whole blood cohorts was acquired to identify the differentially
expressed genes (DEGs), which comprised 173 AML samples and 337 normal samples.
The microarray data and overall survival (OS) information of the validation set GSE37642
(GPL570) were further derived from the Gene Expression Omnibus (GEO) database (https:
//www.ncbi.nlm.nih.gov/geo/) (accessed on 6 April 2022). Transcriptome data of GSE6891,
GSE114868, GSE111678, and GSE71014 were also collected to verify the stratification ability
of risk signature. Eligible samples were screened according to the following three principles:

1. Complete gene expression data without any NA or missing value. 2. Complete
survival information and clinicopathological features including patient gender, age, white
blood cell (WBC) count, blast cells percentage in bone marrow (BM), and cytogenetic risk.
3. The overall survival time of the patient should be longer than 30 days. After the data
processing and removal of the inappropriate samples, 126 samples from TCGA cohort and
124 samples from GSE37642 cohort were incorporated in this study for subsequent analysis.

2.2. Clinical Human Samples

A total of 7 peripheral blood (PB) specimens from 3 healthy donors and 4 AML
patients were collected at Ruijin Hospital affiliated to Shanghai Jiao Tong University, School
of Medicine between October 2021 and April 2022. Collection and use of samples for this
study was approved by the Institutional Review Boards from Ruijin Hospital.

2.3. Collection of Necroptosis-Related Genes

A total of 111 necroptosis-related genes (NRGs) originating from the MSigDB (http:
//www.gsea-msigdb.org/gsea/index.jsp) (accessed on 6 April 2022) and formerly reported
literature were enrolled in our study. The specific genes are listed in the Supplementary
Table S1.

2.4. Identification of Differentially Expressed Genes

The voom function within the R package “limma” was utilized to identify the differ-
entially expressed genes between the AML and normal samples. The threshold for DEGs
was set as adjusted p-value < 0.01. The protein–protein interaction (PPI) network analysis
was then performed on the generated DEGs in the STRING database (http://string-db.org)
(accessed on 8 April 2022).

2.5. Establishment and Assessment of a Necroptosis-Related Prognostic Signature

Univariate Cox regression was adopted in order to evaluate the prognostic value of all
genes in the training set. Prognostic-related genes (PRGs) were identified with the threshold
set as p-value < 0.05. Combining PRGs with the previously generated DEGs and NRGs,
we defined the overlapping genes that appear in all three sets as prognostic necroptosis
DEGs. Multivariate Cox regression was further applied to establish a necroptosis-related
prognostic model. The method selected for the stepwise regression for variables screening
was both backward and forward. Risk score for each sample was calculated based on the
formula below:

Risk score = ∑n
i = 1 βiei

where βi represented the coefficient of genei from regression results and ei the expression
level of genei.

Considering the median risk score a cut-off point, patients were divided into high or
low-risk groups and the difference in OS between two subgroups was then assessed via
Kaplan–Meier curve. Precision of the established prognostic model was further verified by
drawing the ROC curve. All the steps above were implemented using the “survminer”,
“survival”, “survivalROC” and other R packages.

2.6. Functional Enrichment Analysis

Identical to the process above, DEGs were filtered between the high and low-risk groups
with the cut-off|log2FC| � 0.4 and p-value < 0.05. Based on the DEGs, GO, KEGG, and
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GSEA analyses were then conducted to explore the enriched biological signaling pathways
in different subtypes using the “clusterProfiler” package. p-value < 0.05 was set to indicate
an enrichment significance and the results were visualized by the “ggplot2” package.

2.7. Characteristics of Immune Cell Infiltration

A total of 40 immune ingredients consisting of immune cells, relative immune factors,
and pathways were acquired from the public resource [20]. Single-sample gene set enrich-
ment analysis (ssGSEA) was performed to produce immune scores individually which
indicated the degree of immune infiltration using the “gsva” package. CIBERSORT is a
linear support vector regression-based algorithm that calculates the content of 22 immune
cell subgroup by deconvolution. By carrying out the CIBERSORT, we quantified and
compared the different proportions of immune cells between the two subgroups through
the Wilcoxon rank-sum test.

2.8. RNA Extraction and qRT-PCR

Total RNA was extracted from 7 PB specimens with FastPure® Cell/Tissue Total RNA
Isolation Kit (Vazyme Biotech Co., Ltd., Nanjing, China) and then reverse-transcribed to
cDNA with HiScript II Q RT SuperMix (+gDNA wiper) (Vazyme Biotech Co., Ltd., Nanjing,
China) following the manufacturer’s instructions. The generated cDNAs were amplified
in the subsequent qRT-PCR using Eastep® RT Master Mix (Promega, Beijing, China). The
gene expression levels were calculated by the 2∆∆CT method and human GAPDH was
used as a housekeeping gene to normalize target genes. Primers used in real-time PCR are
available in the Supplementary Table S2.

2.9. Statistical Analysis

All the data were processed using the R software (version 4.0.3) and related R Biocon-
ductor packages. Log-rank test was used for the statistical comparison of Kaplan–Meier
survival curves. The Pearson chi-square test was used to verify the independence of nu-
meration variables. The Shapiro–Wilk test was first used to judge the normality of the
measurement data and then either Spearman or Pearson correlation test was used to com-
pute the coefficients accordingly. All p-values involved in the statistical tests were double
tailed, and p < 0.05 was considered to be statistically significant.

3. Results
3.1. Construction of a 7-Genes-Based Necroptosis-Related Risk Signature

The overall workflow of our study is displayed in the Figure 1. To gain a better
understanding of the association of the 111 necroptosis-related genes collected in this study,
we performed the PPI network analysis with a 0.9 level (highest confidence) set for the
minimum required interaction score (Figure 2A). A total of 27,966 DEGs were identified
between AML and normal samples by the voom method within the “limma” package with
the screening criteria of adjusted p-value < 0.05 (Supplementary Table S3). Univariate Cox
regression was applied to distinguish genes of significant prognostic value and 5426 PRGs
were identified as a result (Supplementary Table S4). By merging DEGs with PRGs and
necroptosis-related genes, 22 genes were retained and demonstrated via the Venn plot
(Figure 2B). The 22 genes were further incorporated into the multivariate Cox regression
to construct the prognostic signature with both forward and backward direction selected
for the stepwise regression. A total of 6 genes were finally involved and shown by forest
plot using the “survminer” package (Figure 2C). The equation for the model generated was
as follows:

Risk score = YBX3 × − 0.3676 + ZBP1 × 0.5756 + BRAF × − 0.6369 + ALK × 1.7282 + BNIP3 × − 0.4797 +
CDC37 × 0.5021
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Figure 2. Filtering of differentially expressed necroptosis-related genes of prognostic value. (A) Molec-
ular interactions of 111 necroptosis-related regulators depicted by the STRING platform. (B) Venn
plot shows integration of 3 groups of genes and the overlapping part consists of 22 genes. (C) 6 genes
were eventually screened through the multivariate Cox regression to generate the prognostic model.
p values are showed as: * p < 0.05; ** p < 0.01; **** p < 0.0005. (D) The real-time PCR results demon-
strated the mRNA levels of 6 genes in the risk model in healthy donors (n = 3) and AML samples
(n = 4). (Student t-test, * p < 0.05; ** p < 0.01; **** p < 0.0005).

Among the 6 genes, CDC37, ZBP1, and ALK were associated with decreased survival
time with HRs > 1 (CDC37: 1.65, 95% CI: 0.9–3.04; ZBP1: 1.78, 95% CI: 1.12–2.83; ALK:
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5.63, 95% CI: 1.47–21.56) while the remaining 3 genes were considered protective factors
with HRs < 1. Real-Time PCR was used to verify the mRNA levels of 6 genes in 3 healthy
samples and 4 AML samples in the in-vitro experiment (Figure 2D). Results of all 6 genes
were in accordance with the differential expression analysis.

3.2. Evaluation of Model’s Prognostic Prediction Ability and Validation of Its Robustness

Samples in the training set were divided into high and low-risk groups according to
the median risk score. Kaplan–Meier curve was utilized to compare the survival conditions
between the two subgroups and the results witnessed a survival advantage in the low-risk
group (Figure 3A, p < 0.0001, Log-rank test). To assess the discrimination accuracy of the
model, the ROC curve was drawn and AUC for 1-year, 3-year, and 5-year overall survival
fluctuated around 0.8 (0.759, 0.801, 0.759, Figure 3C). GSE37642 from the GEO database was
further adopted to verify the universal robustness of the necroptosis-related risk signature.
The incidence of death was significantly lower in the low-risk group in the validation set
(Figure 3B), which was in good agreement with the results in the training set. The AUCs
calculated for the validation set of 1-year, 3-year, and 5-year OS were 0.661, 0.619, and 0.620,
respectively.

Figure 3. Assessment of ability of the risk signature to predict prognostic in both training and
validation cohorts. (A,B) Kaplan-Meier survival curves reveal the difference of prognostic in two risk
subgroups in TCGA cohort (A) and GSE37642 cohort (B). (C,D) ROC curves showing the predictive
power of the risk model on the survival rate in TCGA cohort (C) and GSE37642 cohort (D).

3.3. Correlation of Clinicopathological Features with Risk Score

Distribution of risk score in both training and validation sets were exhibited in
Figure 4A,B. The overall survival landscape in both sets were displayed in Figure 4C,D and
similar conclusion can be reached that risk score was directly proportional to the number
of deaths and inversely proportional to the survival time. Principal component analysis
(PCA) was performed to evaluate the clustering performance of risk model (Figure 4E,F)
by “ggplot2” package and the plot revealed that it could serve as an acceptable separator
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between the two subgroups. Then, we applied risk model to the training set stratified by
different clinicopathological features to confirm the prediction nature of model regard-
less of the clinical features impacts (Supplementary Figure S1). The results observed a
significant survival advantage in the low-risk group in most subgroups. Extracting and
comparing the expression levels of 6 genes between the high and low-risk groups, we
found that all 6 genes were differentially expressed (Figure 4G, Wilcoxon rank-sum test),
among which BNIP3, BRAF, and YBX3 were upregulated in the low-risk group, while ALK,
CDC37, and ZBP1 were downregulated in the training set, which was consistent with the
results obtained in the validation set (Figure 4H). The 6-genes model combined with critical
clinicopathological factors including gender, age, WBC count, blast cells percentage in BM,
and cytogenetic risk as well as risk score were further presented in a heatmap (Figure 5A)
using the “pheatmap” package. Correlations of the clinicopathological factors with risk
score were subsequently explored and the results showed that both age and cytogenetic
risk had a significant positive correlation with the risk score. An alluvial diagram was used
to demonstrate the interrelations within the clinical characteristics in a dynamic way by the
“ggalluvial” package (Figure 5B).

3.4. Analysis of Specific Functional Pathways Involved in Different Necroptosis-Related Subgroups

Conforming to the method mentioned above, 123 DEGs were identified between
the high and low-risk subgroups by the threshold of |log2FC| � 0.4 and p-value < 0.05,
among which 710 genes were upregulated in the high-risk group while 450 genes were
downregulated (Supplementary Table S5). To gain a deep insight into the internal regula-
tion network based on the DEGs and to investigate the difference in the enriched pathways
involved in functional genes, we conducted GO, KEGG, and GSEA analysis on the upregu-
lated genes in the high-risk group. The KEGG plot (Figure 6B) reflected that significantly
enriched pathways in the high-risk group were mainly related with cytokine signaling
pathways downstream the viral infections. The cytokines provided by the necroptotic cells
could incur a high activation level of innate immunity in the high-risk group, which was
confirmed in the GO analysis (Figure 7D) as several immune-related biological processes
were identified. Moreover, the classical pathway involved in the leukemogenesis-like
myeloid leukocyte proliferation was also enriched and visualized through the GSEA plot
along with two selected immune pathways (Figure 6C,E,F). The complete results of GSEA
analysis are available in Supplementary Table S6.

3.5. Exploration of Immune Infiltration Characteristics in High and Low-Risk Groups

Immune cell infiltration in the immune microenvironment was widely considered to
play an essential role in tumorigenesis as well as tumor development and had a profound
impact on the patients’ clinical outcomes. Here, in order to extensively uncover the immune
features in the high and low-risk groups, we employed the ssGSEA analysis based on the
40 immune components containing immune cells, related pathways, and factors gathered
from the public literature and ImmPort database. The different immune scores of two
subgroups were computed and displayed in a heatmap (Figure 7A,B). Furthermore, we
utilized the CIBERSORT algorithm to quantify and compare the proportion of 22 classic
immune cells in the high and low-risk groups. As the results in the training set show
(Figure 7C), proportions of eosinophils and mast cells resting were significantly higher in
the low-risk group, while proportions of monocytes, T cells CD4 memory activated, T cells
CD8, and Macrophages M2 were significantly lower. The same results were confirmed in
the validation set (Figure 7D) that mast cells resting were upregulated in the low-risk group
while monocytes were downregulated. In addition to the results in common, T cells CD8
exhibited a reverse outcome in the validation set and T cells γ delta and Macrophages M0
were downregulated in the low-risk group.
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Figure 4. Two risk subgroups generated based on the median risk score. (A–D) Distribution of risk
score, survival time and survival status for AML patients in TCGA cohort (A,C) and GSE37642 cohort
(B,D). (E,F) Principal component analysis of the risk score to distinguish the two subgroups in TCGA
cohort (E) and GSE37642 cohort (F). (G,H) Comparison of the expression of 6 genes in the risk model
between the two subgroups in TCGA cohort (G) and GSE37642 cohort (H). (Wilcox test, ** p < 0.01;
*** p < 0.001, **** p < 0.0005).
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Figure 6. Functional enrichment analysis performed on the DEGs identified between the two risk
subgroups in TCGA cohort. (A) Volcano plot displaying DEGs between the two risk subgroups by
the threshold of |log2FC| ≥ 0.4 and adjusted p-value < 0.01. Specific DEGs involved in the selected
pathways are displayed. (B) KEGG pathways significantly enriched in the high-risk group in the
bubble plot form. (C,E,F) Selected canonical biological process associated GSEA pathways in the
high-risk group. (D) Representative GO terms enriched in terms of biological process (BP), cellular
component (CC) and molecular function (MF) respectively in the high-risk group. p value is showed
as: * p < 0.05.
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3.6. Prediction of Response to Immunotherapy Targeting Immune Checkpoints

The immune cell infiltration results gave us a hint that the risk model-based subgroups
might be potential targets for immune therapy. Tumor mutation burden (TMB) refers to the
number of somatic nonsynonymous mutations in a specific genomic region and functions as
a novel biomarker suggesting the degree of tumor to produce new antigens and predicting
the efficacy of ICB therapy. We utilized the “maftools” package to process the somatic
mutation data of the patients in the TCGA cohort downloaded from the UCSC Xena and
TMB of each patient was subsequently computed. We firstly compared the TMB between the
high and low-risk groups and the result showed no statistical difference. Then, we further
analyzed the correlation of the six genes in the risk signature with TMB (Figure 8A–F) and
the results reflected that the expression level of BRAF was significantly positively correlated
with TMB, which suggested that patients with high expression of BRAF were more likely
to response to ICB. Then, we achieved the expression profiles of eight of the most studied
checkpoint genes in the TCGA cohort and made the comparisons between the high and
low-risk groups in terms of the expression level. The results (Figure 8G) showed that all
eight genes except IDO were significantly upregulated in the high-risk group in contrast
to the low-risk group, which suggested a potent enhanced response to ICB in the high-risk
group. To validate the differential expression results of immune checkpoint genes, we
repeated the risk stratification and compared expression levels of PD1/PDL1, TIM3, CTLA4,
as well as CDC37 in four external GEO datasets (Supplementary Figure S2). The same results
proved the stratification ability of the signature was robust. Tumor immune dysfunction and
exclusion (TIDE) was a computational framework quantifying the immune evasion ability of
tumors by modeling two major mechanisms of the tumor immune evasion: the induction of
T cell dysfunction in tumors and the prevention of T cell infiltration in tumors. A high TIDE
score represented a relative strong immune evasion ability of tumor, which in turn suggested
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a poor outcome of immunotherapy, vice versa. In this study, we adopted the TIDE algorithm
to generate a TIDE score individually in the TGCA cohort and correlation between the
necroptosis-related risk score and TIDE score was further investigated. The results depicted
in the Figure 8H showed a significant negative correlation between the risk score and TIDE
score, which indicated that patients with higher risk score were more likely to benefit from
the immunotherapy. Moreover, patients were classified into responder and non-responder
to immunotherapy two groups and the risk score between the two subgroups showed a
significant difference, which supported the predictive role of risk score in immunotherapy.
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**** p < 0.0005). (H) Correlation between the risk score and TIDE score (Spearman test, p < 0.05).

3.7. Application of the Necroptosis-Related Signature to Building an OS Prediction Nomogram for
Clinical Use

Univariate and multivariate Cox regression analysis were performed on the patients
in the TCGA cohort in an attempt to assess the validity of the necroptosis-related risk
score incorporated with several other primary clinical factors in predicting prognostic. The
univariate analysis indicated that age, cytogenetic risk, and risk score were significant
unfavorable factors associated with OS (Figure 9A). Then, the above three factors were
continuously retained in the multivariate analysis, suggesting that they could serve as sep-
arate prognostic indicators after the adjustments for other interference factors (Figure 9B).
To discern the advantage of risk signature in terms of predicting OS over other clinical
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features including gender, age, white blood cell (WBC) count, blast cells percentage in bone
marrow (BM), and cytogenetic risk, we integrated ROC curves for different clinical features
in the Figure 9C. The AUCs for 5-year OS showed that the sensitivity and specificity of
the risk signature was the best of all. Next, we tried to apply the risk signature to specific
clinical scenarios by generating an intuitive visual nomograph based on the five clinical
features along with the risk score using the ‘rms’ package (Figure 9D). The AUCs for 1-year,
3-year, and 5-year OS were 0.806, 0.842, and 0.909, respectively, indicating an outstanding
discrimination accuracy of the merged score (Figure 9E). A calibration plot was further
drawn to demonstrate a high degree of agreement between the predicted and observed
1-year, 3-year, and 5-year OS (Figure 9F).
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Figure 9. Construction of the OS-predictive nomogram for clinical application in TCGA cohort.
(A,B) Univariate (A) and multivariate (B) Cox regression analysis of the risk signature to verify its
independent predictive efficacy of OS. (C) ROC curves for the risk score and major clinical features
including gender, age, white blood cell (WBC) count, blast cells percentage in bone marrow (BM)
and cytogenetic risk. (D) Nomogram based on the combination of clinical features and risk score
predicting 1-year, 3-year and 5-year survival. (E) ROC curves showing the predictive power of
nomogram. (F) Calibration plot showing the predictive reliability of nomogram. p values are showed
as: * p < 0.05; ** p < 0.01; *** p < 0.001.
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4. Discussion

Expectancy of AML treatment is remarkably influenced by a wide range of intrinsic
genomic changes and molecular mutations. The eradication of microresidual disease
(MRD) after the achievement of remission to prevent relapse remains a tricky problem.
Although allogeneic hematopoietic stem cell transplantation (alloHSCT) is considered
to have the ability of eliminating MRD through the graft-versus-host disease, evidence
shows that leukemic cells could evade the specific allogeneic immune response following
transplant [21]. Meanwhile, a growing number of studies have revealed that the immune
microenvironment in the bone marrow of AML patients underwent great changes compared
to the healthy individuals [22]. In light of the complex molecular interactions between
the tumor immunology and oncogenesis or resistance of AML, immunotherapy has been
an object of intensive investigation. In addition, combined with clinicopathological and
genetic features, immune factors could function as potent predictors of OS or event-free
survival (EFS).

Regarded as a fail-safe mechanism when apoptosis is inhibited, necroptosis is featured
by the release of cell materials and a large number of pro-inflammatory factors after the
rupture of membrane. The inflammatory microenvironment formed by the considerable
inflammatory cytokines released was found to have a dual effect on both the anti-tumor re-
sponse and leukemogenesis [23]. For one thing, stimulated normal cells could be converted
into tumor cells, which took control in the early stage of leukemogenesis [24]. For another,
as reported in a recent study, the triggered inflammatory response could improve the tumor
microenvironment hence igniting the specific anti-leukemia immune response [25]. In
addition to the formation of an inflammatory microenvironment, mounting lines of evi-
dence have suggested a direct interaction between necroptosis and immune cells. A study
conducted by Kang et al. [26] showed impaired NKT cell activity in the RIPK3 deletion mice,
drawing the conclusion that RIPK3 was involved in the regulation and promotion of NKT
cell-mediated anti-tumor immunity. The development of therapeutic target of necroptosis
could be promising given that it could be harnessed in the induction of tumor cell death
and the boost of anti-tumor immunity. Nevertheless, effectiveness of immunotherapy in
the limited subgroups and the off-target toxicity were still challenging the development of
immunotherapy in AML. In this study, we generated a molecular signature based on the
necroptosis-related genes by combining the clinical characteristics with the transcriptome
data to explore whether the prognostic of AML patients was associated with necroptosis-
related genes and to identify the particular subgroups sensitive to the immunotherapy as a
novel biomarker.

To comprehensively delineate the complex role of necroptosis in a variety of tumors, a
total of 111 genes were collected as necroptosis-related genes and the expression of these
genes were compared between the AML and normal samples. Univariate and multivariate
Cox were subsequently performed on the differentially expressed genes and the prognostic
signature was established in the training set consisting of 6 genes.

ZBP1 is considered a key component of the innate immune system as it recognizes
and binds to exogenous Z-DNA or Z-RNA to trigger the downstream immune response. It
is also another critical RIPK1-independent modality to drive necroptosis with the exception
of TNF-induced necroptosis. In the present study, ZBP1 was related to adverse prognostic
with a high expression in the high-risk group, suggesting that the level of inflammatory
response in the high-risk group was much higher.

BRAF is known as an oncogene as mutation in this gene drives tumorigenesis in a lot
of cancer types including colorectal cancer, thyroid carcinoma, melanoma, etc. Recently, a
researcher investigated the mechanism of the low expression of RIPK3 in most cancer cell
lines and found that BRAF along with AXL were two main oncogenes responsible for the
loss of RIPK3 repression and resistance of cancer cells to necroptosis [27]. Here, BRAF was
linked with extended survival time in the low-risk group for its relative high expression
and it was significantly downregulated in AML samples, allowing it to be a protective gene
in the study.
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ALK is a member of insulin receptor superfamily and exerts promoting effects on
specific neurons in the nervous system. Coinciding with BRAF, ALK has been considered
as a driving event in several cancer types due to its mutation and amplification, while the
expression of ALK in AML samples and high-risk group is contrarily elevated, making it a
risk factor to indicate oncogenesis and poor prognostic.

BNIP3 plays a significant role in the induction of apoptosis pathway and is typically
silenced in the tumors to develop apoptosis resistance. Song et al. [28] demonstrated
that BNIP3 was upregulated in the RIPK3-mediated cardiomyocytes necroptosis achieved
by HR injury, making it an inducer in both apoptosis and necroptosis. We found that
BNIP3 was upregulated and implicated favorable prognostic in the normal samples and
low-risk group, which might be a result of immune responses caused by BNIP3-mediated
necroptosis.

CDC37 functions as a molecular chaperone and is involved in the cell signal transduc-
tion and complex formation with HSP90. Li et al. [29] found in their study that CDC37
together with HSP90 constitute the complex which physically interacts with RIPK3 and
that necroptosis is inhibited in the CDC37 deletion cells. In this study, the high expression
of CDC37 implied its contribution to the comparatively high activation of necroptosis in
the high-risk group.

YBX3 belongs to the Y-box binding protein family and facilitates the RNA-binding
activity. It plays a regulatory role in a wide spectrum of biological processes including
negative regulation of programmed cell death. Here, YBX3 functioned as a tumor suppres-
sor gene as it was a protective factor in the regression model and expressed higher in the
normal samples at meantime.

To conclude, BRAF, ALK, and YBX3 can be classified as inhibitor of necroptosis
whereas the left three genes promoters. Notably, two promoters along with one inhibitor
are upregulated in the high-risk group and two inhibitors along with one promotor are
upregulated in the low-risk group. The frequently conflicting results might be attributed to
the interactions between the seven genes and further investigations are required.

The two risk subgroups generated on the basis of median risk score distinguish sig-
nificantly in terms of clinical prognostic, signaling pathways, immune microenvironment,
and response to immunotherapy. Pathway enrichment analysis results demonstrated that
the uniquely upregulated genes in the high-risk group are mainly involved in various
immune-related pathways usually activated in innate or adaptive immunity, suggesting
that the level of immune response in the high-risk group is relatively higher. However,
patients in the high-risk group do not enjoy a prolonged survival time which was normally
associated with the enhanced immune response. Reasons accounting for the contradictory
fact may lie in that necroptosis is known to play both pro-tumor and anti-tumor roles.
The two effects should coexist during the necroptosis process and which effect dominates
depends on the development stage of the tumor. We speculate that the necroptosis-induced
inflammation advances the progression of tumor in the early stage with the inflammatory
cytokines or growth factors which enhance the proliferation and resistance of tumor cells.
Then, with the formation of inflammatory microenvironment, the anti-tumor immune re-
sponse is stimulated and takes control through the recruitment of immune cells to the TME
or promotion of the antigen-presentation by mature dendritic cells, macrophages, etc. [26].
The immune activation-related cells are more infiltrated in the high-risk group, which also
confirmed the presence of a more active anti-tumor immunity. In this case, we assume that
in spite of the disadvantage over the OS, there may be an advantage over the immunother-
apy response in the high-risk group. Immunotherapy by immune checkpoint blockade
has arisen as a new milestone for a number of tumors of which therapeutic options were
previously limited. The expression of several classical checkpoint genes was explored in
this study, and it turned out that all genes with significant difference were overexpressed in
the high-risk group including the intensively studied PD-1 and CTLA4. The original TIDE
algorithm provides a more accurate method than the single checkpoint gene expression
level to predict patients’ response to ICB. Consistent with the checkpoint genes level, the
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TIDE results classify patients with high-risk score as responders to immunotherapy, which
supports our speculation to some extent. However, in-depth studies are still demanded to
seek robust proof and to investigate the underlying mechanisms of necroptosis-induced
immunity in AML.

5. Conclusions

In summary, our study focuses on the generation of the risk signature based on the
necroptosis-related genes and the exploration of its prognostic and immunological value.
First of all, we comprehensively analyzed the expression of necroptosis-related genes in
AML patients. The signature has been proven to be an independent risk factor to predict
prognostic in AML and its predictive performance is superior to the normal clinicopatholog-
ical features. Moreover, we directly link necroptosis with clinical prognostic and promoters
of necroptosis identified in this study can provide some insights for the targeted therapy.
Finally, we elucidate the immune features and immunotherapy response in the different
subgroups which is instrumental to the patient selection and clinical management for
the optimization of immunotherapy. A rational combination of immunotherapy such as
ICB with chemotherapeutics and necroptosis-targeted therapy seems a promising strategy
which deserves further study. Yet, there are certain limitations in the study. First, our study
is a retrospective analysis centered on the public databases, such that in vivo and in vitro
experiments are urgently needed to validate the practical value of the signature. Addition-
ally, the finite sample size of the datasets may limit the extensiveness of the signature in
other AML populations. Moreover, the corresponding AML immunotherapy data should
be gathered and excavated in the future to validate potential of the signature in informing
immune response.
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