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Abstract: Gliomas that are classified as grade II or grade III lesions by the World Health Organization
(WHO) are highly aggressive, and some may develop into glioblastomas within a short period,
thus portending the conferral of a poor prognosis for patients. Previous studies have implicated
basement membrane (BM)-related genes in glioma development. In this study, we constructed a
prognostic model for WHO grade II/III gliomas in accordance with the risk scores of BM-related
genes. Differentially expressed genes (DEGs) in the glioma samples relative to normal samples
were screened from the GEO database, and five prognostically relevant BM-related genes, including
NELL2, UNC5A, TNC, CSPG4, and SMOC1, were selected using Cox regression analyses for the risk
score model. The median risk score was calculated, based on which high- and low-risk groups of
patients were generated. The clinical information, pathological information, and risk group were
combined to establish a prognostic nomogram. Both the nomogram and risk score model performed
well in the independent CGGA cohort. Gene set enrichment analysis (GSEA) and immune profile,
drug sensitivity, and tumor mutation burden (TMB) analyses were performed in the two risk groups.
A significant enrichment of ‘Autophagy–other’, ‘Collecting duct acid secretion’, ‘Glycosphingolipid
biosynthesis–lacto and neolacto series’, ‘Valine, leucine, and isoleucine degradation’, ‘Vibrio cholerae
infection’, and other pathways were observed for patients with high risk. In addition, higher
proportions of monocytes and resting CD4 memory T cells were observed in the low- and high-risk
groups, respectively. In conclusion, the BM-related gene risk score model can guide the clinical
management of WHO grade II and III gliomas.

Keywords: basement membrane; gliomas; prognostic-related gene; nomogram

1. Introduction

Gliomas represent the most commonly diagnosed primary cancer of the brain in
grown-ups [1], and 45% of glioma cases are classified as World Health Organization (WHO)
grade II or III [2]. Due to their highly aggressive nature and anatomical location, gliomas
are difficult to surgically remove. This affects patient prognosis, and some cases progress
to glioblastoma within a few months [3,4]. Therefore, it is important to screen for genes
associated with the prognosis of gliomas, which can help predict patient survival and
facilitate early intervention in high-risk patients to improve their prognosis.

Basement membranes (BMs) are fine, nanoscale, and flexible extracellular matrix struc-
tures [5,6] involved in maintaining tissue separation and barriers, cell adhesion, and cell
migration [7–10]. Studies show that the BMs are a major determinant of the invasiveness
and metastatic potential of cancer cells [11–13], and vascular BM components are involved
in regulating tumor angiogenesis [14]. A recent study revealed genes associated with base-
ment membranes [5], providing new insights into the association of basement membranes
with disease and, in particular, their important role in the development and prognosis of
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gliomas, as suggested by previous studies. These genes include the A Disintegrin and
Metalloproteinase (ADAM) family, a superfamily of zinc-dependent metalloproteinases,
some members of which are considered to be diagnostic and prognostic markers for cen-
tral nervous system (CNS) tumors. Qu et al. [15] showed that the mRNA and protein
expression levels of ADAM10 were malignancy-dependent in gliomas and that they may
be associated with the formation of peritumoral edema. Furthermore, Zheng et al. [16]
found that ADAM17 played a role in promoting glioma proliferation and invasion. LOXL1,
which belongs to the LOX family, has been shown to protect glioma cells against apoptosis
and promote glioma development [17]. A recent study also demonstrated that ITGB2 can
be a new predictor of glioma prognosis and immunotherapy response [18]. In addition,
related studies have shown correlations between genes, such as ROBO4 [19] and DDR1 [20],
and glioma prognosis.

Nevertheless, the relationship between BM-related genes and glioma remains unclear,
and the identification of new biomarkers is essential for clinical decision making. Thus,
we aimed to explore the predictive value of BM-related genes for overall survival (OS) in
WHO grade II and III gliomas and to identify a novel biomarker.

2. Materials and Methods
2.1. Data Extraction

The GSE4290 [21] and GSE68848 [22] datasets were retrieved from the GEO (http:
//www.ncbi.nlm.nih.gov/geo/, accessed on 22 June 2022) database. The gene expression,
tumor mutation burden (TMB), and clinical information of patients with low-grade glioma
(LGGs) were obtained from TCGA database (https://portal.gdc.cancer.gov/, accessed on
6 June 2022). The mRNAseq_325 [23–25] and mRNAseq_693 [23,26,27] datasets, which
included the gene expression and clinical data of two groups of glioma patients, were
retrieved from the CGGA (http://www.cgga.org.cn/, accessed on 7 June 2022). The WHO
grade II/III cohorts from the TCGA and CGGA were selected for the follow-up analysis,
and cases with unknown OS and OS < 30 days were not included. BM-related genes were
obtained from previously published articles [5]. The analytical procedure is outlined in
Figure 1.
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2.2. Initial Screening of BM-Related Genes

The differentially expressed genes (DEGs) of the WHO grade II/III gliomas versus
control samples in the GSE4290 and GSE68848 datasets were screened using the “limma”
program in R. The cutoffs were |log2fold change (FC)| > 1.5 and p-value (adjusted by)
<0.05. The intersecting DEGs and BM-related genes were further selected for subsequent
analysis. In addition, based on the optimal cutoff, Kaplan–Meier (KM) survival analysis was
conducted on the intersecting genes to investigate their relationship with prognosis. The
optimal cutoff value was obtained based on the “surv_cutpoint” function of the R package.

2.3. Development of the Risk Score Model

The prognostically significant BM-related genes were screened from the TCGA cohort
(training set) using univariable and multivariable Cox regression analyses. Risk scores
were calculated and a model was constructed. The median risk score was then calculated
to demarcate the low- and high-risk patients. To validate this model, patients in the CGGA
cohort were subjected to risk score calculation, and risk groups were similarly generated.

2.4. Establishment and Verification of a Predictive Nomogram

The independent prognostic value of the risk group was determined by adjusting for
patient age, gender, and WHO grade. A predictive nomogram was then constructed by
combining the risk group with the clinical and pathological information, and its predictive
efficacy was appraised by using time-dependent C-index plots and calibration plots.

2.5. Gene Set Enrichment Analysis (GSEA)

We performed GSEA on both TCGA cohort risk groups to identify the differential
gene pathways.

2.6. Immune Infiltration Analysis

The relative proportions of 22 immune cells were calculated using the CIBERSORT
algorithm. The immune and stromal scores were calculated using the ESTIMATE algorithm,
and, finally, the TIDE scores of the patients were calculated using the TIDE database.
Differences between the different risk groups were visualized using violin plots, and all
analyses were performed in both the TCGA and CGGA cohorts.

2.7. Drug Sensitivity Analysis

The sensitivity of the patients in both risk groups to axitinib, cisplatin, dasatinib, and
pazopanib was compared using the “pRRophetic” R package.

2.8. Mutation Analysis

Based on the TCGA TMB data, the mutation frequencies of IDH1, IDH2, ATRX, TP53,
and EGFR were compared between the two risk groups.

2.9. Statistical Analysis

All RNA-seq data were converted into transcripts per million (TPM) and normalized
by log(x + 1). Batch correction was performed using the “sva” package, and batch effects
were assessed by using principal component analysis (PCA). The OS curves were generated
with the Kaplan–Meier method and subjected to a log-rank test. The model’s discriminatory
power was assessed using ROC curves, AUC values or time-dependent C-index plots and
the calibration thereof were assessed using calibration curves.

R 4.1.3 software (R Development Core Team, Auckland, New Zealand) was utilized for
the analysis of the statistical data, and a p-value of <0.05 was deemed to signify statistical
significance.
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3. Results
3.1. Initial Selection of BM-Related Genes

A total of 745 and 999 DEGs, respectively, were identified in the GSE4290 and GSE68848
datasets. The volcano plots are shown in Figures 2a and 2b. As shown in the VENN plot
in Figure 2c, 14 intersecting BM-related genes and DEGs were identified and used for
downstream analyses. Survival analysis showed that 12 genes (SPARC, CCDC80, BCAN,
VCAN, SPOCK3, NELL2, UNC5A, TNC, ADAMTS9, CSPG4, SMOC1, and ADAMTS19) were
related to prognosis, whereas two genes (UNC5D, TENM2) were not (Figure S1).
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3.2. Construction and Verification of the Risk Score Model

The training and validation sets included 460 and 589 patients, respectively. After
univariable Cox regression analysis, we screened eight genes (p < 0.05) that also proved to
be prognostically relevant in the survival analysis (BCAN, NELL2, UNC5A, TNC, ADAMTS9,
CSPG4, SMOC1, and ADAMTS19). Subsequently, we screened again using multivariate Cox
regression analysis (p < 0.05) and, finally, constructed BM-related risk score models based on
the genes NELL2, UNC5A, TNC, CSPG4, and SMOC1. Risk score = 0.27761 × ExpNELL2 −
0.39196 × ExpUNC5A + 0.23357 × ExpTNC + 0.28250 × ExpCSPG4 − 0.17451 × ExpSMOC1.

In both the training and validation sets, the HR values of the genes NELL2, TNC, and
CSPG4 were >1, and the HR values of the genes UNC5A and SMOC1 were <1 (Figure 3a,b).
Furthermore, the low-risk group of patients exhibited longer survival compared to that of
the high-risk group of patients (Figure 3c,d), and the ROC curves (Figure 3e,f) demonstrated
that the risk scores in years 1, 2, 3, 4, and 5 had good predictability. The AUC values
exceeded 0.8 for the first three years of the training set and 0.7 for the last five years of the
validation set. Both sets exhibited a better OS for low-risk patients compared with that of
their high-risk counterparts, as revealed by the risk score distribution (Figure 3g,h) and
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survival status (Figure 3i,j). A heatmap plotted based on the differential expression of the
above five genes between the high- versus low-risk groups (Figure 3k,l) showed the same
trend as the HR values of the genes.
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3.3. Establishment and Verification of a Nomogram

We found the independent prognostic significance of the risk group in both the training
and validation sets as per the regression analyses (Figure 4a–d). Therefore, we established
a nomogram using the information on age, WHO grade, and risk group in the training set
(Figure 4e). The time-dependent C-index plots at the fifth year remained approximately 0.8
in the training set (Figure 4f) and approximately 0.7 in the validation set (Figure 4g); these
were performed consistently in both groups. The calibration curves of 1-, 3-, and 5-year OS
(Figure 4h,i) showed the good calibration ability of the nomogram.
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3.4. GSEA Findings

The ‘Autophagy–other’, ‘Collecting duct acid secretion’, ‘Glycosphingolipid
biosynthesis–lacto and neolacto series’, ‘Valine, leucine, and isoleucine degradation’, ‘Vib-
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rio cholerae infection’, and other pathways were notably enriched in the high-risk group
(Figure 5). Some of these pathways have been implicated in the survival of glioma patients.
Our findings suggest possible mechanisms underlying the worse survival outcomes of
high-risk patients.
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3.5. Immune Infiltration Analysis

As shown in Figure 6a and 6b, the results from the TCGA and CGGA cohorts con-
sistently showed that the distribution of naive CD4 T cells, resting memory CD4 T cells,
activated resting memory CD4 T cells, and monocytes were significantly correlated with
the prognosis of patients. Furthermore, monocytes had higher proportions in the group
that was at low risk, and resting memory CD4 T cells had higher proportions in the group
that was at high risk. In addition, the M2 macrophages were the predominant infiltrating
immune cell population in the high-risk patients in both cohorts. In both cohorts, the
high-risk group had a higher stroma score (Figure 6c,d) and immune score (Figure 6e,f),
while the low-risk group had a lower TIDE score (Figure 6g,h) than the high-risk group,
suggesting that the low-risk group might benefit more from immunotherapy.
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3.6. Analysis of Patients’ Sensitivity to Selected Drugs

The high-risk patients displayed better responses to cisplatin, dasatinib, and pa-
zopanib, whereas the low-risk patients were more sensitive to axitinib (Figure 7).
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3.7. Mutation Analysis

Higher frequencies of IDH1/2 and ATRX mutations were detected in the low-risk
patients, whereas patients classified as high-risk had more EGFR mutations. On the other
hand, the frequency of TP53 mutations was similar in both risk groups (Figure 8).
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4. Discussion

We constructed a risk score model for WHO grade II/III gliomas based on BM-related
genes, which we consider a novel candidate biomarker. This has not been reported in
previous studies. In addition, we combined the risk group with the clinical and pathological
information to develop a nomogram. Both the model and the nomogram were validated
in the CGGA cohort. Furthermore, the patients demarcated by the median risk score also
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differed in terms of enriched pathways, immune profile, drug sensitivity, and TMB, which
may help formulate personalized treatment regimens for glioma patients.

Moreover, exploring the proteins encoded by the identified genes helps to understand
the findings. NELL2 (protein of the neural-tissue-specific epidermal growth factor-like
repeat structural domain) [28] is a secreted glycoprotein that is expressed primarily in
neural tissue and associated with neuronal differentiation. In recent years, it has been
found to be associated with axonal development in hippocampal neurons. UNC5A [29,30],
belonging to the netrin-1 receptor family, plays an important role in neuronal development
and differentiation. It has been associated with the development of a variety of tumors,
including through tumor suppression, and has also been shown to promote apoptosis
independently of Netrin-1. TNC [31] is an extracellular matrix protein that is primarily as-
sociated with the regulation of cell adhesion, migration, and proliferation, and its sustained
expression is associated with inflammation and a variety of tumors, including gliomas.
Chondroitin sulfate proteoglycan 4 (CSPG4) [32,33] is a surface type I transmembrane core
proteoglycan that is important in cell survival, migration, and angiogenesis and has been
associated with the progression and metastasis of tumors, such as gliomas and soft tissue
sarcomas. SMOC1 [34] is a calcium-dependent conformational glycoprotein and a true
basement membrane component, which has been suggested to be a new cancer-related
protein and has been shown to interact with TNC in vitro [35]. These protein products are
important molecules that play a role in tumor development and even metastasis. Some of
these proteins are associated in in vitro assays, and, at the protein level, we may hypoth-
esize that these proteins and protein–protein interactions have a complex impact on the
progression of gliomas and, thus, on patient prognosis, as we will explore further.

Previous studies indicated that monocytes can promote tumor growth and metas-
tasis [36,37]. At the same time, they can play a role in preventing tumor development
and spread [38]. Numerous studies are currently ongoing to uncover the mechanisms
underlying the bidirectional role of monocytes. In our study, the immune infiltration
analysis showed that monocytes were associated with a good prognosis, while the opposite
was true for resting memory CD4 T cells, in line with previous studies [39]. In addition,
previous studies have also revealed that the M2 macrophages confer dismal prognosis
in gliomas [40] and other types of tumors [41]. The mechanistic roles of macrophages in
cancer progression have been summarized elsewhere [42].

We have also explored the sensitivity of common chemotherapy drugs in different
risk groups; this can provide valuable information for personalized treatment of patients.
Notably, the potential of psychotropic drugs in the treatment of gliomas has emerged in
recent years with the further development of drug repositioning, which may lead to new
breakthroughs in the treatment of gliomas [43–45].

The IDH mutation status was involved in the 2016 guidelines of the WHO Classifica-
tion of Tumors of the Central Nervous System for diagnosing and classifying gliomas [46].
In fact, the presence of IDH variations in glioma patients correlates with longer survival
compared to that of patients lacking mutated IDH [47–49]. ATRX mutations are also
frequent in patients with low-grade gliomas [50], and they are predictive of a favorable
prognosis [51–53]. Furthermore, ATRX mutations are also significantly associated with IDH
mutations in glioma patients [51–53]. EGFR mutations are prevalent in multiple tumors
and are often associated with adverse prognostic consequences in glioma patients [54,55].
The inclusion of more patients with IDH1/2 and ATRX mutations in the low-risk group and
more patients with EGFR mutations in the high-risk group indicates that BM-gene-related
risk scores can distinguish glioma patients with different prognoses.

The BM is critical for the normal functioning of the CNS since it is an essential
component of the blood–brain barrier (BBB) [56–58]. Disruption of the BM structure
or any dysfunction can destabilize the BBB, resulting in pathological changes in the CNS.
Furthermore, there is evidence that some extracellular matrix components in the BM are
capable of inducing the invasion of glioma cells [59]. It has been recently reported [60] that
the tumor suppressor miR-1298-3p reduces the proliferative and invasive abilities of glioma
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cells by downregulating the BM-related gene NID1. In addition, studies have shown that
aging and stroke can alter the BM composition, which may impair functional recovery in
older patients [61].

Our study has some limitations that ought to be considered. First, we failed to
obtain other tumor and clinical parameters, such as radiological data, which could provide
additional information regarding tumor prognosis. Furthermore, although we used the
CGGA database for the independent validation of our nomogram, we still need to conduct
prospective clinical trials to validate our findings for future clinical applications. These
aspects will be explored in future studies.

5. Conclusions

We used five BM-related genes to construct a risk score prognostic model for WHO
grade II/III glioma patients, which can provide guidance for clinical decision making.
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