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Abstract: Nile tilapia is a GSD + TE (Genetic Sex Determination + Temperature Effect) fish, and
high-temperature treatment during critical thermosensitive periods (TSP) can induce the sex reversal
of Nile tilapia genetic females, and brain transcriptomes have revealed the upregulation of Jarid2
(Jumonji and AT-rich domain containing 2) expression after 36 ◦C high-temperature treatment
for 12 days during TSP. It was shown that JARID2 forms a complex with polycomb repressive
complex 2 (PRC2) that catalyzed H3K27me3, which was strongly associated with transcriptional
repression. In this study, Jarid2b was cloned and characterized in Nile tilapia, which was highly
conserved among the analyzed fish species. The expression of Jarid2b was upregulated in the
gonad of 21 dpf XX genetic females after 12-day high-temperature treatment and reached a similar
level to that of males. Similar responses to high-temperature treatment also appeared in the brain,
heart, liver, muscle, eye, and skin tissues. Interestingly, Jarid2b expression was only in response
to high-temperature treatment, and not to 17α-methyltestosterone (MT) or letrozole treatments;
although, these treatments can also induce the sex reversal of genetic Nile tilapia females. Further
studies revealed that Jarid2b responded rapidly at the 8th hour after high-temperature treatment.
Considering that JARID2 can recruit PRC2 and establish H3K27me3, we speculated that it might be
an upstream gene participating in the regulation of Nile tilapia GSD + TE through regulating the
H3K27 methylation level at the locus of many sex differentiation-related genes.

Keywords: Nile tilapia; high-temperature; Jarid2b; cloning; expression pattern

1. Introduction

Sex determination refers to the process by which sexually reproducing organisms
determine and initiate the differentiation from an early undifferentiated gonad toward
the testis or ovary [1,2]. The sex of fish is remarkably plastic [3]. According to the role of
genetic factors and environmental temperature in sex determination, the sex determination
mechanisms in fish can be broadly divided into the following three major categories:
genotypic sex determination (GSD), temperature-dependent sex determination (TSD), and
genotypic sex determination with temperature effects (GSD + TE) [4]. For many fishes
with GSD + TE, such as Nile tilapia (Oreochromis niloticus), the sex is jointly regulated
by genetic factors and environmental temperature, and the environmental temperature
can affect sex determination and differentiation only in a certain time interval, which is
called the thermosensitive period (TSP). During TSP, the artificial treatments of high or low
temperatures result in sex-ratio changes [5–7]. For example, artificially high-temperature
treatment at 36 ◦C from approximately 9 days post-fertilization (dpf) and lasting from
10 to 30 days could induce the sex reversal of XX genotypic females to XX pseudomales
in Nile tilapia [8–10], which masked the genetic XX/XY sex-determination system in Nile
tilapia [11–13].
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Jarid2 (Jumonji and AT-rich domain containing 2) is characterized by a conserved
Jumonji C (JmjC) domain and is one of the JmjC domain protein family members [14].
JARID2 can form a complex together with polycomb repressive complex 2 (PRC2) that is
vital to recruit polycomb helper proteins to the target genes and catalyze the methylation of
histone H3 at lysine 27 to yield H3K27me3, which is strongly associated with transcriptional
repression [15,16]. JARID2 was also proven to regulate histone methyltransferase complex
activity and it could coordinate the control of PRC2 occupancy and enzymatic activity at
target genes in early embryos and embryonic stem cells (ESCs) [14,17–20]. Through the
regulation of epigenetic states of target genes, the JARID2-PRC2 complex was thought
essential to regulate the development and differentiation of embryonic cells and tumor
cytogenesis in human, mice, and bovine [21–25]. Additionally, JARID2 could also regulate
the pluripotency and differentiation of ESCs by the strict expression regulatory of Nanog and
β-catenin [26]. Interestingly, in our previous studies, brain transcriptome analysis revealed
that Jarid2 showed a male-biased expression pattern, and high-temperature treatment of XX
genetic females during TSP, resulted in a male rate of 83.47%, accompanied by the significant
upregulation of the Jarid2 expression level and reaching the similar level as the males during
this period [4]. Recent studies have shown that the sexually dimorphic expression of genes
in the brain may play an essential role in response to gonadal differentiation, which might
consequentially or causatively respond to fish gonadal sex [27,28]. Therefore, we presume
that Jarid2 may play an important role in gonad differentiation in Nile tilapia or other fish
species. Additionally, the 11th intron of Jarid2 was observed to preferably be retained in
nearly all transcripts from ZZf (ZZ female) tissues in alligator, turtle, or bearded dragon. It
was speculated that intron retention may be involved in regulating the expression level
of functional JARID2 protein and might be crucial in the TSD of some reptiles [29–31].
It is unknown whether intron retention of Jarid2 plays an important role in fish with
TSD or GSD + TE. So far, the changes in the Jarid2 expression level during TSP after
high-temperature treatment have not been determined in the various species exhibiting
TSD or GSD + TE, and whether Jarid2 is an important cue for sex reversal after high-
temperature treatment in Nile tilapia is still unknown. Therefore, it is meaningful to detect
and analyze the specific expression pattern of Jarid2 during high-temperature-induced
female sex reversal in Nile tilapia.

The purpose of this study was to clone the Jarid2b cDNA sequence, analyze protein
sequence conservation, construct the phylogenetic tree, and examine the tissue expression
pattern, to investigate the effect of high-temperature treatment during TSP on its mRNA and
protein expression levels in the gonads of tilapia larvae using qRT-PCR, Western blot, and
IHC and to further compare the effects of high-temperature treatment with the treatment of
the exogenous sex steroid hormone (17α-methyltestosterone, MT) and aromatase inhibitor
(Letrozole) on Jarid2b expression.

2. Materials and Methods
2.1. Ethics

The study was approved by the Shandong Agricultural University Animal Care and
Use Committee with approval number SDAUA-2015-017. All surgeries were performed
under tricaine methane sulfonate solution (MS222) (Sigma, Beijing, China) anesthesia, and
all efforts were made to minimize the suffering of the Nile tilapia.

2.2. Fish Reproduction

A total of 24 two-year-old Nile tilapia (270.26± 13.53 g) was cultured in our laboratory,
including twelve females (XX♀), six sex-reversed pseudomales (XX♂), and six males (XY♂),
whose parents were collected from the Guangxi Fisheries Institute (Nanning, Guangxi,
China), and were used in this study. Pseudomales (XX♂) were obtained by feeding the diets
containing low concentrations of MT during the sex differentiation stage to induce the sex
reversal of Nile tilapia genetic females (XX♀). The genotypic sex of females, pseudomales,
and males was identified using screened sex-linked RAPD-SCAR marker [32,33]. The
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phenotypic sex of pseudomales was defined by the identification of external reproductive
organs. When Nile tilapia was sexually mature, all-XX embryos were produced by culturing
one female plus one pseudomale in the 360 L tank under natural photoperiod and the water
temperature ranged from 26 to 29 ◦C. The embryos at about 5–7 days post-fertilization (dpf)
in the female mouth were taken out and cultivated independently in the 30 L aquaria as
a family with a water temperature of 28 ± 0.5 ◦C. In the same way, three normal families
were produced by culturing one XX female and one XY male in three tanks, respectively,
and the larvae in normal families contained XX and XY individuals with a ratio of about 1:1.

2.3. Larvae Culturing and Sampling

The embryonic condition was observed daily and the high-temperature treatment that
promoted male development was started when yolk absorption was completed at about
9 dpf. The high-temperature-induced masculinization of the Nile tilapia was performed
as previously described [7,34]. The all-XX embryos from each family were randomly and
equally divided into two groups rearing in 20 L tanks, respectively, and 100 larvae were
incubated in each tank. The two groups were the control female group (XX) and the high-
temperature-treated female group (XX + HT), and larvae from three families were regarded
as three biological replicates. Larvae in the XX group were always reared at 28 ◦C and
the water temperature of the XX + HT group gradually elevated to 36 ◦C in 4 h and was
maintained at 36 ◦C for 12 days (from 9 to 21 dpf). The larvae from three normal families
were reared in three tanks at 28 ◦C from 9 to 21 dpf, respectively, and 21 dpf genetic XY
larvae were identified using the sex-linked RAPD-SCAR marker [33].

The brain tissues of 10 larvae from each family in the XX and XX + HT groups were
harvested separately and mixed at 4, 6, 8, 10, 12, 15, 18, and 21 h after high-temperature
treatment. The samples were placed in liquid nitrogen and later transferred to a −80 ◦C
refrigerator for subsequent experiments. Similarly, the heart, brain, muscle, liver, eye, gill,
skin, and gonad were collected from 10 individuals at 21 dpf in the XX, XX + HT, and
XY groups. In the same way, the eye, heart, liver, muscle, spleen, skin, brain, ovary, and
blood samples from three 180 dpf adult XX fish and the brain and testis samples from three
180 dpf adult XY fish culturing at 26–29 ◦C were sampled, respectively.

2.4. MT and AI Treatments

Another three all-XX families and three normal families were developed in the same
way as described before. The larvae in each all-XX family were divided into four groups
and each group contained 120 larvae. Nile tilapia XX larvae were cultured at 28 ◦C from 9 to
21 dpf and were fed three times per day with a powdered diet sprayed with 95% ethanol
only (named as XX, the first group) or a diet sprayed with 95% ethanol containing MT
(Solarbio, Beijing, China) at a concentration of 20 µg/g diet (named as XX + MT, the second
group), which is the lowest MT concentration achieving a 100% male ratio [35]. The 9 dpf
fry were cultured in 28 ◦C water containing 40.5 µg/L letrozole (MedChem Express, USA)
(named as XX + AI, the third group) for 12 days, which can obtain a high male ratio [36].
Additionally, all-XX Nile tilapia larvae in another group were cultured at 36 ◦C from 9 to
21 dpf and fed a diet sprayed with 95% ethanol only (named XX + HT, the 4th group). The
120 larvae from each normal family were cultured at 28 ◦C from 9 to 21 dpf and fed the diet
sprayed with 95% ethanol only, the genetic XY larvae were identified at 21 dpf (named as
XY). All fish were reared under the same conditions, except for food and water temperature.
At 21 dpf, the gonads of 50 fish from each group were sampled.

2.5. Molecular Cloning and Bioinformatics Analysis of Tilapia Jarid2b

Total RNA was extracted from the tissue samples mentioned above using the RNAsim-
ple Total RNA Kit (TIANGEN, Beijing, China), respectively, according to the manufacturer’s
instructions. RNA integrity, concentration, and purity were detected using the agarose
gel electrophoresis and a Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific,



Genes 2022, 13, 1719 4 of 18

Wilmington, DE, USA), respectively. The cDNA was synthesized using Evo M-MLV RT Kit
(Accurate Biotechnology, Changsha, China).

Jarid2b-specific primers (Table 1) for PCR were designed using Primer 6.0 based on the
sequences obtained by transcriptome analysis (SRP159698) in our laboratory [4]. PCR was
performed using 2× Accurate Taq Master Mix (Accurate Biotechnology, Changsha, China)
and the amplification procedure was as follows: 94 ◦C (30 s), followed by 35 cycles of 98 ◦C
(10 s), 55 ◦C (30 s), and 72 ◦C (5 min) and final extension at 72 ◦C (5 min). Then the PCR
product was purified and subcloned into the pMD™ 18-T Vector (Takara, Japan). Finally,
the recombinant plasmid was transformed into E. coli DH5α competent cells (Takara, Shiga,
Japan) to obtain positive clones, followed by validation via DNA sequencing.

Table 1. Sequence of primers.

Primer Pairs Primer Sequence (from 5′ to 3′) Amplicon
Length/bp Purpose

Jarid2b-F1 ATGCGAAAGGTGCTTTACCTCTCC
4239 Cloning

Jarid2b-R1 TCAGGACACGGCAGCGGCCTTGGG
Jarid2b-F2 GAAGGCATCAAGGTTTATCG

221 qRT-PCR
Jarid2b-R2 GCGATCTGATACAGTAGCTT
β-actin-F TGACCTCACAGACTACCTCATG

224 qRT-PCR
β-actin-R GGCAACGGAACCTCTCATTG

The molecular weight, theoretical isoelectric point, and average hydrophilicity were
calculated by SMS2 [37]. Predictive analysis of Jarid2b signal peptide cleavage sites was
performed using SignalP 3.0 [38]. The domain architecture prediction of Nile tilapia Jarid2b
was performed using SMART [39]. The amino acid sequence of Nile tilapia Jarid2b was
aligned with other species using the DNAMAN programs (Lynnon Biosoft, Quebec, QC,
Canada). Phylogenetic analysis based on the amino acid sequences of Jarid2b was conducted
using MEGA software (version 7.0.14, Mega Limited, Auckland, New Zealand) by the
neighbor-joining method with 1000 bootstraps.

2.6. qRT-PCR Analysis

Jarid2b and β-actin specific primers (Table 1) for qRT-PCR were designed and the cDNA
samples obtained above were used as the templates. qRT-PCR assays were performed
using SYBR® Green Premix Pro Taq HS qPCR Kit in a total 20 µL reaction volume according
to the manufacturer’s instructions (Accurate Biotechnology, Changsha, Hunan, China).
qRT-PCR cycling conditions in Roche LightCycler® 96 were followed as initial denaturation
at 95 ◦C for 30 s, and then 40 cycles of denaturation at 95 ◦C for 5 s and extension for 30 s
at 60 ◦C, followed by disassociation curve analysis to determine target specificity. The
relative expression of the Jarid2b gene was calculated based on the delta-delta Ct method
and normalized to the β-actin mRNA level [36,40]. PCR specificity was assessed by melting
curve analysis.

2.7. Western Blot Analysis

Anti-Jarid2b polyclonal antibody was produced by Sangon Biotech Co., Ltd. (Shanghai,
China), and commercial β-ACTIN (Sangon, Shanghai, China) and GAPDH (Sangon,
Shanghai, China) antibodies were used in this study. The protein samples were extracted
from the tissues mentioned above (each about 5 mg). Next, the protein concentration was
detected using the BCA protein assay kit (Beyotime Biotechnology, Shanghai, China), and
the samples reached the same concentrations by adding ddH2O before use. Then, the pro-
tein samples were run on a 6% SDS–PAGE gel and were transferred to PVDF membranes.
Subsequently, the membranes were incubated with the rabbit anti-JARID2B, anti-β-ACTIN,
or anti-GAPDH antibody diluted at a ratio of 1:1000 with 10 mM PBS (pH 7.4) overnight
at 4 ◦C and then incubated with a horseradish peroxidase (HRP)-labeled goat anti-rabbit
secondary antibody (Beyotime Biotechnology, Shanghai, China) of 1:1000 at room tem-
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perature for 3 h. Finally, the JARID2B protein band was visualized using BeyoECL Plus
(Beyotime Biotechnology, Shanghai, China) on the protein toning system (Vilber Lourmat,
Paris, French).

2.8. Immunohistochemistry Analysis

The ovary and testis of 180 dpf Nile tilapia females and males were fixed in Bouin’s so-
lution to dehydrate for 24 h at room temperature, embedded in paraffin wax, and sectioned
at 5 µm thickness for immunohistochemistry (IHC). Firstly, the sections were deparaf-
finized, hydrated, and blocked with 3% H2O2 at room temperature for 1.5 h. Secondly, the
slides were incubated with the anti-JARID2B antibody of 1:1000 overnight at 4 ◦C and then
incubated with the HRP-labeled secondary antibody mentioned above at room temperature
for 1 h. Next, an enhanced HRP-DAB Chromogenic Kit was applied for enzymatic reactions
(Beyotime Biotechnology, Shanghai, China). Finally, the slides were stained in hematoxylin
and visualized on Zeiss confocal microscope.

2.9. Statistical Analysis

All data were expressed as the average ± SD (n = 3). One-way analysis of variance
(ANOVA) and Tukey’s test were used to analyze the data using SPSS 21. Differences
were considered significant when p < 0.05. Relative expression of Jarid2b gene was plotted
using GraphPad Prism 8.0 software (version 8.0.2.263, GraphPad Software Inc., San Diego,
CA, USA).

3. Results
3.1. Molecular Cloning and Bioinformatic Analysis of Jarid2b

PCR using the specific primer pair was performed to obtain the complete open reading
frame (ORF) of Jarid2b. The full-length Jarid2b ORF in Nile tilapia was 4239 bp and encoded a
1412-amino acid protein with a calculated molecular weight of 154.98 kDa and a theoretical
isoelectric point of 10.14. The average hydrophilicity was −0.739 and the signal peptide
was not found in Jarid2b. SMART online software analysis showed that three conserved
and key structural features were found in Nile tilapia Jarid2b, including Jumonji N (JmjN)
domain, BRIGHT and ARID domain, and JmjC domain (Figure 1).

Multiple sequence alignments based on the degrees of homology at the protein level
showed that Nile tilapia JARID2B shared high homology with JARID2B in other fish species
including Oreochromis aureus (XP_031598248.1), Astatotilapia calliptera (XP_026011421.1),
Maylandia zebra (XP_024654161.1), Pundamilia nyererei (XP_005728530.1), Simochromis
diagramma (XP_039877292.1), Haplochromis burtoni (XP_014187632.2), Archocentrus centrarchus
(XP_030596394.1), Melanotaenia boesemani (XP_041867268.1), and Amphiprion ocellaris
(XP_023136762.1), and the sequence identity was, respectively, 99.50%, 96.65%, 96.58%,
98.23%, 97.66%, 97.95%, 93.71%, 88.56%, and 89.94% (Figure 2). Thus, the JARID2B amino
acid sequence in Nile tilapia was highly similar to that of O. a. and P. n. Furthermore, the
JmjN domain, BRIGHT and ARID domain, and JmjC domain are relatively conserved in
these analyzed species (Figure 2).

The predicted Nile tilapia JmjN domain (690–731) consists of 42 amino acid residues
with the same sequence as O. a. and M. b. Alanine (A) residue at position 718 in predicted
Nile tilapia JmjN domain was substituted for Serine (S) or Tyrosine (Y) only in A. centrarchus
and A. o. Valine (V) residue at position 724 in predicted Nile tilapia JmjN domain was
replaced with A in A. calliptera, M. z., P. n., S. d., and H. b. and both V and A occurred with the
half probability among these ten species analyzed. The predicted JmjC domain (1032–1196)
comprised 165 amino acid residues, which were the same as that in O. a. Aspartic acid (D)
residue at position 1109 tended to be displaced with Asparagine (N) in half the analyzed
species. In M. b. and A. o., the amino acid residues at position 1041 changed from N to A or
Threonine (T), and at position 1100 changed from I to V.
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The phylogenetic tree constructed using MEGA 7.0 revealed that JARID2B and JARID2A
could be clustered in respective clades. The JARID2B in Nile tilapia gathered into a cluster
with the one in O. a. and later with H. b. and S. d. (Figure 3), showing that the JARID2B in
Nile tilapia had the highest homology with the one in O. a.
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Figure 2. Cont.
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Figure 2. Multiple alignments of JARID2B amino acid sequence in Nile tilapia and other species. 
The identical amino acid residues are shaded in dark blue-grey. Pink shade indicates highly con-
served amino acid residues and the amino acid residues only in one or two species differed from 
those of other species. The predicted JmjN domain, BRIGHT and ARID domain, and JmjC domain 
are marked with red overlines. 

The phylogenetic tree constructed using MEGA 7.0 revealed that JARID2B and 
JARID2A could be clustered in respective clades. The JARID2B in Nile tilapia gathered 
into a cluster with the one in O. a. and later with H. b. and S. d. (Figure 3), showing that 
the JARID2B in Nile tilapia had the highest homology with the one in O. a.. 
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Figure 2. Multiple alignments of JARID2B amino acid sequence in Nile tilapia and other species. The
identical amino acid residues are shaded in dark blue-grey. Pink shade indicates highly conserved
amino acid residues and the amino acid residues only in one or two species differed from those of
other species. The predicted JmjN domain, BRIGHT and ARID domain, and JmjC domain are marked
with red overlines.
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3.2. Tissue Expression Distribution of Jarid2b

The tissue expression distribution of Jarid2b was analyzed using cDNAs synthesizing
from the total RNA isolated from 11 tissues of Nile tilapia at 180 dpf. β-actin expression
in Nile tilapia was examined as an internal reference. The results showed that Jarid2b was
constitutively expressed in all the examined tissues (eye, spleen, heart, liver, blood, XX
brain, XY brain, muscle, skin, ovary, and testis) (Figure 4A). The highest expression level of
Jaird2b was observed in Nile tilapia blood, followed by brain and testis, while the lowest
was in the ovary. Moderate expression levels were detected in the eye, spleen, heart, liver,
muscle, and skin. Western blot analysis of 21 dpf Nile tilapia gonads showed that the anti-
JARID2B polyclonal antibody only stained the 155 kD protein band in the XX, XX + HT, and
XY samples as expected, which verified the specificity of the JARID2B antibody (Figure 5B).
Furthermore, the titer of the antibody reached 1:512,000. The specific JARID2B antibody was
used for Western blot analysis and the results showed that the JARID2B protein expression
profile was similar to that obtained from the qRT-PCR (Figure 4B).
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expression level of Jarid2b in the XX group was set as 1. The different lower-case letters indicate
significant differences between treatments (p < 0.05, ANOVA). XX: control female group; XX + HT:
high-temperature-treated female group; XY: control male group. (B): Protein expression of Jarid2b at
21 dpf as determined by Western blot. (C): Band intensity quantification in Figure 5B was performed
in Image J software (version 1.8.0.172, National Institute of Mental Health, Bethesda, Maryland,
USA), and GAPDH was used as a loading control. The different lower-case letters indicate significant
differences between treatments (p < 0.05, ANOVA). (D–F): IHC results of fish from the XX, XX + HT,
and XY groups at 21 dpf. OC: somatic cells; SC: Sertoli cells. The positive signal is brown.

3.3. High-Temperature, but Not MT/letrozole Treatment, Upregulates Nile Tilapia Gonadal Jarid2b
mRNA and Protein Expression

To investigate the expression pattern of Jarid2b after various treatments, the Jarid2b
levels in the Nile tilapia gonad at 21 dpf after treatment for 12 days were examined in this
study. According to qRT-PCR, the expression of the Jarid2b gene in the XX + HT and XY
groups was significantly higher than that in the XX group at 21 dpf (Figure 5A). There was
no significant difference between the XX + HT and XY group, showing the important role of
high-temperature treatment in affecting the expression of Jarid2b. In addition, Western blot
analysis showed a similar JARID2B protein expression profile to those obtained from the
qRT-PCR (Figure 5B), and the high-temperature treatment also up-regulated the JARID2B
protein expression level. Consistent with the Western blot data, the IHC results showed
that weak positive signals were observed in somatic cells in the XX gonad, whereas strong
positive signals were observed in Sertoli cells in the XX + HT and XY gonads (Figure 5C).
Collectively, high-temperature treatment during TSP resulted in a significant upregulation
of Nile tilapia Jaird2b mRNA and protein expression.

Sex steroid hormones and their inhibitors can affect the expression of a large number
of genes in many species by activating related nuclear receptors. To explore whether MT
and letrozole can affect Jarid2b expression, qRT-PCR assays were performed using the
sampled gonads after various treatments. Letrozole treatment (XX+ AI) of XX genotypic
females of Nile tilapia larvae at 9 dpf for 12 days (21 dpf) did not affect the mRNA level of
Jarid2b in the gonads compared to the XX control group (Figure 6). Similarly, MT treatment
(XX+ MT) did not also affect the expression of Jarid2b. Collectively, contrary to the effects of
high-temperature treatment on the expression of Jarid2b in the gonads (XX + HT), MT and
letrozole treatments do not affect the expression of Jarid2b in the gonads. Therefore, the
expression of Jarid2b in the Nile tilapia gonads was specifically affected by high-temperature
treatment during TSP.
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Figure 7. Expression of Jarid2b gene in various tissues as determined by qRT-PCR. XX: control fe-
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tissue in the XX group was set as 1. * Statistically significant difference (p < 0.05). 

Figure 6. Gonadal Jarid2b expression responds to 17-Methytestosterone (MT) and letrozole (AI)
treatment at 21 dpf. XX + MT: genetically XX Nile tilapia with 17-Methyltestosterone treatment under
28 ◦C temperature water; XX + AI: genetically XX Nile tilapia with letrozole (AI) treatment under
28 ◦C temperature water; XX: control female group; XX + HT: high-temperature-treated female group;
XY: control male group. The expression level in the gonad of the XX group was defined as 1, following
normalization to the β-actin expression. The different letters indicate significant differences among
treatments (p < 0.05).
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3.4. High-Temperature Treatment Also Upregulates Jarid2b Expression in Other Tissues in
Nile Tilapia

High-temperature treatments during TSP upregulated the mRNA and protein expres-
sion of Jaird2b in the gonad of Nile tilapia. However, whether the expression of Jaird2b
in various tissues was affected by high-temperature treatment remains to be elucidated.
The results showed that the expression of gene-encoding Jarid2b in the heart, brain, liver,
muscle, eye, and skin in the XX + HT group was significantly increased compared with
that in the XX group (Figure 7). The highest upregulation of Jarid2b was observed in the eye
of the XX + HT group with about 52-fold increases, while the lowest upregulation was in
the skin with about 2.5-fold increases. However, no significant change in Jarid2b expression
was observed in the gill after high-temperature treatment (Figure 7). In conclusion, the
expression of gene-encoding Jarid2b in various tissues except for gill was significantly
upregulated after high-temperature treatment.

Genes 2022, 13, x FOR PEER REVIEW 14 of 21 
 

 

 
Figure 6. Gonadal Jarid2b expression responds to 17-Methytestosterone (MT) and letrozole (AI) 
treatment at 21 dpf. XX + MT: genetically XX Nile tilapia with 17-Methyltestosterone treatment un-
der 28 °C temperature water; XX + AI: genetically XX Nile tilapia with letrozole (AI) treatment under 
28 °C temperature water; XX: control female group; XX + HT: high-temperature-treated female 
group; XY: control male group. The expression level in the gonad of the XX group was defined as 1, 
following normalization to the β-actin expression. The different letters indicate significant differ-
ences among treatments (p < 0.05). 

3.4. High-Temperature Treatment Also Upregulates Jarid2b Expression in Other Tissues in Nile 
Tilapia 

High-temperature treatments during TSP upregulated the mRNA and protein ex-
pression of Jaird2b in the gonad of Nile tilapia. However, whether the expression of Jaird2b 
in various tissues was affected by high-temperature treatment remains to be elucidated. 
The results showed that the expression of gene-encoding Jarid2b in the heart, brain, liver, 
muscle, eye, and skin in the XX + HT group was significantly increased compared with 
that in the XX group (Figure 7). The highest upregulation of Jarid2b was observed in the 
eye of the XX + HT group with about 52-fold increases, while the lowest upregulation was 
in the skin with about 2.5-fold increases. However, no significant change in Jarid2b expres-
sion was observed in the gill after high-temperature treatment (Figure 7). In conclusion, 
the expression of gene-encoding Jarid2b in various tissues except for gill was significantly 
upregulated after high-temperature treatment. 

 
Figure 7. Expression of Jarid2b gene in various tissues as determined by qRT-PCR. XX: control fe-
male group; XX + HT: high-temperature treated female group. The expression level of Jarid2b in each 
tissue in the XX group was set as 1. * Statistically significant difference (p < 0.05). 

Figure 7. Expression of Jarid2b gene in various tissues as determined by qRT-PCR. XX: control female
group; XX + HT: high-temperature treated female group. The expression level of Jarid2b in each tissue
in the XX group was set as 1. * Statistically significant difference (p < 0.05).

3.5. Jarid2b Expression Responds Early to High-Temperature Treatment

Because high-temperature treatment affected the expression of Jarid2b in most tissues
in Nile tilapia, the brain tissue was selected to investigate whether the Jarid2b expression
responds early to high-temperature treatment. Temporal changes in brain Jarid2b transcript
levels within 21 h after high-temperature treatment were examined and the result showed
that the expression levels of Jarid2b had no significant differences at 4 and 6 h after high-
temperature treatment in the XX + HT group compared with the XX group, and then turned
to extremely significant upregulation from 8 to 21 h (Figure 8). Taken together, this result
indicated that high-temperature treatment during TSP could affect the transcript level of
Jarid2b as early as 8 h.
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4. Discussion
4.1. The Identification and Tissue Distribution of Jarid2b

In this study, we successfully isolated and sequenced Jarid2b in the Nile tilapia. The
result of bioinformatic analysis and multiple sequence alignments indicated that Jarid2b
belonged to the JmjC gene family and had a highly conserved JmjC domain located at
residues 1032–1196. The JmjC domain was first defined based on the amino-acid simi-
larities in the JARID2 (Jumonji), JARID1C (Smcx), and JARID1A (RBP2) proteins [41–43].
JmjC-domain-containing proteins were classed as seven evolutionarily conserved groups
including the JHDM1, PHM2/PHF8, JARID, JHDM3/JMJD2, UTX/UTY, JHDM2, and JmjC
domain only [21]. Nowadays, it is considered that JmjC-domain-containing proteins might
be involved in demethylation within histones [44,45]. However, JARID2, one subgroup
of the JARID group, was predicted to have no histone demethylase activity because it
did not share the conserved residues that were essential for histone demethylase activity
compared to other JmjC-domain-containing proteins [21,46]. Moreover, the function of the
JmjC domain also seemed to be different within the two JARID subgroups, as the amino
acids required for enzymatic function are intact in most members of the JARID1 subgroup
but completely lacking in the JARID2 subgroup [46]. Further study showed that Jarid2 was
certified to constitute a subunit of PRC2 and related to the catalytical activity of histone
methylation [14]. In this study, Phylogenetic analysis showed that the Jarid2b-deduced
amino acid sequence was conserved among the analyzed fish species and Nile tilapia Jarid2b
was most similar with that of O. a.. JARID2B was relatively conservative between different
species, which implied that its potential histone methylation activity may be conserved
across multiple species. JmjN is one of the conserved Jmj domains and the function of
the JmjN domain remains largely undetermined. Research has demonstrated that JmjN
and JmjC interact physically to form a structural unit that ensures the stability activity of
Gis1 [47]. Moreover, the JmjN in Jhd2 is also important for its protein stability [48]. So far,
there were no reports related to the function difference between Jarid2a and Jarid2b. Nile
tilapia Jarid2a gene has also not been reported.

Herein, we investigated Jarid2b gene expression patterns in adult Nile tilapia tissues
and revealed differential expression levels in various tissues, which is consistent with the
obtained expression pattern based on transcriptome data in Nile tilapia [49]. There is a
variety of evidence that Jarid2 is widely expressed and has different biological functions in
other species. Studies have shown that miR-130a, an Etv2 downstream target, was defined
an important role in the mediation of vascular patterning and angiogenesis. Mechanistically,
miR-130a directly regulated Jarid2 expression by binding to its 3′-UTR region, and its
expression was increased in zebrafish miR-130a morphants. Further study showed that
over-expression of Jarid2 in HUVEC cells led to defective tube formation indicating its
inhibitory role in angiogenesis. These findings demonstrated a critical role for Etv2-miR-
130a-Jarid2 in vascular patterning [50]. Additionally, the Jarid2 expression profile during
embryonic development and in adult tissues in mangrove rivulus fish suggested that it
might be important in development, gametogenesis, and neurogenesis, which may be
related to the epigenetic regulation role of Jarid2 [51]. Moreover, Jarid2 expression at high
levels was detected in the heart, brain, thymus, and skeletal muscle in adult mouse and in
the brain and heart in adult human, indicating that it might be involved in multiple organ
development [21,52–54].

In this study, we found that Jarid2b was expressed in the gonads of both sexes during
the TSP and the expression pattern exhibited sexual dimorphism, which suggested that it
may be involved in the early development and differentiation of Nile tilapia gonads. Re-
markably, the sexually dimorphic patterns of Jarid2b transcripts appeared to be maintained
to adulthood as demonstrated by the tissue distribution analysis in this study, suggesting
that it may be important for gonadal differentiation and maintaining the adult sexual
phenotype in Nile tilapia.
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4.2. High-Temperature, but Not MT/letrozole Treatment, Affects Jarid2b Expression

In this study, the effect of high-temperature treatment on Jarid2 expression was first
studied in detail in GSD + TE fish. The results showed that Jarid2b expression was notably
high in the gonad of XX tilapia after high-temperature treatment compared to the XX control
at 21 dpf, which suggests that Jarid2b may play an important role in the high-temperature
induced sex reversal of Nile tilapia females into pseudomales. The use of specific androgen
or aromatase inhibitors can cause the sex reversal of genetic females into phenotypic males
in various fish species exhibiting GSD + TE or GSD, and affect the expression of many
hormone receptor or steroid synthase-related genes [35,36,55–57]. For instance, genetic
all-female rainbow trout were treated with the androgen 11beta-hydroxyandrostenedione,
which resulted in 100% males at a dosage of 1 mg/kg in food. Steroid enzyme P450scc
was clearly up-regulated, and 3betaHSD and P450aro were down-regulated during the
treatment [55]. In zebrafish, an all-male population was observed after exposure to 9.7 ng/L
synthetic androgen trenbolone and above from 20 to 59 days post-hatch (dph) [58]. Another
study showed that batches of tilapia fry treated with aromatase inhibitor during the first
30 days following yolk-sac resorption (7–37 dph) and the percentage of males remained
approximately constant (92.5–96.0%) from 200 to 500 mg/kg [59]. Quantitative analysis
showed that a certain concentration of MT or letrozole treatment resulted in a similar sex
reversal rate of Nile tilapia XX genetic females as the high-temperature treatment [35,36].
However, the results in this study showed that the same doses of MT or letrozole treatment
as used by Teng et al. [36] and Wang et al. [35] did not affect Jarid2b expression, which
is different from the result of high-temperature treatment. So far, the effect of MT or
letrozole treatment on Jarid2 expression has not been reported. High-temperature, but
not MT/letrozole treatment, affects Jarid2b expression, which suggests that the molecular
mechanism and the pathways of sex reversal in Nile tilapia females induced by androgen or
aromatase inhibitor treatment perhaps are partially different from that of high-temperature
treatment. We speculated that high-temperature and MT/letrozole treatment may mutually
act on some downstream genes [36], but the upstream genes affected by high-temperature
and MT/letrozole treatment may be completely different.

After high-temperature treatment during TSP, the level of Jarid2b transcripts in most
tissues of Nile tilapia were significantly upregulated. For example, the average Jarid2b
mRNA level in juvenile tilapia blood in the XX + HT group was 52 times higher than that
in the XX group. High-temperature treatment also affected the expression of jarid2b in
multiple tissues except for gills, such as the heart and brain, suggesting that Jarid2b may
be a constitutively expressed gene and play an important role in coping with temperature
treatment in most tissues. We speculated that the molecular mechanism of Jarid2 expression
regulated by high-temperature treatment is basically the same in multiple tissues. Similarly,
it was shown that the expression of Hsp70 and Hsp90 was up- or down-regulated in gill,
liver, and muscle when Kaluga (Huso dauricus) was treated with different temperatures
or salinities [60]. qRT-PCR showed that the upregulated response of turbot (Scophthalmus
maximus) PRLR at multiple time points (1 h, 6 h, 12 h, 24 h, 3 m, and 9 m) was similar in
gill, kidney, and intestinal tissues after low salt (5, 10, or 30 ppt) treatment [61].

Previous studies showed that the treatment with the glioma inhibitory drug temozolo-
mide (TMZ) resulted in Jarid2 downregulation and CCND1 upregulation within glioma
tissues of different grades, and further studies showed that JARID2 negatively regulates
CCND1 expression by increasing the H3K27me3 level on the CCND1 promoter in leukemia
cell [62,63]. In addition, Jarid2 expression was increased in bladder cancer tissues and
cells, and upregulation of Jarid2 increased the H3K27me3 level at the PTEN promoter,
thus enhancing the progression of bladder cancer through regulating PTEN/AKT signal-
ing [64]. Given that Jarid2 could generally regulate H3K27me3 status, we speculate that
Jarid2b may affect the methylation level of genes in the female differentiation pathway and
thereby suppress their expression during the sex differentiation in Nile tilapia of GSD + TE.
Recently, Zhong et al. [65] found a high H3K27me3 level could transcriptionally repress
the expression of RUNX1 (the runt-related transcription factor 1), a transcription factor
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influencing granulosa cells’ growth and ovulation, whereas RUNX1 acts as an activator of
steroidogenesis-related genes Cyp19a1, promoting the production of estrogen in porcine.
Similarly, Lee et al. [66] provided in vivo evidence that the level of H3K27me3 is involved
in the rapid changes in Cyp19a1 expression by altering the chromatin structure of the
promoters. Furthermore, CBX2, a subunit of the Polycomb Repressive Complex 1 (PRC1),
which can mainly regulate the level of H3K27me3, can directly bind the ovary-promoting
gene Lef1, resulting in the bivalent and repressed status in Sertoli cells of the XY fetal gonad.
These results suggested that stabilization of the testis fate requires H3K27me3-mediated
repression of ovary-determining genes, which would otherwise block testis development
in mice [67].

4.3. Jarid2b Expression Was Affected Early by High-Temperature Treatment

Jarid2b expression in the brain responded sharply in the early period of high-temperature
treatment during TSP and its expression was significantly upregulated from 8 h. In Ara-
bidopsis, the cold-related COR (cold-regulated) gene was mediated by CRT (C-repeat)/DRE
(dehydration-responsive element). CBF1, a transcriptional activator, was found to bind
to the CRT/DRE and its overexpression could induce COR gene expression and increase
freezing tolerance [68–70]. The transcript levels for CBF increased within 15 min after
transferring plants to a low temperature, followed by the accumulation of COR gene tran-
scripts at about 2 h, which indicated that CBF gene induction is an early event in the low
temperature-stimulated signaling cascade [71,72]. Similarly, the rapid expression responses
of barley clock genes to temperature were examined and the clock genes such as CCA1
and PRR73 responded rapidly to the changes in temperature within 6 h [73,74]. Pufferfish
(Takifugu rubripes) HSP70 showed a rapid response to temperature treatment (from 24 to
28 ◦C or 24 to 20 ◦C) at the 3rd h in the gill, muscle, and liver, speculating that HSP70 might
act as the main gene to regulate fish adaptive capacity with changed temperature [75].
Thus, these genes, which rapidly respond to temperature changes, may be the upstream
gene responding to high-temperature treatment and the connection point between temper-
ature treatment and downstream genes affected by temperature treatment. Therefore, we
speculate that Jarid2b may be an upstream gene responding to high-temperature treatment
and play an important role in the regulation of Nile tilapia GSD + TE.

5. Conclusions

In this study, Jarid2b was characterized in Nile tilapia, and Jarid2b was observed to
be commonly expressed in multiple tissues in adult tilapia and exhibited a male-biased
expression pattern. We have shown for the first time that high-temperature treatment, but
not MT or AI treatment, upregulated Jarid2b levels in the gonads of juvenile Nile tilapia at
21 dpf, and this upregulation was consistent across multiple tissues. Jarid2b expression was
found to rapidly respond to high-temperature treatment. Our results suggest that Jarid2b
may play an important role in the regulation of Nile tilapia GSD + TE.
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