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Abstract: Robust biomarkers of chronological age have been developed in humans and model
mammalian species such as rats and mice using DNA methylation data. The concept of these so-called
“epigenetic clocks” has emerged from a large body of literature describing the relationship between
genome-wide methylation levels and age. Epigenetic clocks exploit this phenomenon and use small
panels of differentially methylated cytosine (CpG) sites to make robust predictions of chronological
age, independent of tissue type. Here, we present highly accurate livestock epigenetic clocks for
which we have used the custom mammalian methylation array “HorvathMammalMethyl40” to
construct the first epigenetic clock for domesticated goat (Capra hircus), cattle (Bos taurus), Red (Cervus
elaphus) and Wapiti deer (Cervus canadensis) and composite-breed sheep (Ovis aries). Additionally,
we have constructed a ‘farm animal clock’ for all species included in the study, which will allow for
robust predictions to be extended to various breeds/strains. The farm animal clock shows similarly
high accuracy to the individual species’ clocks (r > 0.97), utilizing only 217 CpG sites to estimate age
(relative to the maximum lifespan of the species) with a single mathematical model. We hypothesise
that the applications of this livestock clock could extend well beyond the scope of chronological age
estimates. Many independent studies have demonstrated that a deviation between true age and clock
derived molecular age is indicative of past and/or present health (including stress) status. There
is, therefore, untapped potential to utilize livestock clocks in breeding programs as a predictor for
age-related production traits.

Keywords: epigenetic clock; methylation; livestock; sheep; goat; deer; cattle

1. Introduction

The premise of using biomarkers to predict longevity emerged from an understanding
that chronological age is an imperfect representation of the ageing mechanism and a more
informative measure is the decline in functional capability with age, that is, an individual’s
biological age [1]. In recent years, DNA methylation has been hailed as the most promising
marker of biological age [2,3]. Despite the tissue-specific nature of age-associated physio-
logical decline, cytosine methylation correlates strongly with age across virtually all tissue
types. This unique characteristic can be exploited in the development of multivariate age
estimators (pan-tissue epigenetic clocks) that can accurately predict the age of an individ-
ual, independent of the tissue of origin of the DNA sample. For example, the first human
pan-tissue clock, which is based on 353 age-related CpGs, estimates chronological age with
a correlation of 0.96 and a median error of 3.6 years [4]. Since the development of this clock,
epigenetic clocks have been successfully established for model species such as mice. More
recently, Lu et al. (2021) constructed three broadly applicable mammalian epigenetic clocks
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from a large scale metanalysis of methylation data profiled using the HorvathMammal-
Methyl40 array [4,5]. The clocks show high accuracy (r > 0.96) at predicting age across all
142 mammalian species and 57 tissue types assayed in the study, supporting the notion that
a universally regulated mechanism underlies the aging process in mammalian species. This
provides great potential for the use of an epigenetic clock for livestock breeding purposes.
Establishing an accurate biomarker of age would be of use in farming systems where it
is not possible to record birth dates with certainty. In such circumstances, age cannot be
reliably included in genetic prediction models, which results in reduced selection accuracy.

Perhaps of greater significance is that the estimates generated by this clock and its
related counterparts are not only predictive of chronological age, but also biological age,
providing a mechanism to infer age-related pathologies and identify genetic, environmental
or lifestyle factors that accelerate or slow biological aging [6]. For example, in humans, accel-
erated epigenetic ageing has been associated with a vast range of disorders from metabolic,
infectious, and degenerative disease to frailty, traumatic stress and post-traumatic stress
disorder as well as lifestyle factors such as smoking and obesity [7–9]. These findings
proffer the potential to utilize epigenetic clocks as a biomarker for health and age-related
degeneration, a tool that could be deployed in the livestock sector to complement the
current genetic framework for the selection of traits such as longevity [10]. More specifi-
cally, early selection of animals with a “reduced biological age”, i.e., slower aging, could
result in animals with improved longevity. An incorporation of the “biological age” in
genetic evaluations to adjust an individual’s performance may promote better selection
decisions [11]. Alternatively, epigenetically younger animals may have a preference for
retainment in the herd as a reflection of greater resilience. Furthermore, Lu et al. (2021)
have shown that maximum lifespan (the genetic limit of longevity in an ideal environment)
can also be predicted via methylation-based models [12]. Utilising the epigenetic clock
as a biomarker in livestock breeding schemes would provide an objective predictor of
stayability and health measures.

In New Zealand, the primary sector is dominated by the dairy cattle, beef cattle and
sheep industries. In 2020 the number of beef cattle was 4 million, with 6.1 million dairy cat-
tle, and 26.2 million sheep. The deer industry, comprised mainly of Red and Wapiti breeds,
is well established for venison and velvet production, and total deer numbers approach 1
million. While goat farming has a lower profile, dairy goats are gaining popularity for their
unique milk properties that are favourable for human infant formula, and currently, dairy
goats number approximately 70,000. Breeding programs are well established nationally
across these key species, providing a strong foundation for the industry to capitalise on
novel approaches to enhance the prevailing genetic merit predictions. Towards this goal, we
have constructed an epigenetic clock for livestock species that are particularly relevant to
New Zealand’s agricultural interests to accurately estimate the chronological age of sheep,
goat, deer and cattle (r = 0.97), which also has the potential to be extended to closely related
arteriodactyls. This work provides a tool to determine the biological age of livestock, which
will be particularly useful in farm systems and has potential as a molecular phenotype for
stress resilience and age-related degeneration for breeding purposes.

2. Materials and Methods
2.1. Deer Samples

Although Red deer (C. elaphus) and Wapiti deer (C. canadensis) are classified as separate
species, they are capable of interbreeding and producing fertile offspring. In the New
Zealand deer industry, Red and Wapiti are considered different breeds rather than different
species, thus, to maintain consistency we will also refer to them as breeds and treat them
as a single group for clock development [13]. Ear tissue punches (Allflex Tissue Sampling
Unit; TSU samples) of deer were obtained from Focus Genetics, Napier, New Zealand. The
animals are a mix of crossbred and purebred Red and Wapiti breeds that were sampled
from four different studs. While individuals in the dataset are not necessarily purebred,
they are represented by their predominant breed. Chronological ages ranged from 1 month
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to 13 years and 8 months old. A total of 74 hinds and 22 stags were included in the dataset.
Comprehensive birth date and sample date records allowed for the age of the animal at the
time of sampling to be determined to the nearest day.

2.2. Cattle Samples

TSU samples of cattle (B. taurus) were obtained from Livestock Improvement Corpora-
tion (LIC) Ltd., Hamilton, New Zealand. The animals were sampled from LIC’s research
dairy herd. The majority were Kiwicross breed (Jersey/Friesian cross) with some full Jersey
breed and some full Friesian breed included in the dataset. All 96 samples were female.
The age range was from 1 month to 11 years and 1 month old, the age of the animal at the
time of sampling was determined to the nearest day.

2.3. Goat Samples

TSU samples from one flock of Saanen breed dairy goats (C. hircus) were obtained
from New Zealand goat breeders, Judy and Barry Foote, Hikurangi, New Zealand. The
dataset was made up of 72 does, 23 bucks and 1 intersex individual (visible male sex organs
in addition to a milk-producing udder). Ages ranged from 2 weeks to 8 years and 7 months
of age, determined to the nearest fortnight.

2.4. Sheep Samples

TSU samples were obtained from two research sheep flocks (O. aries) from AgResearch
Ltd., Woodlands, NZ. The sheep were a composite breed resulting from the cross of
Coopworth (~54%), Texel (~18%), Romney (~12%), and East Friesian (~10%) and other
breeds (~6%). The age of the animals at the time of sampling ranged from 16 days to
7 years and 1 month old, determined to the nearest month. There were 73 ewes and 23 rams
included in the dataset.

2.5. Life History Traits

Life-history traits for the four species, including maximum lifespan, average age at
sexual maturity and average gestation length were sourced from the Animal Aging and
Longevity Database (AnAge [14], http://genomics.senescence.info/help.html#anage, ac-
cessed on 24 June 2021), (Table 1). This was to ensure consistency across clock development
in livestock and other mammals [15–18]. While the AnAge estimates for age at sexual
maturity and gestation length are outside of what is recorded in New Zealand farming
systems, there is little effect on the clock predictor as they are proportionally comparable
across species.

Table 1. Maximum life span and average life-history periods for deer, cattle, goat and sheep
sourced from the AnAge database (http://genomics.senescence.info/help.html#anage, accessed on
24 June 2021).

Species Maximum Lifespan (Years) Age at Sexual Maturity (Days) Gestation Length (Days)

Deer 31.5 791 245
Cattle 20 548 277
Goat 20.8 545.5 155

Sheep 22.8 731 146

2.6. Extraction and Bisulphite Conversion of DNA

Ear punch tissue was collected using TSUs, and genomic DNA was extracted from
tissue samples in 96-well plates using a high-salt method that has been shown to yield
good quality, high molecular weight DNA [19]. Extraction and subsequent normalisation
were performed with automated liquid handling robots.

Stock DNA was quantified using a Nanodrop8000 (Thermo Fisher Scientific Inc,
Waltham, MA, USA). The DNA was then diluted in autoclaved MilliQ water and normalised
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to approximately 80 ng/µL in a 96-well plate. The normalised DNA plates were then
quantified using an intercalating dye (PicoGreen; Thermo Fisher Scientific Inc, Waltham,
MA, USA) and an automated VICTOR3 fluorometer (Perkin Elmer, Inc., Waltham, MA,
USA) [20]. Bisulphite conversion of 1 µg of input DNA was carried out with EZ DNA
Methylation-Gold Kit (Zymo Research, Waltham, MA, USA) following the manufacturer’s
instructions.

2.7. Infinium Array

A custom Illumina methylation array “HorvathMammalMethyl40” (Illumina, Inc.,
San Diego, CA, USA; [5]) was used to measure methylation for up to 37,000 CpG sites,
selected for their highly conserved flanking sequences across the Mammalia class. Array
hybridisation and staining were performed with an automated liquid handling robot (Tecan
Trading AG, Männedorf, Switzerland), and array scanning and imaging were executed on
the Illumina Iscan platform (Illumina, Inc., San Diego, CA, USA).

2.8. Data Pre-Processing

Methylation levels are reported as β-values calculated using the formula:

β =
M

M + U + a
(1)

where M and U represent the methylated and unmethylated signal intensities (positive
values), respectively. The offset a ≥ 0, typically set to 100, was added to M + U to stabilize β
values when both M and U are small [21]. The SeSAMe analysis suite was used to generate
normalised β values for each probe on a scale between zero (completely unmethylated) and
one (completely methylated) from the raw data files [22]. SeSAMe assesses the efficiency
of probe hybridisation and extension using Infinium-I probe out-of-band measurements
(the pOOBAH method) and effectively masks spurious methylation calls that result from
incomplete probe hybridisation [22]. SeSAMe has previously been implemented for the
normalisation of the Mammalian Methylation array and was shown to slightly outperform
a similar R package minfi, which implements the normal-exponential convolution using
out-of-band probes (NOOB) method of normalisation [5,23].

Hierarchical clustering of the samples for each species was performed with the R
package WGCNA [24] to establish if there was any underlying structure in the datasets
that could be attributed to the known covariates, including array batch effects or breed
variation. Six sheep samples were excluded by quality control measures due to suspected
contamination when their sex check results were nonconclusive, i.e., the samples clustered
more closely with samples of the opposite sex to their recorded sex.

2.9. Age Transformations for Clock Construction

In line with the universal mammalian clock development, we constructed three epi-
genetic clocks per species based on three different transformations of age, two of which
allowed for comparisons to be made across different species (with different lifespans) for
the purpose of constructing multi-species’ clocks: (1) log-transformed chronological age; (2)
−log(−log(RelativeAge)); and (3) log-linear transformed age [12]. Epigenetic age estimates
of each clock were computed via the inverse. The age transformations used to build clocks 1
to 3 incorporated three life-history trait measurements—gestational time (GT), age at sexual
maturity (ASM), and maximum lifespan (MaxAge), sourced from the AnAge database and
measured in units of days (Table 1).

2.9.1. Log Transformed Chronological Age (Clock 1) Transformation

Clock 1 correlates the epigenetic age with the observed chronological age. For the log
transformation of chronological age (to LogAge), an age offset of 2 times gestational time
was added which allows for the ages of prenatal samples to be used in future applications
and ensures that the log transformed chronological age (Formula (2)) does not change as
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dramatically at very young ages. This is also consistent with the idea that the epigenetic
clock begins “ticking” from the moment of conception. The log transformation and the
inverse transformation (to DNAmAge) are:

LogAge = log(Age + 2× GT) (2)

DNAmAge = exp(LogAge)− 2× GT (3)

2.9.2. Loglog Transformation of Relative Age (Clock 2)

Clock 2 determines the relative age of an animal and was developed to allow for
biologically meaningful comparisons to be made between the four species by accounting for
their differing maximum lifespans. Clock 2 leverages both gestational time and maximum
lifespan to determine age relative to maximum age on a scale between 0 and 1. Relative age
was defined as 2 times the gestational time, for similar reasons as clock 1, and maximum
lifespan as follows:

RelativeAge =
Age + 2× GT

MaxAge + 2× GT
(4)

LoglogAge = −log(−log(RelativeAge)) (5)

Clock 2 employs LoglogAge and subsequently applies the inverse transformation to
predict epigenetic age:

DNAmAge = exp(−exp(−LoglogAge))× (maxAge + 2× GT)− 2× GT (6)

2.9.3. Log-Linear Transformation of Age (Clock 3)

Clock 3 leverages age at sexual maturity as a proxy for a species’ maximum lifespan as
it correlates strongly with maximum lifespan on the log scale (Pearson correlation r = 0.82,
P = 6× 10−183 across all mammalian species in AnAge [12]). Age at sexual maturity is often
better characterised in animals compared to maximum lifespan, particularly in livestock
that are not typically retained beyond their productive lifespan.

Clock 3′s age transformation takes the logarithmic form when age is less than ASM
and takes the linear form when age is greater than ASM and is continuously differentiable
at ASM. This model accommodates faster changes in methylation through development.

First, we calculate RelativeAdultAge as a ratio of age to ASM where an offset of 2 times
the gestational time is added, as in the first two clocks.

RelativeAdultAge =
Age + 2× GT

ASM + 2× GT
(7)

The ‘Log-linear age’ is then defined as:

LoglinearAge =
{

RelativeAdultAge− 1, RelativeAdultAge ≥ 1
log(RelativeAdultAge), RelativeAdultAge < 1

(8)

Clock 3 predicts LoglinearAge and applies the inverse transformation to estimate
epigenetic age as follows.

DNAmAge

=

{
ASM + LoglinearAge× (ASM + 2× GT), LoglinearAge ≥ 0

exp(LoglinearAge)× (ASM + 2× GT)− 1.5, LoglinearAge < 0
(9)

2.10. Elastic Net Regression

To build epigenetic clocks for each species, an elastic-net regression model was im-
plemented using the R package glmnet [25] within R v 3.626 (R Foundation for Statistical
Computing, Vienna, Austria) [26]. Elastic net regression combines the regularisation of both
ridge regression and LASSO (least absolute shrinkage and selection) regression, meaning
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that it is suited to high dimensional datasets where the number of predictors is more than
the number of observations and where predictors are likely to be highly correlated [25]. As
part of the model, a subset of features (CpG methylation sites) are selected which give the
best predictor for a set of outcomes (age). The two main parameters that are employed in
the elastic net model are: (1) the mixing parameter (α) which controls the shrinkage type
between ridge (α = 0) and LASSO regression (α = 1) and; (2) the penalty parameter (λ)
which controls the stringency of penalty (higher values of λ lead to coefficients closer or
equal to zero) [27].

The elastic net parameter α was set to 0.5 as the midpoint between both LASSO and
Ridge regularization. The penalty parameter (λ) used was lambda.min (the minimum mean
cross-validation error) calculated by the function cv.glmnet through a 10-fold internal cross-
validation [28]. The mean error was calculated for each iteration of the cross-validation and
then averaged over the ten partitions to determine the λ value that achieved the minimum
mean error [25].

The accuracy of the estimators was calculated using leave-one-out cross-validation
(LOOCV) by executing the cv.glmnet function for each set of n−1 samples, where n is the
number of samples. The predicted age of the omitted sample was calculated with the model
built using data from the remaining samples.

2.11. Farm Animal Clock

For the multi-species farm animal clock, we combined all data from all species and
applied elastic net regression to the LoglogAge = −log(−log(RelativeAge)) as described in
Formulas (4)–(6) to construct farm clock 2 and the loglinearAge transformation as described
in Formulas (7)–(9) to construct farm clock 3. Clock 1, which uses chronological age (rather
than relative age) is not recommended for multi-species’ clock development where there
is variability in the maximum lifespan of the included species. To assess the accuracy of
the farm clocks, we used LOOCV and leave-one-species-out (LOSO) cross-validation. The
LOSO cross-validation initially trained the model based on all-but-one species. The model
was then tested on the omitted species to assess its generalizability to the species that were
not included in the training dataset.

2.12. Assessing the Model Prediction Performance

To validate the accuracy of the models, we determined the Pearson’s correlation and
calculated the median absolute difference (median absolute error; MAE) between the
epigenetic age estimates from LOOCV analysis and the observed age for all samples. The
within fold median correlations (med.corr) and MAE as well as the correlations for all
folds were computed for the LOSO-based approach for each species. The correlations were
calculated using the transformed data (where the relationship was linear).

3. Results
3.1. Structure of the Raw Data

Initially, to characterise any substructure in the datasets we performed hierarchical
clustering using the full methylation array information for each sample. There were four
distinct clusters based on species with moderate sub clustering based on sex, importantly
there was no obvious sub-clustering based on batch effects from samples run on the same
chip array (Figure 1).
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animals that are predominantly Red (greenish) and Wapiti (blueish) breeds, respectively). Sex is coloured pink for females, 
blue for males and grey for hermaphrodite samples. The data form four distinct clusters based on species; there is some 
sub-clustering based on sex; there is no obvious sub-clustering attributed to the array the sample was run on. 
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All three clocks for each species were highly accurate (r > 0.937) with an MAE of less 

than 7 months (Figure 2). Clock 1 slightly, but consistently, outperformed both clock 2 and 
clock 3. Goat clock 1 was the most accurate (r = 0.992) using only 86 CpG sites for predic-
tions (Table 2). The high accuracy of this clock is likely due to the controlled environment 
in which the goats were raised and their origination from a single, closed herd. 

Figure 1. Hierarchical clustering of the complete methylation dataset for each sample (excluding
sheep samples that failed QC). Species are coloured yellow for sheep-related covariates, green for goat-
related covariates, purple for cattle related covariates and turquoise/blue for deer-related covariates
(note: the two shades of turquoise in the species panel denote animals that are predominantly Red
(greenish) and Wapiti (blueish) breeds, respectively). Sex is coloured pink for females, blue for males
and grey for hermaphrodite samples. The data form four distinct clusters based on species; there
is some sub-clustering based on sex; there is no obvious sub-clustering attributed to the array the
sample was run on.

3.2. Development of Species-Specific Clocks

The number of CpG sites selected by elastic net regression to construct the models for
each species ranged from 45 to 123 sites (Table 2). On average, 60% of the sites for each
clock had methylation signals that were negatively correlated and 40% had methylation
signals that were positively correlated with age, respectively (Table 2).

Table 2. Number of CpG sites selected by elastic net regression for the construction of each epigenetic
clock.

Clock Type 1 Deer Clock Cattle Clock Goat Clock Sheep Clock Farm Clock

Age transformation clock number 1 1 2 3 1 2 3 1 2 3 1 2 3 2 3

CpG sites with methylation level
positively correlated with age 33 27 28 67 67 59 58 37 32 37 43 45 119 146

CpG sites with methylation level
negatively correlated with age 16 18 18 42 56 61 28 11 14 25 33 34 98 131

Total number of CpG sites in clock 49 45 46 109 123 120 86 48 46 62 76 79 217 277

1 Clock 1 = log transformed chronological age; clock 2 = loglogRelativeAge; and clock 3 = log-linear transformed
age.

3.3. Predictive Performance of the Epigenetic Clocks

All three clocks for each species were highly accurate (r > 0.937) with an MAE of
less than 7 months (Figure 2). Clock 1 slightly, but consistently, outperformed both clock
2 and clock 3. Goat clock 1 was the most accurate (r = 0.992) using only 86 CpG sites
for predictions (Table 2). The high accuracy of this clock is likely due to the controlled
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environment in which the goats were raised and their origination from a single, closed
herd.
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To improve the robustness of the individual clocks, we built a multi-species’ clock
using the complete dataset of all four species. For this farm animal clock, we performed
both an LOOCV and a LOSO cross-validation to assess its performance. The performance
of farm animal clock 2 showed high accuracy, similar to the individual species clocks
using 217 CpG sites, with a correlation of 0.97 for the LOOCV cross-validation and more
notably, a within species median correlation of 0.94 and across all species a correlation
of 0.913 from the LOSO analysis. Clock 3 had a slightly higher accuracy within species
median correlation of 0.961 but did not perform as well across species with a slightly lower
correlation of 0.884 (Figure 3 and Supplementary Table S1).
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Figure 3. Relative age (x-axis) versus back-transformed relative epigenetic age estimated for Farm
clock 2 (loglogRelativeAge; (A,B)) and Farm clock 3 (log-linear transformed age; (C,D)). Age estimates
were predicted via both LOOCV (A,C) and LOSO (B,D) cross-validation. The Pearson correlation
coefficients (Cor) are reported for the age estimates using both LOOCV and LOSO cross-validation
and the median correlation coefficients (Med.Cor) for each fold of the LOSO cross-validation are
reported.

3.4. Overlap between CpG Sites

There was very little overlap between the CpG sites selected for the clocks of each
species. Only three CpG sites were shared across all four species in clock 2, one of these
was also commonly shared across species in clock 1 and two were commonly shared across
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species in clock 3; all three sites involved are located in two functionally annotated genic
regions, TNRC6A and LHFPL4 (Figure 4).
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The gene TNRC6A encodes a member of the trinucleotide repeat containing 6 protein
family and was consistently demethylated with increasing age. The protein functions
in post-transcriptional gene silencing through RNA interference (RNAi) and microRNA
pathways [29]. The demethylation of this gene has previously been linked to ageing in
similar epigenetic clock studies in prairie voles [30] and primates [31]. The LHFPL4 gene
is a member of the lipoma HMGIC fusion partner (LHFP) gene family, which is a subset
of the superfamily of tetraspan transmembrane protein-encoding genes. Additionally,
LHFPL4 plays a role in the regulation of inhibitory synapse formation and maintaining
GABA receptors [32]. While there are no obvious links between its function and the ageing
process, two cytosines located in exon 2 of in LHFPL4 were the most predictive across
all species in the development of the recent universal mammalian epigenetic clock and
showed a correlation with age of >0.8 in 24 species, implying there is a true although, as of
yet unclear function of this gene and its role in the ageing process [12]. Further work by Lu
et al., 2021 revealed that methylation of LHFPL4 cg12841266 was strongly correlated with
both development (r = 0.58 and P = 8.9 × 10−11) and post-development stages (r = 0.45
and P = 2.3 × 10−76) across a range of tissue types [12]. Importantly the observed changes
in methylation levels of LHFPL4 were consistently observed to be associated with ageing
in young animals as well as both middle-aged and older animals, suggesting that this
gene plays a role throughout the lifespan of mammals from development through to
adulthood [12].

4. Discussion

In the livestock sector, the longevity of an animal is of significant economic importance
and also represents a measure of animal welfare and sustainability within the sector [33].
Extending the productive lifespan of an animal increases the profitability of production
sectors by (1) reducing the cost of replacement animals; (2) improving the average herd
yields by increasing the proportion of animals in higher-producing age groups, for example,
a larger proportion of mature cows in dairy cattle schemes; (3) optimising land usage by
reducing the acreage required to rear replacement animals; and (4) decreasing involuntary
culling (culling productive, profitable animals due to illness, injury, infertility) while
increasing voluntary replacement (culling or selling animals that are healthy but that do
not meet productivity requirements) [34].

Selection, based on longevity, is complex, as the true lifespan of an animal is only
discernible at the end of its natural life, while breeding decisions and culling occur earlier.
Longevity or “stayability” is used to reflect the capability of an animal to remain in the
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herd over time, avoiding both natural attrition and culling. Identifying biomarkers that
are predictive of an animal’s functional stayability would greatly enhance the current
selection framework for this complex trait. Epigenetic clocks, which are predictive of
age-related degeneration in mice and humans, could be an appropriate biomarker towards
this objective.

This paper outlined the novel development of individual clocks for four key species of
agricultural importance, namely, sheep, goat, deer, and cattle, in addition to a multi-species
farm animal clock which is predictive across all four animal groups. The individual species
clocks would be expected to be biased towards the animals used to construct their clocks.
Therefore, caution is needed in extrapolation to differing breeds or farming conditions.
However, the remarkable predictive accuracy of LOSO analysis demonstrates that the
multi-species farm animal clock is highly robust and likely to perform well even in some
species that are not incorporated in the training dataset and/or in different environments,
for example in ruminant livestock species originating from different countries and grazed
under differing conditions.

The clocks, developed using three different transformations of age, are relevant across
a range of applications. Based on the cross-validation analyses, in general, we suggest
using the species-specific clock 1 predictors when estimating the age of animals that are
of similar breed composition to those used to build the models presented here. Clock 1,
which estimates chronological age rather than relative age (as for clock 2 and clock 3) is the
most accurate across the individual species. For all other situations where the clock is to be
used to predict the age of sheep, goat, deer, and cattle of distantly related breeds as well as
other ruminants, we suggest the use of the multi-species’ clock 2, which demonstrated the
most robust predictions across species.

The multi-species farm-animal epigenetic clock 2, represents a tool to accurately
estimate the chronological age of sheep, goat, deer and cattle with high accuracy (r > 0.97),
with promising application to additional livestock species. The results from this work
echo the key findings of the universal mammalian epigenetic clock that was trained on
a large-scale dataset across 128 mammalian species [12]. Firstly, and most noteworthy, is
the robustness of both the farm and universal clocks at predicting biological age across
species that were not part of the training set, which reinforces the notion that a highly
conserved and defined mechanism underlies biological ageing. Secondly, the LHFPL4 gene,
which is highly predictive of age in both the universal mammalian clocks and the farm
animal clocks, appears to play a key role in the ageing process throughout an individual’s
lifespan, despite its current functional annotation providing little connection to biological
degeneration. The lack of overlap between the CpG sites selected for the clocks of each
species can likely be explained by the LASSO element of elastic net regression whereby if
there are grouped variables (highly correlated between each other) LASSO tends to select
one variable from each group ignoring the others [35]. Therefore, if there are two or more
correlated predictors, one may be selected for a specific clock, while it may be reduced to
zero in a different clock.

We expect that the livestock clock will prove to be a useful tool for the livestock
industry in order to make accurate predictions of biological age. We believe that the clock
sites could be incorporated into a small-panel targeted assay to reduce the costs associated
with array-based DNA methylation profiling. This study provides a tool to determine
the biological age of livestock with great potential to act as a molecular phenotype for
age-related degeneration, and stayability traits for breeding purposes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes13010096/s1, Table S1: The Pearson correlation coefficients for the age estimates via
LOSO cross-validation for each fold drop for clock 2 and clock 3. The data is trained on 3 species and
tested on the omitted species. For each iteration, we report the correlation between the transformed
epigenetic age and the transformed age of the omitted species.
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