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Supplementary Methods 

Whole-exome library preparation and sequencing 

First, we obtained DNA from fresh-frozen, chemotherapy-naïve, primary ovarian cancer 

tissue samples and matched normal blood samples using Puregene Core kit and QIAamp DNA Blood 

Mini kit, respectively. Then, we captured human exon regions using SureSelect Human All Exon V6 

kit following standard protocols. Subsequently, we performed 101X2 paired-end WES using 

HiSeq2500 instrument (Illumina, San Diego, CA, USA), according to the manufacturer’s instruction.  

 

Whole exome sequencing data pre-processing and variant detection 

Raw FASTQ files were aligned onto GRCh37 using Burrow-wheeler Aligner (BWA) mem 

algorithms [1], and the resulting bam files were subjected to duplicate removal using the Genome 

Analysis Tool Kit (GATK) version 4.1.4.1 [2]. After base quality score recalibration and applying it to 

each bam file using GATK, we proceeded to the discovery of somatic single nucleotide variants (SNVs) 

and small insertions and deletions (indels) for each tumor sample using Strelka2 [3] and a paired-

normal sample as a control. For germline variant discovery of the WES from normal samples, we 

applied GATK’s HaplotypeCaller. All of the above variants were annotated by Oncotator [4] and 

ANNOVAR [5]. To accurately pinpoint the actually harmful ones, we only retained exonic variants (i.e. 

Missense, Nonsense, Frameshift insertion, Frameshift deletion, In-frame insertion, In-frame deletion 

and Splice site mutation) with at least 10x coverage of alternate allele, predicted to be deleterious by 

SIFT [6] and having minor allele frequency below 0.1% in 1000 Genomes Project phase 3 data [7], 

EXome Aggregation Consortium data [8], and Northeast Asian Reference Database [9]. Then, we only 

kept genes that are overlapped with cancer consensus genes from the Catalogue of Somatic Mutations 

in Cancer database [10]. Tumor mutational burden (TMB) was estimated by the total somatic 

mutations for each sample divided by the length of the captured exon regions (61 Mb).  
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Copy number alteration detection 

In order to discover somatic copy number alterations (SCNAs), we used CNVkit with default 

parameters [11]. Specifically, bin-level log2 ratio (.cnr) and segmented log2 ratio (.cns) files, generated 

from bam files by a separate reference for each matched tumor-normal pair, were processed into the 

residual bin-level log2 ratio estimates (segmetrics command). Then, GISTIC2 [12] was implemented to 

identify frequently altered chromosomal regions with a confidence level of 0.90 and a Q-value 

threshold of 0.05. The purity of the tumor samples was calculated via Sequenza algorithm [13]. We 

also used seqz files generated by Sequenza as an input to scarHRD [14] for HRD score estimation. To 

discover germline SCNAs by using the CNVkit, we constructed a pooled reference from 20 normal 

blood samples and followed the same approach as that used for detecting somatic SCNAs using the 

CNVkit.  

 

RNA sequencing and data analysis 

We extracted RNA from primary ovarian cancer tissue samples and prepared sequencing 

library using TruSeq RNA Access Library Prep Kit under standard protocol. Then we conducted 

RNA-seq on 20 HGSOC tumor samples by 101X2 paired-end mode using Illumina HiSeq2500 

(Illumina, San Diego, California), in accordance with the manufacturer’s instruction. For RNA-seq 

data analysis, each transcript expression was first quantified by pseudoalignment algorithm 

implicated in kallisto [15] version 0.46.1 using RefSeq annotation release 105 for GRCh37. Quantified 

transcript-level transcripts per million (TPM) values were collapsed to give gene-level expression, and 

only the protein-coding genes were processed for the rest of the analysis. TPM values were 

implemented for comparison among different groups and for inputs to cell type enrichment analysis. 

With regard to discovering differentially expressed genes (DEG) among sample groups ((i) 
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gBRCA1mut, gBRCA2mut and gBRCA1/2wt and (ii) HRR-activated and mesenchymal), we used 

DESeq2 [16] version 1.24.0. Raw counts of the RNA-seq were transformed using variance stabilizing 

transformations, which were later used as inputs to principal component analysis (PCA), 

unsupervised hierarchical clustering (HC) and identification of gene co-expression modules and 

interaction networks. With respect to PCA, the top 5,000 variable genes among 19,023 genes were 

used as inputs. Samples were then grouped into two clusters according to K-means clustering with 

k=2. For HC, we used Euclidean distance measure and uncentered correlation measure for EMT 

transcription factors (EMT-TFs) and homologous recombination repair (HRR) genes, respectively. 

Each gene expression was centered to the average intensity of samples, along with pair-wise 

complete-linkage for clustering of both samples and genes using Cluster 3.0 [17]. We visualized the 

resulting distance measures and dendrograms through Java Treeview [18]. 
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