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Pruszyńska-Oszmałek, E.;

Wojciechowicz, T.; Strowski, M.Z.;

Nowak, K.W.; Skrzypski, M. Adropin

Slightly Modulates Lipolysis,

Lipogenesis and Expression of

Adipokines but Not Glucose Uptake

in Rodent Adipocytes. Genes 2021, 12,

914. https://doi.org/10.3390/

genes12060914

Academic Editor: Kumiko Ui-Tei

Received: 19 April 2021

Accepted: 11 June 2021

Published: 13 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences,
60-637 Poznan, Poland; mariami.jasaszwili@up.poznan.pl (M.J.); ewa.pruszynska@up.poznan.pl (E.P.-O.);
tatiana.wojciechowicz@up.poznan.pl (T.W.); kwnowak@up.poznan.pl (K.W.N.)

2 Department of Hepatology and Gastroenterology, Charité-University Medicine Berlin, 13353 Berlin, Germany;
mathias.strowski@charite.de

3 Department of Internal Medicine-Gastroenterology & Oncology, Park-Klinik Weissensee,
13086 Berlin, Germany

* Correspondence: marek.skrzypski@up.poznan.pl; Tel.: +48-618-486-137; Fax: +48-618-487-197

Abstract: Adropin is a peptide hormone which modulates energy homeostasis and metabolism.
In animals with diet-induced obesity, adropin attenuates adiposity and improves lipid and glucose
homeostasis. Adropin promotes the proliferation of rodent white preadipocytes and suppresses
their differentiation into adipocytes. By contrast, the effects of adropin on mature white adipocytes
are unknown. Therefore, we aimed to evaluate the effects of adropin on lipolysis, lipogenesis
and glucose uptake in white rodent adipocytes. We assessed the effects of adropin on the mRNA
expression of adiponectin, resistin and visfatin. White preadipocytes were isolated from male Wistar
rats. Differentiated 3T3-L1 cells were used as a surrogate model of white adipocytes. Lipolysis was
measured by the evaluation of glycerol and free fatty acid secretion using colorimetric kits. The effects
of adropin on lipogenesis and glucose uptake were measured using radioactive-labelled glucose.
The expression of adipokine mRNA was studied using real-time PCR. Our results show that adropin
slightly promotes lipolysis in rat adipocytes and 3T3-L1 cells. Adropin suppresses lipogenesis in
rat adipocytes without influencing glucose uptake. In addition, adropin stimulates adiponectin
mRNA expression and suppresses the expression of resistin and visfatin. These results indicate
that adropin may be involved in controlling lipid metabolism and adipokine expression in white
rodent adipocytes.
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1. Introduction

Adropin is a peptide hormone encoded by energy homeostasis-associated (Enho),
which was originally identified in 2008 by Kumar et al. [1]. The amino acid sequence of
secreted adropin contains 43 amino acids and is produced by the proteolytic cleavage of
76 amino acid precursor. The amino acid sequence of adropin is identical to that in rats,
mice, humans and pigs [1]. Enho mRNA is highly expressed in the brain and liver [1];
however, the presence of Enho mRNA and/or adropin peptide was also detected in the
kidneys, heart and muscles [2,3]. Notably, adropin is also present in the circulation [4–6].
It was found that the biological effects of adropin are conferred through the activation of G
protein-coupled receptor 19 (GPR19) [7–9]. More than a decade after the identification of
adropin, there is convincing evidence demonstrating numerous beneficial effects of this
peptide hormone on metabolic diseases such as obesity and diabetes. For instance, it was
found that the overproduction or administration of adropin enhances insulin sensitivity,
attenuates hepatic steatosis and delays the development of obesity in mice fed a diet
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enriched in fat [1]. Consistently, adropin deficiency in mice leads to impaired insulin
sensitivity, abnormal glucose metabolism and increased adiposity [10]. Furthermore,
it was found that adropin may modulate glucose homeostasis by suppressing hepatic
glucose production in obese mice [11,12] and by promoting glucose oxidation in skeletal
muscle [13]. In addition, several studies showed an inverse correlation between plasma
adropin level and body mass index (BMI) [6,14–16]. The ability of adropin to protect from
increased adiposity in animals fed a high-fat diet and its negative correlation with BMI
suggest that adropin may modulate the formation and possibly the functions of adipose
tissue. Indeed, recently we reported that adropin promotes the proliferation of rodent
white preadipocytes while suppressing their differentiation into mature adipocytes [17].
However, the direct effects of adropin on mature fat cell functions, such as glucose and
lipid metabolism, as well as endocrine activity, are largely unknown. Therefore, this study
aimed to investigate the effects of adropin on lipolysis, lipogenesis and glucose uptake
in white adipocytes. Furthermore, we studied whether adropin is able to modulate the
mRNA expression of adiponectin, resistin and visfatin.

2. Materials and Methods
2.1. Materials

Adropin34–76 was synthesized by Novazym (Poznań, Poland). Cell culture media were
purchased from Corning B.V. Life Sciences (Amsterdam, The Netherlands). Antibiotics and
serum were from Biowest (Nuaillé, France). Total (#PA5-17196), and phospho-HSL (Ser563)
(#PA5-104600) antibodies were from Thermo Fisher Scientific (Waltham, MA, USA). Unless
otherwise specified, all other reagents were from Sigma-Aldrich (Darmstadt, Germany).

2.2. Cell Cultures

Rat primary white preadipocytes were cultured in DMEM/F12 medium supplemented
with 10% FBS and a mixture of penicillin (100 kU/L) and streptomycin (100 mg/L). 3T3-L1
cells (a cell model to study adipogenesis and white adipocytes functions [18]) were grown
in DMEM containing the same supplements as above. Both cell cultures were maintained
in optimal growth conditions (a humidified atmosphere of 5% CO2 in air, 37 ◦C).

2.3. Isolation of Rat Preadipocytes

Rat primary white preadipocytes were isolated from epididymal adipose tissue depots
of male Wistar rats (body weight 80–100 g, age 5–6 weeks). The fat pads were collected
and pooled in a tube prefilled with sterile, freshly prepared Krebs-Ringer solution (KRB)
(NaCl 118 mM, KCl 4.8 mM, CaCl2 1.3 mM, KH2PO4 1.2 mM, MgSO4 1.2 mM, NaHCO3
24.8 mM, 4-(2-hydroxyethyl)-1-pipera-zineethanesulfonic acid 10 mM) supplemented with
5 mM glucose, 3% BSA and antibiotics (100 kU/L penicillin and 100 mg/L streptomycin).
Next, blood vessels were precisely removed, and the tissue was washed with Krebs-Ringer
solution at sterile conditions. Subsequently, adipose tissue pads were mechanically minced
by scissors and weighed to calculate the amount of collagenase type II needed for digestion.
The tissue was digested for 60 min in a water bath at 37 ◦C and manually shaken every
15 min. Following the collagenase digestion, cells were centrifuged for 10 min at 450× g
at room temperature (RT). The fat and infranatant were discarded, and the pellet was
resuspended in Red Blood Cell Lysing Buffer (Sigma-Aldrich) to lyse the erythrocytes.
A 100 µm nylon mesh was used to filter the cell suspension, and after 10 min, the cell
suspension was filtered again using 45 µm mesh. Next, Krebs-Ringer solution was added
(5 mL), and the cells were centrifuged (10 min at 450× g at RT). Afterwards, the supernatant
was discarded, and growth medium (DMEM/F12 with 10% FBS and antibiotics) was added
to the pellet. Then, cells were counted, and the addition of 0.4% trypan blue allowed their
viability to be assessed. Next, cells were seeded in 6- and 24-well plates (depending on
the subsequent specific experiments) and maintained in a humidified incubator (37 ◦C,
5% CO2 in air). The differentiation process of rat primary preadipocytes was initiated after
24 h of incubation (see below).
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2.4. Preadipocyte Differentiation

To conduct the study, preadipocytes were differentiated into mature adipocytes.
The differentiation was initiated on the next day after seeding the primary preadipocytes or
two days after reaching a 100% confluency of 3T3-L1 cells. According to various research
methods, cells were differentiated on 6-well plates (to analyze gene expression and protein
production) or on 24-well plates (to assess lipolysis and lipogenesis). The differentiation
medium for primary preadipocytes consisted of DMEM/F12, antibiotics (100 kU/L peni-
cillin and 100 mg/L streptomycin), 850 nmol/L insulin, 2 nmol/L T3 and 10 nmol/L
dexamethasone. The medium was replaced with fresh differentiation medium every two
days until achieving the maturation process. The differentiation of 3T3-L1 cells was in-
duced by the incubation of cells in the growth medium (DMEM, 10% FBS and antibiotics
as described above) supplemented with 1 µmol/L dexamethasone, 500 µmol/L 3-isobutyl-
1-methylxanthine \and 1 µmol/L insulin. On the third day of differentiation, medium
was removed, cells were washed with PBS and incubated for two days in fresh growth
medium supplemented with 1 µmol/L insulin. Afterwards, the medium was replaced with
a growth medium for an additional two days. After completing the differentiation process,
both cell types were incubated in the presence or absence of adropin (0, 10, 100 nmol/L)
for different periods of time (see below) and collected for further analyses. All experiments
were performed in a serum-deprived medium containing 0.1% fatty acid-free BSA 7–8 days
after the onset of the differentiation process.

2.5. Lipolysis

Differentiated adipocytes were incubated with or without adropin (1, 10 or 100 nmol/L)
for 3 or 24 h in DMEM/F12 medium. Then, the medium was collected and centrifuged
(300× g) for 10 min. Thereafter, supernatants were collected and stored at −20 ◦C. Cells
were scraped and lysed in RIPA buffer (Sigma-Aldrich) for 10 min on ice. Lysates were
centrifuged (14,000× g ) for 10 min. Supernatants were collected and stored at −80 ◦C.

Glycerol was determined using Free Glycerol Reagent (Sigma-Aldrich). Free fatty
acids (FFA) were measured using a NEFA HR (2) Kit (Fujifilm, Tokyo, Japan). Secreted
glycerol and FFA were normalized to the total protein level, which was measured by a
Pierce BCA Protein Assay Kit (Thermo Fisher Scientific).

2.6. Lipogenesis

Lipogenesis was measured by evaluation of D-[14C(U)] glucose (Perkin Elmer, Waltham,
MA, USA) incorporation into lipids [19]. In brief, rat preadipocytes seeded and differen-
tiated in 24-well plates were treated with or without adropin (10 or 100 nmol/L) for 3 h
in DMEM/F12 medium supplemented with 2% fatty acid-free BSA in the presence of
D-[14C(U)] glucose. Then, the medium was removed, and cells were lysed using 0.1% SDS.
The lipid fraction was separated from the cells using Dole’s extraction method [20]. Lipid
phase was transferred into the scintillation liquid, and β-radiation was measured using a
Liquid Scintillation Analyzer Tri-Carb 4810 TR (Perkin Elmer).

2.7. Glucose Uptake

Rat preadipocytes were seeded and differentiated in 24-well plates. Next, cells were
incubated in a glucose-free KRB buffer containing 0.1% BSA for 30 min. After the incubation,
cells were washed with PBS and incubated for 30 min in KRB buffer in the presence or
absence of adropin (10 or 100 nmol/L). Next, 18.5 kBq of deoxy-D-glucose, 2-[1-14C]
glucose (Perkin Elmer) and 0.1 mmol/L 2-deoxyglucose were added, and cells were
incubated for 6 min. Then, ice-cold PBS containing 20 µmol/L of cytochalasin B was added.
Then, KRB was aspirated, and cells were washed (3 times) with PBS. The cells were lysed
using 0.1% SDS. Lysates were transferred into scintillation liquid and β-radiation was
measured using a Liquid Scintillation Analyzer Tri-Carb 4810 TR (Perkin Elmer).
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2.8. Real-Time PCR

Total RNA was extracted using Extrazol reagent (Blirt, DNA Gdańsk, Poland). cDNA
was synthetized using FIREScript RT cDNA Synthesis MIX with Oligo (dT) and Random
primers (Solis BioDyne, Tartu, Estonia). cDNA was amplified using EvaGreen qPCR Mix
(Solis BioDyne) on QuantStudio 12K Flex (Life Technologies, CA, USA). The sequences of
PCR primers are shown in Table 1. Relative mRNA expression levels were calculated using
the double delta CT method. The expression of mRNA of tested genes was normalized
vs. Gapdh.

Table 1. Primer sequences for real-time PCR.

Gene Left Primer (5′>3′) Right Primer (5′>3′) NCBI
Reference Sequence

Adiponectin (rat) tggtcacaatgggataccg cccttaggaccaagaacacct NM_144744.3
Gapdh (rat) ctgcaccaccaactgcttag tgatggcatggactgtgg NM_017008.4
Hsl (rat) cccaaagtaagaggcacagagt tcctggcattcctggtctttc NM_012859.1
Resistin (rat) gccgctgtccagtctat cattgctggtcagtctcc NM_144741.1
Visfatin (rat) cacaagagactgccggcatag tttcccccacgctgttatgg NM_177928.3

Adiponectin (mouse) atctggaggtgggagaccaa gggctatgggtagttgcagt NM_009605.5
Gapdh (mouse) atggtgaaggtcggtgtga aatctccactttgccactgc NM_001289726.1
Resistin (mouse) tgaagatggatggcgaagtgg gtggtgtaaatgccctgggt NM_022984.4
Visfatin (mouse) ccataacggcttgggggaaa gctatcgctgaccacagaca NM_021524.2

2.9. Western Blot

The Western blot technique was used to detect phosphorylated and total HSL. Cells
were differentiated and then incubated with adropin (100 nmol/L) for the indicated time
points (0–60 min). Next, cell plates were placed on ice and washed with ice-cold PBS. RIPA
buffer (Sigma-Aldrich), with an addition of protease and phosphatase inhibitor cocktails
(Roche Diagnostics, Mannheim, Germany), was used to lyse cells and to isolate proteins.
Tubes with collected cells, after incubation on ice (10 min), were centrifuged (14.000× g at
4 ◦C for 10 min), and then the supernatants were collected. Furthermore, we determined
protein concentration by a BCA Protein Assay Kit (Thermo Fisher Scientific). Every sample
containing 30 µg of protein was diluted in a loading buffer and then denatured (95 ◦C,
5 min). SDS-PAGE (5–12% Tris-HCl gel) was applied to separate proteins based on their
molecular weight. Afterwards, proteins were transferred onto polyvinylidene difluoride
(PVDF) membranes, which were blocked for 1 h at RT in 5% BSA in TBST (50 mmol/L
Tris, 100 mmol/L NaCl, 0.1% Tween 20, pH 7.4). We incubated the membranes with a
primary antibody (phosphorylated HSL, overnight, 4 ◦C) and washed them three times
(for 10 min each) with TBST. Next, the membranes were incubated with a secondary
antibody for 1.5 h at RT and washed again (as described above). Following the last wash,
the signal was detected using chemiluminescence (Immobilon Forte Western HRP substrate,
Merck Millipore, MA, USA) and visualized by ChemiDoc MP Imaging System (Bio-Rad
Laboratories, Hercules, CA, USA). Then, the membranes were stripped and the process
was repeated for the total HSL antibody. The dilution was 1:1000 for primary antibodies
and 1:5000 for secondary antibodies.

2.10. Statistical Analysis

Data were compared using one-way ANOVA followed by the Bonferroni post hoc.
p < 0.05 (*) was considered to be statistically significant. All experiments were repeated at
least two times.
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3. Results
3.1. Adropin Promotes Lipolysis in Rat Primary Adipocytes

First, we evaluated the effects of adropin on lipolysis in differentiated rat primary
preadipocytes. The successful differentiation of both white fat precursor cells is shown in
Figure 1. It is noteworthy that undifferentiated rat white primary preadipocytes (Figure 1a)
and 3T3-L1 cells (Figure 1c) display fibroblast-like morphologies and an absence of lipid
droplets. By contrast, rat adipocytes (Figure 1b) and 3T3-L1 cells (Figure 1d) differentiated
for 7 days have a characteristic spherical shape and contain lipid droplets. As shown in
Figure 2a,c, adropin (100 nmol/L) increased glycerol and FFA release in rat adipocytes
incubated for 3 h. By contrast, adropin failed to modulate glycerol and FFA release in rat
adipocytes exposed to adropin for 24 h (Figure 2b,d). Furthermore, the release of glycerol
(Figure 2e–f) and FFA (Figure 2g–h) increased in differentiated 3T3-L1 cells incubated with
adropin (10 and/or 100 nmol/L) for 3 and 24 h. These results show that adropin stimulates
lipolysis in rat primary adipocytes and 3T3-L1 cells. Nevertheless, the observed changes
were moderate.
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Figure 1. Images of rat adipocytes and 3T3-L1 cells. Undifferentiated rat preadipocytes (a) and
adipocytes differentiated for 7 days (b). Undifferentiated 3T3-L1 (c) and 3T3-L1 cells differentiated
for 7 days (d).

Next, we studied the effects of adropin on the mRNA expression and phosphorylation
of hormone-sensitive lipase (HSL) in rat adipocytes. As shown in Figure 3a, adropin had
no effect on Hsl mRNA expression assessed in rat adipocytes treated with adropin (10 and
100 nmol/L) for 3 h. However, adropin (100 nmol/L) promoted HSL phosphorylation in
these cells (Figure 3b,c).
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Figure 2. The effects of adropin (10 or 100 nmol/L) or vehicle (sterile distilled water) (-) on lipolysis in rat primary adipocytes
and 3T3-L1 adipocytes. The effects of adropin (10 or 100 nmol/L) on glycerol release in rat adipocytes assessed after 3 (a) or
24 h (b) of incubation. FFA release determined in rat adipocytes exposed to adropin for 3 (c) and 24 h (d). The effects of
adropin on glycerol release in 3T3-L1 cells treated with adropin for 3 (e) or 24 h (f). Secretion of FFA from 3T3-L1 incubated
in the presence of adropin for 3 (g) or 24 h (h). Results are the mean ± SEM (n = 5–6). p < 0.05 (*).
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Figure 3. The effects of adropin on Hsl mRNA expression and HSL phosphorylation in rat adipocytes. Hsl mRNA determined
in cells exposed to adropin for 3 h or vehicle (sterile distilled water) (-) (a). Phosphorylation of HSL in cells treated with
adropin (100 nmol/L) for the indicated time points (b,c). Note the presence of two bands (84 and 89 kDa) corresponding to
two HSL isoforms [21]. Results are the mean ± SEM (PCR n = 6, Western blot n = 4). p < 0.05 (*).

3.2. Adropin Inhibits Lipogenesis but Fails to Modulate Glucose Uptake in Rat
Primary Preadipocytes

As shown in Figure 4a, adropin at the concentration of 10 or 100 nmol/L slightly
reduced lipogenesis in rat primary preadipocytes. By contrast, adropin (10 and 100 nmol/L)
failed to affect glucose uptake in differentiated rat adipocytes (Figure 4b).
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3.3. Adropin Modulates Adipokine mRNA Expression

Next, we evaluated the effects of adropin on the mRNA expression of selected
adipokines, such as adiponectin, resistin and visfatin. As demonstrated in Figure 5a,b,
adropin (10 and 100 nmol/L) promoted adiponectin mRNA expression in rat preadipocytes
assessed after 3 h, but not after 24 h. By contrast, adropin (10 and 100 nmol/L) suppressed
the mRNA expression of resistin (Figure 5c,d) and visfatin (Figure 5e,f) in rat adipocytes de-
termined after 3 or 24 h of incubation. Furthermore, an increased expression of adiponectin
mRNA was detected in 3T3-L1 exposed to adropin (10 and 100 nmol/L) for 3 or 24 h
(Figure 5g,h). In 3T3-L1 cells, adropin (100 nmol/L) downregulated resistin (Figure 5i,j)
and visfatin (Figure 5k,l) mRNA expression after 24 h, but not after 3 h. These results show
that adropin promotes adiponectin expression but suppresses the expression of resistin
and visfatin in rat adipocytes and 3T3-L1 cells.
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Figure 5. Effects of adropin on mRNA expression of adiponectin, resistin and visfatin in rat adipocytes
and 3T3-L1 cells. Expression of adiponectin mRNA in rat adipocytes treated with adropin or vehicle
(sterile distilled water) (-) for 3 (a) or 24 h (b). Expression of resistin mRNA in rat adipocytes treated
with adropin for 3 (c) or 24 h (d). The mRNA levels of visfatin assessed in rat adipocytes incubated in
the presence of adropin for 3 (e) or 24 h (f). Expression of adiponectin mRNA in 3T3-L1 cells treated
with adropin for 3 (g) or 24 h (h). Resistin mRNA expression in 3T3-L1 cells treated with adropin for
3 (i) or 24 h (j). Visfatin mRNA levels in 3T3-L1 cells determined in cells exposed to adropin for 3 (k)
or 24 h (l). Results are the mean ± SEM (n = 6). p < 0.05 (*).

4. Discussion

In this study, we report that adropin modulates lipid metabolism and the mRNA
expression of adiponectin, resistin and visfatin in mature white fat rodent cells. Firstly,
we found that acting on differentiated rat adipocytes and 3T3-L1 cells, adropin slightly
promotes the secretion of glycerol and FFA, the hallmarks of lipolysis [22]. In our previous
study, we found that adropin is able to downregulate the differentiation of white and
brown rodent preadipocytes into mature fat cells [17,23]. Importantly, the suppressive
effect on the differentiation of both types of preadipocytes was accompanied by lower
intracellular lipid content, suggesting that adropin may be involved in controlling lipid
metabolism. Consistently, other studies reported that adropin is able to reduce lipogenic
gene mRNA expression, such as Pparγ, Scd1 and Fas in white adipose tissue [1]. Therefore,
these results suggest that adropin may affect intracellular lipid content by the suppression
of lipid accumulation during adipogenic differentiation and by promoting the lipolytic
activity of white mature adipocytes.

The regulation of lipolysis in white adipocytes is complex, and it is modulated by
numerous metabolic, hormonal and environmental signals [24]. Nevertheless, there is
convincing evidence that fat mobilization is strongly modulated by HSL [24,25]. Therefore,
since we observed that adropin moderately promotes lipolysis in adipocytes, we assessed
the effect of this peptide on the mRNA expression and phosphorylation of HSL. Our data
indicate that adropin failed to affect Hsl mRNA levels but enhanced the phosphorylation
of HSL at serine 563. It is worth noting that the phosphorylation of HSL at serine 563 is
promoted by lipolysis-inducing factors [19,26–28]. These results provide evidence that
adropin may modulate lipolysis to a slight extend by activating HSL in white adipocytes.

In addition to lipolysis, intracellular fat content in adipocytes is modulated by other
processes, such as lipid synthesis termed as lipogenesis [29]. Therefore, to study the role of
adropin in lipid metabolism in more detailed fashion, we evaluated the effects of adropin on
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glucose incorporation into lipids as a surrogate marker of lipogenesis [30]. Here, we found
that by acting on white rat adipocytes, adropin slightly decreased the conversion of glucose
into FFA. Thus, these results show that adropin moderately suppresses the synthesis of
lipids de novo.

In adipose tissue, lipogenesis depends upon the availability of carbohydrates in
circulation, as well as their uptake by adipocytes [31]. Therefore, we studied the ability of
adropin to modulate glucose uptake in differentiated rat adipocytes. Adropin had no effect
on glucose transport in rat adipocytes. Overall, these results collectively demonstrate that
adropin may reduce intracellular lipid storage in adipocytes by promoting lipolysis and by
suppressing de novo lipid synthesis. These results were moderate; however, these in vitro
findings are consistent with the results of in vivo experiments, showing that adropin
protects from adiposity [1,10].

Next, we evaluated the influence of adropin on the mRNA expression of selected
adipokines involved in controlling energy homeostasis and metabolism, such as adiponectin,
resistin and visfatin [32,33]. We found that adropin promoted the mRNA expression of
adiponectin in rat adipocytes as well as in differentiated 3T3-L1 cells. In contrast, adropin
downregulated the mRNA expression of resistin and visfatin in both types of adipocytes.

It is worth to note that adiponectin is able to improve insulin sensitivity [34], which
resembles the therapeutic effects of adropin in animal models of diet-induced obesity [35].
Nevertheless, it remains to be investigated whether the beneficial effects of adropin on
insulin sensitivity, reported in obese animals, are dependent upon adropin-modulated
adiponectin expression.

By contrast, it was found that resistin impairs glucose tolerance and insulin action in
rodents [36]. Furthermore, human and animal studies suggested that resistin contributes
to inflammation [37–39]. Similarly, visfatin was found to induce inflammation and insulin
resistance in hepatocytes [40]. Therefore, these two adipokines are instead considered as
proinflammatory signals. Since adropin suppresses the expression of these adipokines,
adropin can be considered as an anti-inflammatory factor (extensively reviewed in [41]).
For instance, adropin displays anti-inflammatory properties in a liver in a rat model of hy-
perlipidemia [42]. A negative correlation between circulating adropin and proinflammatory
signals, such as TNFα or IL-6, was reported in patients with obstructive sleep apnea [43].
Furthermore, a recent study showed that adropin is able to attenuate neuroinflammation
in rats [44]. Thus, since inflammation leads to obesity-associated abnormalities [45], it is
rational to speculate that the suppression of proinflammatory cytokine production by
adropin may at least partially contribute to the attenuation of metabolic derangements
reported in animal models of insulin resistance and obesity. Nevertheless, more in vivo
experiments are needed to confirm this speculation.

Our study has several limitations. First of all, we did not elucidate the mechanism
conferring the activation of HSL or lipolysis by adropin and its putative receptor GPR19.
However, it was found that in tilapia hepatocytes, adropin promotes LPL expression via a
cAMP/PKA-dependent mechanism [46], which was also implicated in the activation of
HSL, and lipolysis in white adipocytes [47]. Furthermore, it remains to be investigated
whether changes in the expression of adipokines are accompanied by changes in protein
production and/or secretion in vitro or in vivo.

5. Conclusions

In summary, we found that by acting on white rodent adipocytes, adropin slightly
stimulates lipolysis while suppressing de novo lipid synthesis. However, these effects
were moderate. Furthermore, adropin stimulates the expression of adiponectin; however,
it downregulates the expression of resistin and visfatin (Figure 6). Overall, these results
show that adropin may modulate lipid metabolism and endocrine function in white adipose
tissue in vitro.
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