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Abstract: Potato is regarded as drought sensitive and most vulnerable to climate changes. Its
cultivation in drought prone regions or under conditions of more frequent drought periods, especially
in subtropical areas, requires intensive research to improve drought tolerance in order to guarantee
high yields under limited water supplies. A candidate gene approach was used to develop functional
simple sequence repeat (SSR) markers for association studies in potato with the aim to enhance
breeding for drought tolerance. SSR primer combinations, mostly surrounding interrupted complex
and compound repeats, were derived from 103 candidate genes for drought tolerance. Validation
of the SSRs was performed in an association panel representing 34 mainly starch potato cultivars.
Seventy-five out of 154 SSR primer combinations (49%) resulted in polymorphic, highly reproducible
banding patterns with polymorphic information content (PIC) values between 0.11 and 0.90. Five SSR
markers identified allelic differences between the potato cultivars that showed significant associations
with drought sensitivity. In all cases, the group of drought-sensitive cultivars showed predominantly
an additional allele, indicating that selection against these alleles by marker-assisted breeding might
confer drought tolerance. Further studies of these differences in the candidate genes will elucidate
their role for an improved performance of potatoes under water-limited conditions.

Keywords: potato; Solanum tuberosum; drought tolerance; microsatellite; candidate gene; aldehyde
dehydrogenase; protein phosphatase 2C; 1-aminocyclopropane-1-carboxylate synthase; ethylene
responsive transcription factor; poly(ADP-ribose) glycohydrolase

1. Introduction

Drought has become the predominant abiotic stress and major yield limiting factor
in crops in the past years [1–3]. Severe implications for food production have been ob-
served [4–6] confronting plant breeding with the challenge of securing food supplies at a
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global level under these changing growth conditions. As an effect, research into drought
tolerance mechanisms has been intensified in most important crops, such as maize [7–9],
wheat [2,10], and rice [11–13]. Drought tolerance involves coordination of heavily interwo-
ven networks of biosynthesis and signaling pathways of phytohormones such as abscisic
acid (ABA), ethylene, jasmonate and the production of osmoprotective compounds such
as proline, glycine betaine and trehalose [14]. Numerous transcription factors like ABA-
responsive element (ABRE) binding proteins, dehydration responsive element binding
(DREB) proteins, and ethylene response factors (ERFs) were identified as major players in
controlling the expression of genes involved in drought response in plants [15–17].

As a temperate-zone crop with a shallow active root zone, potato is sensitive to
drought [18,19] and heavy yield losses are predicted based on climate change progno-
sis [20–22]. Morphological and physiological traits such as shoot height, leaf size, number
of leaves, photosynthetic rate, biomass as well as tuber yield are affected by water short-
age [23]. Damage caused by water deficit is dependent on the developmental stage, the
duration and the intensity of the drought period [18,24]. Potato tuber bulking stage (early
stress) is the most critical phase with regard to water demands and an inadequate water
supply can severely affect tuber yield and tuber quality [18,25]. Evaluation of marketable
tuber yield in a panel of 103 European potato cultivars with different maturity identified
cultivars with better performance under non-irrigated conditions and pointed at a single
nucleotide polymorphism (SNP) PotVar0030768 from the 14 Infinium SNP marker array to
be significantly associated with this trait [26]. Potato cultivars with a higher root to shoot
ratio due to deeper roots show a better performance under drought conditions [27]. Change
of plant morphology towards small, open stem-type canopies combined with shallow but
dense root systems may be an interesting approach for improving drought tolerance in
potato [28].

Different systems have been used to study drought stress in potato: field trials (ir-
rigated and non-irrigated), rain-out shelters and/or trials under fully controlled condi-
tions [29–31] as well as in vitro systems using proxies, such as sorbitol or polyethylene
glycol [32–34]. Drought stress indices such as the stress susceptibility index (SSI) [35], the
stress tolerance index (STI) or the geometric mean productivity (GMP) [36] have been
successfully applied to define stress levels in experimental designs. Using an artificial data
set, a new drought stress index calculated as deviation of the relative starch yield under
drought and control conditions from the experimental median (DRYM) outperformed
the other three stress indices in the ability to differentiate between drought sensitive and
drought tolerant potato cultivars detached from the yield potential [24].

Transcriptome analyses identified differentially upregulated drought response
genes involving ABA and ethylene signaling transduction like protein phosphatase 2C
(PP2C), homolog of abscisic acid receptor PYL4 (PYRABACTIN RESISTANCE-LIKE 4),
1-aminocyclopropane-1-carboxylate oxidase (ACO) and ethylene responsive transcrip-
tion factors in potato [19,37–39]. Moreover, expansin and genes involved in osmotic
adjustment and protection such as delta-1-pyrroline-5-carboxylate synthase (P5CS),
galactinol synthase, inositol-3-phosphate synthase, raffinose synthase (RFS), osmotin-like
(OSML) and late embryogenesis abundant proteins (LEA) showed increased expression
levels under drought stress. Differentially expressed transcription factors including 10 gene
families such as bHLH, bZIP, ERF, HD-ZIP, MYB, NAC and WRKY represented 4.7% of
the drought responsive genes in potato [37]. Investigating drought response in stolon
tips significant differences in the expression of heat shock 70 kDa protein, aquaporins,
bidirectional sugar transporter, peroxidase and pectinesterase/pectinesterase inhibitor as
well as lipid-transfer proteins (LTP) were observed [38]. Among genes that showed the
highest induction or repression comparing drought stress response with re-watering and
control treatment were those coding for TAS14, WRKY, ERF and bHLHL transcription
factors, auxin response protein, and abscisic acid 8′-hydroxylases [39]. In addition, protein
kinases, mostly receptor-like kinases, but also kinases like mitogen-activated protein kinase
kinase (MAPKK), histidine kinases, cyclin-dependent kinases and Sucrose non-fermenting
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1-related protein kinase 2 (SnRK2) were differentially expressed under drought stress in
potato [39,40]. Comparing Gwaizda/Oberon and Taijun/Owacja as two pairs of drought
tolerant and drought sensitive potato cultivars 22 novel drought response genes were
identified [41]. For six genes (armadillo/β-catenin-like repeat-containing protein, car-
bohydrate transporter, MAPKKK 15, nitrate transporter 2.7, nonspecific LTP and serine
carboxypeptidase-like 19 protein), corresponding Arabidopsis mutants showed altered
gene expressions and improved drought tolerance [41]. Constitutive differences in gene
expression under both control and drought stress conditions have also been observed
between drought tolerant and sensitive potato cultivars [40]. These included among
others S-adenosyl-L-methionine-dependent methyltransferase superfamily, cytochrome
P450, UDP-glycosyl transferase family proteins, disease-related genes and receptor ki-
nases [40]. A random forest model allowed prediction of drought tolerance for different
potato cultivars based on eight metabolite (e.g., 2-oxo-glutaric acid, ribonic acid, galactonic
acid) and 19 transcript markers (e.g., glucosyltransferase, O-methyltransferase, extensin,
poly(ADP-ribose) glycohydrolase, lipoxygenase) with an accuracy of 82.6% [31].

Transcriptome studies in potato identified drought response genes by differential
gene expression, but have so far not distinguished between possible different alleles of
the individual genes. Potato cultivars are highly heterozygous tetraploids allowing the
presence of up to four different alleles per gene. A rapid and easy conversion of identified
drought response candidate genes into molecular markers detecting variation in these
genes will be essential for successful drought tolerance breeding. Simple sequence repeats
(SSRs), also known as microsatellites, are the most frequently used markers for genotyping
potato landraces [42]. Apart from pure forms, SSRs can also occur in complex, compound,
interrupted pure, interrupted compound and interrupted complex forms [43,44]. In potato,
SSR markers based on pure, compound and complex repeats have been successfully
developed [45–50]. A new potato genetic identity kit for fingerprinting consisting of 51 SSR
markers was finally assembled out of previously published SSR markers and new ones [51].
In addition, a genetic reference map based on SSR markers was developed [51]. Another
set of 277 SSR markers based on pure repeats was derived from the whole potato genome
sequence [43]. SSRs have been successfully applied in genetic diversity studies in potato
cultivars, landraces and germplasms [51–54], in population structure analyses of association
panels [55,56] and for the development of linkage maps for QTL analyses [47,57,58].

In this study, we present the identification of new functional SSR markers derived
from potential candidate genes for drought tolerance in potato as well as association studies
performed with these SSRs in a panel of 34 mainly starch potato cultivars, which were
ranked for drought tolerance using DRYM [24] as drought tolerance index. The approach
allowed the development of 75 new SSR markers that represent a valuable tool for mapping
and further genetic studies in potato. Five of the SSR markers detected allelic variations
in the potato cultivars that were significantly associated with drought sensitivity. Future
functional studies of these differences in the candidate genes will reveal the role in drought
tolerance. Combined application of three of these SSR markers allowed the identification
of drought-sensitive cultivars in potato.

2. Methods
2.1. Extraction of Genomic DNA from Potato

Fully developed leaves of 34 tetraploid potato cultivars (Supplementary Table S1)
were harvested from a polytunnel trial at the Max Planck Institute of Molecular Plant Phys-
iology in Potsdam. This association panel consisting of 34 mainly starch potato cultivars
was provided by German breeding companies (Böhm-Nordkartoffel-Agrarproduktion,
Strehlow; Norika Nordring-Kartoffelzucht- u. Vermehrungs-GmbH, Groß-Lüsewitz; SaKa
Pflanzenzucht, Hamburg). Genomic DNA was isolated by the protocol of Doyle and
Doyle [59].



Genes 2021, 12, 494 4 of 21

2.2. Drought Tolerance Assessment

Drought tolerance of 34 European potato cultivars was assessed based on performance
data from drought tolerance trials on three managed field sites in Germany (Max Planck
Institute of Molecular Plant Physiology Potsdam-Golm [F1, F3] and Potato Research Station
Dethlingen [F2, F5] in 2011 and 2012; Julius Kühn-Institute Groß-Lüsewitz [F4], only in
2012) as described in Sprenger et al. [24], but the field trials of 2013 were omitted. All five
investigated field trials represent early stress and corresponding watered controls, whereas
from the three omitted field trials in 2013 two field trials represented late stress scenarios.
Plants were grown from seed tubers supplied by the respective breeding companies (Sup-
plementary Table S1, [24]) and cultivated under agricultural conditions with additional
irrigation for the optimally watered control plants and without or reduced irrigation for the
drought stress treated plants (Supplementary Table S2). All treatments received additional
water from precipitation, with the exception of the drought treatment in experiment F4,
which was grown under a rain-out shelter. Plant performance was assessed based on the
tuber starch yield. Tubers were harvested and weighted at the end of the experiment and
tuber starch content was measured gravimetrically. Starch yield is the product of tuber
mass and starch content for each replicate.

Data evaluation was performed in SAS (SAS 9.3 Level 1MO, Cary, NC, USA). The
effect of cultivar and treatment on starch yield was assessed by analysis of variance with
procedure GLM. Based on the results, data from the treatment “30% Field Capacity (FC)” at
the field site Dethlingen 2011 were excluded from the analysis as they were not significantly
different from the control treatment “50% FC”. In 2012, data from treatment “30% FC” and
“no irrigation” were taken together as stress treatment. Drought tolerance was calculated
as deviation of the relative starch yield of a genotype from the median relative starch yield
of the respective experiment (DRYM) (see Equation (1)). Relative starch yield (RelSYGxEi) is
the ratio of the starch yield under drought stress divided by the average starch yield of the
respective cultivar (Gx) under control conditions in the same experiment (Ei).

DRYMGx ,Ei = RelSYGx ,Ei −median
(

RelSYEi

)
(1)

This calculation centers DRYM around zero, with drought tolerant cultivars showing
positive values and sensitive genotypes negatives values.

Analysis of covariance (ANCOVA) was performed with procedure GLM, testing
the effect of experiment and cultivar (random factors) and normalized starch yield as
covariable on DRYM. Means comparison for cultivars was performed with Ryan–Einot–
Gabriel–Welch-Test (REGWQ) that provides multiple testing corrections.

2.3. Mining for Simple Sequence Repeats (SSR) and Characterization

Genomic sequences of the candidate genes for drought tolerance were retrieved
from different databases as Phytozome (https://phytozome.jgi.doe.gov/pz/portal.html
(accessed on 27 March 2021)), EnsemblPlants ([60], http://plants.ensembl.org/index.
html (accessed on 27 March 2021)), Spud DB Potato Genomics Resource ([43], http://
potatogenomics.plantbiology.msu.edu (accessed on 27 March 2021)), Sol Genomics Net-
work (https://solgenomics.net/ (accessed on 27 March 2021)) and NCBI (https://www.
ncbi.nlm.nih.gov/ (accessed on 27 March 2021)). The retrieved sequences were then mined
for repeats using the default parameters in the program Microsatellite repeats finder (
http://insilico.ehu.es/mini_tools/microsatellites/ (accessed on 27 March 2021)). In case,
no microsatellites could be detected in the gene sequence (exons and introns), sequences
of the 5′- and 3′-UTR were studied. If still no repeats could be observed the flanking
downstream and upstream sequences were investigated for microsatellites, which were
then termed intergenic SSRs. The microsatellites are given as present in the coding strand
as this is the custom for naming repeats in coding regions [44]. Primer combinations were
then derived in sequence segments of about 240 bp around the repeat sequence using
the program Primer3 (http://bioinfo.ut.ee/primer3-0.4.0/ (accessed on 27 March 2021)).
All 154 primer combinations are given in Supplementary Table S3. The polymerase chain

https://phytozome.jgi.doe.gov/pz/portal.html
http://plants.ensembl.org/index.html
http://plants.ensembl.org/index.html
http://potatogenomics.plantbiology.msu.edu
http://potatogenomics.plantbiology.msu.edu
https://solgenomics.net/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
http://insilico.ehu.es/mini_tools/microsatellites/
http://insilico.ehu.es/mini_tools/microsatellites/
http://bioinfo.ut.ee/primer3-0.4.0/
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reaction (PCR) was performed as described in Sajer et al. [61]. However, the DNA concen-
tration was increased from 10 ng/µL to 20 ng/µL considering the heterozygous tetraploid
genetic constitution of cultivated potatoes. The PCR reaction volume was reduced to 15 µL.
By using IRD-labelled M13 primers (IRD700 and IRD800) (Biomers, Ulm, Germany) PCR
products were fluorescence labelled for the detection on the DNA Analyzer Model 4300
(LI-COR Biosciences, Lincoln, NE, USA). The newly derived SSR primer combinations were
analyzed in the association panel of 34 potato cultivars. The estimation of the polymorphic
information content (PIC) values and of the expected heterozygosity (Hexp) was performed
according to Bali et al. [52].

In order to determine the statistical significance of the banding patterns concerning
drought tolerance the Fisher’s exact test was calculated online in a case-control type study
dividing the association panel into two groups of 17 drought tolerant and 17 drought sensitive
cultivars (https://www.langsrud.com/stat/Fishertest.htm (accessed on 27 March 2021)). A
significant association was reached at a (two-sided) p value (calculated probability) < 0.05.

2.4. AFLP Analyses

The potato DNA was digested with EcoRI and MseI and ligated to EcoRI and MseI adapters
as described in Vos et al. [62]. AFLP analyses were performed based on a pre-amplification
with E01 (5′-GACTGCGTACCAATTCA-3′) and M02 (5′-GATGAGTCCTGAGTAAC-3′) as
primers. For the selective amplification, the EcoRI primers E32–E35 were combined with MseI
primers M47–M49 or M60–M62 (Supplementary Table S4). In addition, E32M50 was used. All
primer sequences and numbers were used according to http://wheat.pw.usda.gov/ggpages/
keygeneAFLPs.html (accessed on 27 March 2021) (Keygene, N.V., Wageningen, NL, USA).
IRD-labelled EcoRI primers (IRD700 and IRD800) from Biomers (Ulm, Germany) were used for
fluorescence labeling of the selective amplification products, which were separated on a DNA
Analyzer Model 4300 (LI-COR Biosciences, Lincoln, NE, USA).

2.5. Population Structure

In total, 54 linkage group specific SSR primer combinations (Supplementary Table S5)
were used to determine the population structure of the association panel, resulting in at
least four SSR primer combinations per linkage group. In addition, data from 19 AFLP
primer combinations were included to have better genome coverage (Supplementary Table
S4). The program NTSYSpc 2.2 (Numerical Taxonomy System for personal computer)
was used to identify and reveal structures in multivariate data [63]. The similarity matrix
was based on the Jaccard’s coefficient to reflect the genetic similarity of the 34 different
potato cultivars. For clustering, UPGMA (Unweighted Pair Group Method with Arithmetic
Mean) was applied to obtain a dendrogram. Mantel test was conducted, and a cophenetic
correlation coefficient computed, which allowed a statement regarding the reliability of the
UPGMA-dendrogram in representing the similarity matrix.

3. Results
3.1. Characterization of Functional SSR Markers Derived from Candidate Genes for Drought
Tolerance in Potato

In total, 154 SSR primer combinations were derived from 103 candidate genes for
drought tolerance (Figure 1; Supplementary Table S3). Eighty of the candidate genes
were taken from previous publications (reviewed in Krannich et al. [14]) and 23 were
identified in a drought-related transcriptome study as top transcript markers for drought
tolerance prediction (Supplementary Table S6, [39]). Some candidate genes are involved in
biosynthesis and signaling pathways of plant hormones like ethylene and ABA as well as
the biosynthesis of osmolytes and starch (Figure 1).

https://www.langsrud.com/stat/Fishertest.htm
http://wheat.pw.usda.gov/ggpages/keygeneAFLPs.html
http://wheat.pw.usda.gov/ggpages/keygeneAFLPs.html
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acid synthase, ALDH: Aldehyde dehydrogenase, APX: Ascorbate peroxidase, APY: Apyrase, ARF: Auxin response factor,
BA: β-amylase, BDGEH: β-D-glucan exohydrolase, BADH: Betaine aldehyde dehydrogenase, BSDRP4: Bacterial spot
disease resistance protein 4, BEAF: Boundary element associated factor, BED: BEAF and DREF, CHO: Carbohydrate,
CTR1K: Constitutive Triple Response1 kinase, DBP: DNA binding protein, P5CS: Delta 1-pyrroline-5-carboxylate synthetase,
DREB: Dehydration-Responsive Element-Binding, DREF: DNA replication-related element factor, EBF1: EIN3-binding
F-box protein 1, EIN: Ethylene insensitive, EIL: Ethylene-Insensitive3-Like, EREBP: Ethylene-responsive element-binding
protein, EREBPC2: Ethylene responsive element binding protein C2, ERF: Ethylene response factor, ERS 1: Ethylene
response sensor 1, ET: Ethylene, ETO1: Ethylene-overproduction protein 1, ETP: EIN2 targeting protein, ETR1: Ethylene
receptor 1, ETRHOM: Ethylene receptor homolog, EIX: Ethylene-inducing xylanase, FLS 2: Flagellin-sensing 2, GA3ox:
Gibberellin 3-oxidase, GA: Gibberellin, GB: Glycine betaine, GR: Glutathione reductase, GST: Glutathione-S-transferase,
GT: Glucosyltransferase, JA: Jasmonic acid, JA2: Jasmonic acid 2, JERF1: Jasmonate and Ethylene Response Factor 1, KAO:
Ent-kaurenoic acid oxidase, KIN: Kinase, LEA5: Late embryogenesis abundant 5, LOX: Lipoxygenase, LRR: Leucine-rich
repeat, MetRS: Methionyl-tRNA synthetase, MOCOS: Molybdenum Cofactor sulfurase, MRP-ABC: Multidrug resistance
protein ATP binding cassette, NAM: No apical meristem, NBS: Nucleotide binding site, NI: Neutral invertase, NCED:
9-Cis-epoxycarotenoid dioxygenase, NDPK2: Nucleoside diphosphate protein kinase 2, P5CR: Pyrroline-5-carboxylate
reductase, P5CS: Pyrroline-5-carboxylate synthase, PARG: Poly (ADP-ribose) glycohydrolase, PP2C: Protein phosphatase
2C, PRO: Proline, PRODH: Proline dehydrogenase, PYL4: Pyrabactin resistance-like 4, RPK: Receptor protein kinase,
SBT4B: subtilase 4B, SCR: SCARECROW, SIPP: Soluble inorganic pyrophosphatase, SLSG6: S-locus specific glycoprotein
S6, SN-1: Snaking-1, SOD: Superoxide dismutase, St: Solanum tuberosum, STPK: Serine/threonine protein kinase, TIR:
Toll/interleukin-1 receptor-like protein, TNL-DR: TIR-NBS-LRR disease resistance, TPS1: Trehalose-6-phosphate synthase 1,
TRE: Trehalose, UGGT: UDP-glucose glycosyltransferase, UGPase: UDP-glucose-1-phosphate uridylyltransferase, VPSP:
Vacuolar protein sorting protein, WRKY: WRKY transcription factor, ZEP: Zeaxanthin epoxidase
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Other potential candidate genes for drought tolerance were transcription factors,
kinases/phosphatases and transporters. Another group covered the area of plant develop-
ment, especially tuber formation. In addition, genes encoding proteins involved in cell wall
formation, defense, protective cellular structures, protein modification and DNA repair as
well as detoxification were included.

Most of the detected microsatellites showed an interrupted complex structure of the
type (repeats)k X (repeats)n(repeats)m (42%) or in 18% a compound structure such as
(repeats)n (repeats)m, where the repeats were di-, tri-, tetra-, penta- and hexanucleotide
motifs, the number of repeats n + m or k + n+m added up to at least six and the number of
nucleotides X between the repeats did not exceed four, with nine exceptions (Figure 2A,
Supplementary Table S3). Most of the microsatellite repeats were located in intron regions
(44%), followed by 28% in exon regions. A lower number of SSRs was present in 5′-UTRs
(13%), in 3′-UTRs (8%), and in intergenic regions (7%) (Figure 2a). From 154 microsatellites
tested and optimized in an association panel of 34 tetraploid starch potato cultivars, 75 SSR
primer combinations (49%) gave reproducible polymorphic banding patterns (Supplemen-
tary Table S7). For these 75 SSR markers, a total of 278 alleles were observed resulting in
an average of 3.7 alleles per SSR marker. The minority of these polymorphic SSR markers
represented complex repeats (9%) and pure repeats (10%), followed by interrupted pure
repeats (12%) (Figure 2b). Compound (17%), interrupted compound (20%) and interrupted
complex (32%) repeats were the most prominent SSR types.
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Only seven candidate genes for drought tolerance (PGSC0003DMG400021476,
PGSC0003DMG400000284, PGSC0003DMG400021426, PGSC0003DMG400009719, PGSC0003
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DMG400021651, PGSC0003DMG402026767, PGSC0003DMG400014417) contained pure re-
peats. These repeats were (AT)n, (GA)n, (ACT)n, (TTA)n and (CGG)n. In three of the
candidate genes, 1-aminocyclopropane-1-carboxylate synthase 4 (PGSC0003DMG400021651,
([ACT]n], delta-1-pyrroline-5-carboxylate synthetase (PGSC0003DMG402026767; [TTA]n)
and ethylene response factor ERF12 (PGSC0003DMG400014417; [CGG]n), SSRs had been
previously described [43], but had not been screened with regard to drought tolerance. The
polymorphic information content (PIC) for the 75 SSR markers ranged between 0.11 and 0.90
and for the expected heterozygosity (He) between 0.11 and 0.91 (Supplementary Table S7).
We also tested exceptions from X > 4 in nine cases by allowing X = 5 (HRO_BDGEH_1A,
HRO_BDGEH_1B, HRO_BFNLRP_2C, HRO_GLUCT_7B, HRO_STPKPT_1A) or X = 6
(HRO_ETOP1_3, HRO_ETP2_2, HRO_ETR2_1, HRO_GLUCT_7), because there were no
other possibilities for exploring microsatellites in these genes. In four cases, this resulted
also in polymorphic banding patterns and might be considered as a possible option. Poly-
morphic SSR markers were mostly derived from intron sequences (45%), but also to a
considerable percentage from 5′- and 3′-untranslated regions (29%), where changes
in the repeat number might have an influence on gene expression. Only a low per-
centage of polymorphic SSR markers (15%) were obtained from exon regions as in
case of PP2C (PGSC0003DMG400011321) and ethylene responsive transcription factor
(PGSC0003DMG400002185). Here a change in the number of repeats will lead to changes
in the encoded proteins. A single locus was amplified by nearly all developed SSR primer
combinations, resulting in 1-4 bands for each potato cultivar. The exception was the primer
combination for aldehyde dehydrogenase (ALDH), which detected at least two loci. All
12 chromosomes carried candidate genes for drought tolerance that allowed development
of functional SSR markers. A clustering of candidate genes was observed in the distal parts
of linkage group (LG)1, LG2, LG5 and LG6 as well as the proximal parts of LG1 and LG12
(Figure 3).
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3.2. Ranking of the 34 Starch Potato Cultivars According to Drought Tolerance

Drought tolerance of 34 potato cultivars (Supplementary Table S1) was assessed from
the tuber starch yield obtained under optimal and reduced water supply in five field
experiments. These experiments were performed for two years (2011 and 2012) on three
sites (details see [24]). Analysis of covariance indicated that starch yield was significantly
affected by the drought treatment in all experiments [24]. The drought tolerance index
DRYM was calculated as the deviation of the relative starch yield from the experimental
median of the starch yield (Figure 4). Drought tolerant potato cultivars show positive
DRYM values, whereas drought sensitive genotypes have negative values. Analysis of
covariance indicated a significant effect of cultivar on DRYM (p < 0.0001), suggesting a
significant genetic variance of drought tolerance within the population. The means test (see
bars at the bottom of Figure 4) indicates a more or less continuous variation in tolerance.
Tolerance was significantly higher (α = 0.1) in the cultivars with the ranks 1 to 14 compared
to those of rank 20 to 34. Subsequent comparison of means (REGWQ-Test, α = 0.1) yielded
the ranking shown in Supplementary Table S1.
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Figure 4. Ranking of the 34 potato varieties of the association panel according to the drought tolerance. Drought tolerance
index (DRYM) of 34 potato varieties against rank of cultivar according to drought tolerance (DRYM) (1 most drought
tolerant, 34 most sensitive). The bars at the bottom of the figure indicate the grouping according to the means comparison
(REGWQ, α = 0.1). Cultivars that are underlined by the same bar are not significantly different in DRYM, e.g., 1 (most
tolerant group) is different from 2 to 4 that belong into the second most tolerant group.

3.3. Population Structure of the Investigated 34 Potato Cultivars

The 34 potato cultivars were analyzed with 19 AFLP primer combinations (Supple-
mentary Table S4) and 54 linkage group-specific SSR primers (Supplementary Table S5).
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The population structure shown in an UPGMA dendrogram was based on the Jaccard’s
coefficient (Supplementary Figure S1). The Mantel test resulted in a cophenetic correlation
coefficient of r = 0.62, indicating a moderate fit. No clustering of the potato cultivars was
observed that would lead to a false association of markers regarding drought tolerance.

3.4. Identification of SSR Markers Associated with Drought Tolerance

Association studies applying a case-control type approach were performed within the
association panel of 34 potato cultivars, which had been previously ranked according to
their drought tolerance using DRYM as drought tolerance index (1t = most tolerant and
34t = most sensitive) (Figure 4, Supplementary Table S1). After splitting the panel into two
groups, one of drought tolerant (1t–17t) and one of drought-sensitive (18t–34t) cultivars,
all bands were tested for association within these two groups using the Fisher’s Exact test
(Supplementary Table S8). This association study allowed the identification of differences
in five SSR markers significantly associated with drought sensitivity (Figure 5).
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The first primer combination HRO_ACS3 was derived from the 1-aminocyclopro-
pane-1-carboxylate synthase 3 (ACS3, PGSC0003DMG400021426, located on LG2) repre-
senting a rate-limiting step of the ethylene biosynthesis. This primer combination ampli-
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Figure 5. SSR markers associated with drought sensitivity in an association panel of 34 mostly starch potato varieties ranked
according to drought tolerance (1t most drought tolerant, 34t most sensitive). (a) SSR primer combination HRO_ACS3;
(b) SSR primer combination HRO-PP2C_1; (c) SSR primer combination HRO_ALDH (only relevant bands are marked);
(d) SSR primer combination HRO_ETRTF_5a; (e) SSR primer combination HRO_PARG_1A; M: 50–350 IRD-Marker; Marker
bands are alphabetically labelled starting with the largest fragment. Bands associated with drought sensitivity are marked
with asterisks.
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The first primer combination HRO_ACS3 was derived from the 1-aminocyclopropane-
1-carboxylate synthase 3 (ACS3, PGSC0003DMG400021426, located on LG2) representing
a rate-limiting step of the ethylene biosynthesis. This primer combination amplified 1–4
alleles in the different cultivars (Figure 5a). The band of 173 bp (HRO_ACS3_D) was
significantly associated with drought sensitivity (p = 0.0366). This band was present in
13 drought sensitive cultivars. In addition, most of the more drought tolerant cultivars
showed only one to two bands, whereas the more sensitive cultivars tended to display two
to three alleles (Table 1).

The second primer combination HRO_PP2C amplified two alleles, a monomorphic
band of 205 bp and a smaller band of 196 bp that was predominantly present in the drought
sensitive group (HRO_PP2C_1_B, p = 0.0366) (Figure 5b). This SSR detected differences in
the gene encoding a protein phosphatase 2C (PP2C, PGSC0003DMG400011321, located on
LG1) as part of the ABA signaling pathway.

The third primer combination HRO_ALDH was derived from the aldehyde dehy-
drogenase (ALDH, PGSC0003DMG400034597, located on LG9). This primer combination
amplified more than one locus showing on average 6.4 bands per cultivar. One band of
184 bp (HRO_ALDH_H, p = 0.0366) was significantly associated with drought sensitivity, a
second one of 172 bp (HRO_ALDH_N, p = 0.0854) was only weakly associated (Figure 5c),
but proved to be important for further analyses.

With the fourth primer combination HRO_ETRTF_5a derived from an ethylene respon-
sive transcription factor (ERF, PGSC0003DMG400002185, located on LG 11) two to four
alleles were amplified (Figure 5d). Again, the more drought sensitive cultivars showed a
more complex pattern. The band HRO_ETRTF_5a_D (217 bp) was associated with drought
sensitivity (p = 0.0366). The band was present in 11 drought sensitive cultivars, but only in
four tolerant cultivars.

The last SSR marker (HRO_PARG_1A) was derived from a gene encoding a poly
(ADP-ribose) glycohydrolase (PARG, PGSC0003DMG400029361, located on LG 12), which
is involved in DNA repair. The primers amplified one to two alleles per cultivar with the
lower band of 147 bp showing association with drought sensitivity (p = 0.0324) (Figure 5e).

The banding pattern of all five candidate genes was characterized by an additional
allele in the group of drought sensitive cultivars, which was significantly associated with
drought sensitivity indicating that in all cases these bands might represent alleles inferring
less drought tolerance (Table 2).

3.5. Selection Using Functional SSR Markers Associated with Drought Tolerance

The banding pattern obtained by 75 polymorphic SSR primer combinations derived
from candidate genes for drought tolerance was used to estimate the genetic similarity
among 34 potato cultivars based on the Jaccard’s coefficient (Figure 6). The clustering of
the 34 potato cultivars as shown in the UPGMA dendrogram did not reveal any grouping
corresponding to drought tolerance. However, when the SSR markers HRO_ACS3_D,
HRO_PP2C_B, HRO_ALDH_H and HRO_ALDH_N associated with drought sensitivity
were used for marker-assisted selection, 15 out of 17 drought-sensitive cultivars were
correctly identified. Only 33t and 25t were not detected as drought-sensitive and only
16t was falsely identified as drought sensitive, even though the ranking put this cultivar
in the drought tolerant group. The marker-assisted selection was performed in the way
that a cultivar was considered drought-sensitive if both bands, HRO_ACS3_D as well as
HRO_PP2C_B, were present or if the cultivar was characterized by the presence of both
bands H and N produced by the primer combination HRO_ALDH (Figure 5). The band
HRO_ALDH_N had only been weakly associated with drought tolerance using the Fisher’s
exact test. However, it proved to be essential for the selection of drought sensitive cultivars
using the three primer combinations HRO_ACS3, HRO_PP2C and HRO_ALDH.
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Table 1. Scoring pattern of SSR markers significantly associated with drought tolerance in potato.

Primer\Cultivar 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

HRO_ACS3_D 0 0 1 0 1 1 1 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0
HRO_PP2C_1_B 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 1 0 0
HRO_ALDH_H 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1 1 1 1 1 0 1 0 1

HRO_ETRTF_5a_D 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0
HRO_PARGH_1A_B 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 1

Table 2. SSR Markers significantly associated with drought tolerance in potato.

SSR Marker Size LG Gene ID PGSC0003 Transcript ID
PGSC0003 Gene Annotation p-Value

HRO_ACS3_D 173 bp LG 2 DMG400021426 DMT400055203 1-aminocyclopropane-1-
carboxylate synthase 3 p = 0.0366

HRO_PP2C_1_B 205 bp LG 1 DMG400011321 DMT400029441 protein phosphatase 2C p = 0.0366

HRO_ALDH_H 184 bp LG 9 DMG400034597 DMT400085026 aldehyde dehydrogenase p = 0.0366

HRO_ETRTF_5a_D 217 bp LG 11 DMG400002185 DMT400005585 ethylene responsive
transcription factor p = 0.0366

HRO_PARG_1A_B 147 bp LG 12 DMG400029361 DMT400075512 poly (ADP-ribose)
glycohydrolase p = 0.0324
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Figure 6. Clustering of the 34 potato varieties based on the genetic similarity obtained by SSR analyses and selection
with SSR markers. (a) UPGMA dendrogram of the 34 potato varieties (1t = most drought tolerant, 34t = most sensitive)
based on all 75 SSR primer combinations derived from candidate genes for drought tolerance, Mantel coefficient r = 0.62;
(b) Selection by applying four SSR markers associated with drought sensitivity. Black box= band is present, grey box= band
is absent. The varieties are ordered according to the UPGMA dendrogram. Boxed varieties are selected by the presence of
two marker bands either in the combination HRO_ACS3_D and HRO_PP2C_1_B or the combination HRO_ALDH_H and
HRO-ALDH_N. Black Arrow head = falsely negative selected; Grey arrow head = falsely positive selected.

The alleles for drought sensitivity detected by the three SSR primer combinations
should be eliminated by breeding to obtain more drought tolerant cultivars. Including the
two additional primer combinations HRO_ETRTF_5a and HRO_PARG_1A in the selection
procedure did not improve the selection efficiency, even though most drought sensitive
cultivars (14) contained at least one of these negative alleles, six even both negative alleles
detectable by these two SSR primer combinations (Supplementary Table S8).

4. Discussion
4.1. Development of Drought Tolerance Associated SSR Markers for Potato

In the present study, 75 functional SSR markers were developed starting from
103 potential candidate genes for drought tolerance derived from own transcriptome
analyses [39] and literature. SSR markers derived from five candidate genes (aldehyde
dehydrogenase, PGSC0003DMG400034597; 1-aminocyclopropane-1-carboxylate syn-
thase 3, PGSC0003DMG400021426; ethylene responsive transcription factor, PGSC0003
DMG400002185; poly (ADP-ribose) glycohydrolase, PGSC0003DMG 400029361; pro-
tein phosphatase 2C, PGSC0003DMG400011321) were significantly associated with
drought sensitivity. These five SSR-markers identified allelic differences between
potato cultivars that are crucial for sensitivity towards drought. Selection for drought
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tolerance using three of the significantly associated SSR markers allowed in 91 % of
the cases a correct grouping into drought tolerant or drought sensitive potato cultivars.
Now, it would be interesting to test these SSR markers in a larger international potato
association panel.

Our approach to derive SSR markers from candidate genes for drought tolerance made
mostly use of the presence of interrupted pure, compound, interrupted compound, complex
and interrupted complex repeats. This strategy differed from previous studies, which
concentrated mostly on the use of pure as well as compound and complex SSRs [45–51].
Our results showed that the use of SSR markers derived from potential candidate genes
worked well and can be used to detect genetic diversity in potato cultivars. In addition,
the number of repeats was lowered from eight to six as compared to previous studies,
which still resulted in highly polymorphic banding patterns. Comparing the locations
for all derived SSR primer combinations versus only the polymorphic SSR markers the
percentage of polymorphic SSR markers located in exon regions was considerably reduced
to only 15% compared to 28% for all SSR primer combinations. On the other hand, the
percentages of polymorphic SSR markers derived from 5′-UTR, 3′-UTR and intergenic
regions and were slightly increased with 18%, 11% and 11%, respectively.

4.2. Role of PP2C as Part of the ABA Signaling Pathway

Our SSR analyses showed a significant association of drought sensitivity with allelic
variations in PP2C (PGSC0003DMG400011321) located on LG1. The interrupted complex
SSR (GAA)kA(AT)mCAT(GAT)n used for detection is located in exon 3 of the gene. Changes
in the repeat numbers will have an effect on the encoded protein. PP2Cs are known drought
responsive genes in potato. Induction of expression was shown for drought exposed
moderately drought tolerant native Andean potato clones [19]. In addition, comparing
transcriptome profiles of drought treated and re-watered plants of the potato strain Ning-
shu4 also revealed a contrasting expression pattern for PP2C 30 (PGSC0003DMG400027174,
located on LG5) [38]. In diploid potato, a different PP2C (PGSC0003DMG400027196, also
located on LG5) was identified as a central point in the gene regulatory network [64].
PP2Cs are part of the ABA signaling pathway, which consists of three major players: ABA
receptors, PP2C and SnRK2 [65]. The ABA signaling pathway leads to phosphorylation
of SnRK2 by inhibiting dephosphorylation by PP2C in the presence of ABA. Auto- and
trans-activation of SnRK2 then results in phosphorylation and activation of downstream
transcription factors [66]. SnRK2 modulates gene expression by targeting basic-zipper
class transcription factors (ABI5) for arrest of seed germination, but also phosphorylates
SLAC1 (slow anion channel-associated 1) to induce stomatal closure under limiting water
conditions [67–69].

Arabidopsis mutants of PP2C like ABI1 (ABA insensitive 1) and its homolog ABI2
revealed PP2C role as negative regulator of ABA trigged responses such as inhibition of
germination, root elongation, and induction of stomatal closure [70]. Furthermore, PP2C
mutant sag113 (senescence associated gene 113) showed higher ABA sensitivity for stomatal
movement and reduced leaf senescence [71]. In wheat, a genome-wide study of the TaPP2C
gene family identified 257 homoeologs of 95 TaPP2C genes distributed over the A, B and
D sub genomes [72]. Phylogenetic analyses separated the TaPP2C genes into 13 groups
A-M. TaPP2Cs of group A were upregulated by ABA treatment and showed interaction
with TaSnRK2.1 and TaSnRK2.2. Overexpression of TaPP2C135 in Arabidopsis increased
tolerance of germinating seedlings towards ABA [72].

Enhanced ABA synthesis during drought stress induces signaling cascades that acti-
vate plant stress responses and regulate the water status of plants mainly through manage-
ment of stomatal aperture and maintenance of root growth [73]. Therefore, allelic variations
in PP2C (PGSC0003DMG400011321) as part of the ABA signaling pathway could play a
major role in drought tolerance in potato and further functional studies of the different
allelic compositions are required to better understand the causes behind drought tolerance
in potato.
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4.3. Damage Control of Drought Induced Reactive Oxygen

The production of reactive oxygen species (ROS) under drought stress leads to ox-
idative stress and an excessive accumulation of oxidized toxic compounds such as alde-
hydes [74]. ALDHs act as aldehyde scavengers by irreversibly oxidizing aldehydes into
the respective carboxylic acids [75]. Our SSR analyses in potato showed that one allelic
difference in ALDH (PGSC0003DMG400034597, LG9) was significantly associated with
drought sensitivity and another one also relevant for selection. This ALDH demonstrates
the highest similarity in Arabidopsis thaliana to AT1G54100 (84.1% similarity according to
Spud DB), which is annotated as ALDH family 7 member B4. In A. thaliana, members
of ALDH gene families 3 and 7 (ALDH3I1 and ALDH7B4), show the strongest transcrip-
tional activation under osmotic stress [76]. Cytosolic overexpression of ALDH7B4 confers
enhanced detoxification and turgor response, demonstrating its importance under stress
conditions [77]. As ALDH7B4 plays a major role in drought tolerance in A. thaliana, associ-
ation of variation in this enzyme with drought sensitivity in potato suggests a functional
relevance, which needs to be further investigated. In addition, the upregulation of this
ALDH (PGSC0003DMG400034597) under water-limited conditions in greenhouse and field
trials supports its importance in drought stress response in potato [39].

4.4. Damage Repair of DNA under Drought

Drought stress can lead to DNA lesions including double strand breaks (DSBs) as
a major form [78–80]. DNA damage surveillance and repair processes have to recruit
a number of repair proteins including poly (ADP-ribose) polymerases (PARPs), which
recognize DNA SSBs and DSBs, assemble DNA repair complexes and auto-PARylate [81,82].
As the PARylation process is reversible, ADP-ribose chains are eventually hydrolyzed by the
enzyme poly (ADP-ribose) glycohydrolase (PARG) [83]. As DNA damage repair is required
for recovery of plants from drought stress, our SSR results implicating a role of allelic
variation in PARG (PGSC0003DMG400029361, LG12) with drought tolerance in potato
seem relevant. PARG (PGSC0003DMG400029361) was also used as one of the 27 predictors
in forecasting drought tolerant potato based on transcripts and metabolites [31].

The PARG gene (PGSC0003DMG400029361) in potato shows the highest similarity
on protein level to PARG1 (AT2G31870) (73.2% similarity according to Spud DB), one
of two PARG genes present in tandem array on chromosome 2 in Arabidopsis [84]. An
Arabidopsis parg1 mutant exhibits loss of drought, osmotic, and oxidative stress tolerance,
coupled with enhanced cell damage and loss of stomatal closure under drought stress [85].

4.5. Role of ACC Synthase and Ethylene Response Factors in Drought Tolerance

Ethylene represents a small two carbon gaseous hormone, which is involved in abiotic
and biotic stress reactions, seed germination, fruit ripening, cell elongation, cell fate, leaf abscis-
sion and senescence [86]. Synthesis of ethylene involves two enzymes, 1-aminocyclopropane-
1-carboxylic acid (ACC) synthase (ACS) and ACC-oxidase (ACO) [87,88].

For potato, we identified allelic differences in ACC synthase 3 (StACS3, PGSC0003DM
G400021426, located on LG2) to be significantly associated with drought sensitivity. StACS3
shows the highest similarity to the Arabidopsis homolog AtACS8 (85% similarity according
to Spud DB) encoded by AT4G37770. In roots, higher expression levels have been observed
for this gene under drought conditions (TAIR Arabidopsis eFP Browser [89]). In Arabidop-
sis, the ACS gene family originally contained 12 annotated members ACS1-12 [90]. A large
scale of single as well as multiple mutants (acs1, acs2, acs4, asc5, acs6 and acs9) demonstrated
interactions between different ACS isoforms [91]. The ACS family is grouped into three
types I-III based on the C-terminal end [92]. StACS3 in potato represents a type II ACS
as ACC synthases encoded in Arabidopsis by AtACS4, AtACS5, AtACS8, AtACS9 and
AtACS11 [93]. These ACS are characterized by a shorter conserved C-terminal domain
(TOE domain) around a serine as one potential phosphorylation site. Phosphorylation of
ACS of type II by casein kinase 1.8 (CK1.8) leads to interaction with the E3 ubiquitin ligase
Ethylene Overproducer 1 (ETO1) and ETO1-like (EOL), which results in degradation of
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ACS via 26S proteasome [88]. Binding of ACS by 14-3-3 protein represses this interaction
and destabilizes ETO1/EOL [88]. In maize, ZmACS6-deficient mutants showed an inhibi-
tion of drought-induced leaf senescence, an increased transpiration rate and higher CO2
assimilation under drought stress conditions [94]. Variations in StACS3 may be interesting
for drought tolerance breeding in potato as ACS represents a potentially rate-limiting
enzyme in ethylene biosynthesis. Ethylene invokes responses in both young and mature
potato leaves [18].

Ethylene acts as central integrator linking and reprogramming complex stress-adaptive
signaling cascades through activation of downstream ERFs [95]. ERFs show conserved
binding preference for the dehydration responsive element (DRE) (CCGAC) or the GCC
motif (GCCGCC) in promoter sequences that control expression of abiotic and biotic
stress-responsive genes [96–99]. Some ERFs can also bind to both motives, DRE and GCC.

A genome-wide study of ERFs in potato identified 155 genes, which could be mainly
distributed into two groups, the CBF/DREB and the ERF group [100]. Comparison of RNA-
seq data revealed that most ERF genes are controlled by abiotic stress conditions (drought,
salt, low temperature, ABA treatment). Overexpression of StDREB1/StERF186, as well as
of StDREB2/StERF137, improves tolerance to salt stress in transgenic potatoes [101,102].
Overexpression of the tomato jasmonate and ethylene response factor 1 (JERF1) results in
enhanced drought tolerance and ABA biosynthesis in tobacco and rice [103]. The ERF gene
(PGSC0003DMG400002185) significantly associated with drought sensitivity in our SSR
study corresponds to StERF8 [100]. As the SSR (CCA)n(ACA)k is located in exon 1, the
observed allelic variation will have an effect on the amino acid sequence of the encoded
transcription factor. Further studies will be necessary to reveal the specific effects of these
allelic variations of StERF8 for drought tolerance in potato.

5. Conclusions

In potato, the candidate gene approach proved to be efficient to derive new func-
tional SSR primer combinations and to identify SSR markers detecting allelic variations
significantly associated with drought tolerance or sensitivity. Future testing of these
SSR-markers in a larger panel of potato cultivars from all over the world will give a
better idea about their versatility. Our association studies identified allelic differences
in five of the candidate genes (aldehyde dehydrogenase, PGSC0003DMG400034597; 1-
aminocyclopropane-1-carboxylate synthase 3 PGSC0003DMG400021426; ethylene respon-
sive transcription factor, PGSC0003DMG400002185; poly (ADP-ribose) glycohydrolase,
PGSC0003DMG400029361; protein phosphatase 2C, PGSC0003DMG400011321) as signifi-
cantly associated with drought sensitivity. Further investigations will elucidate the role of
these allelic variations in drought response of cultivated tetraploid potato and will give a
better insight into mechanisms involved in drought tolerance in Solanaceae. The identi-
fied SSR markers are now available for genetic diversity studies and for marker-assisted
selection in potato breeding programs. Interestingly, in our investigation breeding for
drought tolerance in potato seems to require elimination of certain alleles from drought
sensitive cultivars.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12040494/s1, Table S1. Characterization of potato cultivars. Table S2. Field trials for
ranking the potato cultivars using DRYM as drought stress index. Table S3. Overview over all 154
derived SSR primer combinations. Table S4. Overview of 19 AFLP primer combinations used in
the UPGMA dendrogram (Figure S1). Table S5. Linkage group specific SSR primer combinations.
Table S6. Selected 23 transcripts identified in comparative transcriptome analysis [39]. Table S7.
Characterization of 75 polymorphic SSR primer combinations. Table S8. Association studies of the
SSR markers applying the Fisher Exact Test in the potato association panel (1t most drought tolerant
cultivar, 34t most drought sensitive cultivar). Figure S1. Population structure in the investigated
association panel of 34 starch potato cultivars based on 54 linkage group specific SSR primer combina-
tions and 19 AFLP primer combinations. The UPGMA dendrogram based on the Jaccard’s coefficient
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is shown. The potato cultivars are shown with the drought tolerance rank from 1t = most tolerant to
34t = most sensitive.
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