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Abstract: Mutations of the GBA gene, encoding for lysosomal enzyme glucocerebrosidase (GCase),
are the greatest genetic risk factor for Parkinson’s disease (PD) with frequency between 5% and 20%
across the world. N370S and L444P are the two most common mutations in the GBA gene. PD carriers
of severe mutation L444P in the GBA gene is characterized by the earlier age at onset compared to
N370S. Not every carrier of GBA mutations develop PD during one’s lifetime. In the current study
we aimed to find common gene expression signatures in PD associated with mutation in the GBA
gene (GBA-PD) using RNA-seq. We compared transcriptome of monocyte-derived macrophages of
5 patients with GBA-PD (4 L444P/N, 1 N370S/N) and 4 asymptomatic GBA mutation carriers (GBA-
carriers) (3 L444P/N, 1 N370S/N) and 4 controls. We also conducted comparative transcriptome
analysis for L444P/N only GBA-PD patients and GBA-carriers. Revealed deregulated genes in GBA-
PD independently of GBA mutations (L444P or N370S) were involved in immune response, neuronal
function. We found upregulated pathway associated with zinc metabolism in L444P/N GBA-PD
patients. The potential important role of DUSP1 in the pathogenesis of GBA-PD was suggested.

Keywords: Parkinson’s disease; GBA; macrophages; RNA-seq; transcriptome

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder that is characterized by the
accumulation of abnormal protein aggregates of alpha-synuclein in the brain [1,2]. Several
genetic factors have been associated with an increased risk of PD development. Mutations
in the GBA gene are the highest genetic risk factors for PD with an increase of PD risk (of
seven to eight times) and with a frequency of 5% to 20% in all populations [3,4]. The GBA
gene, encoding the lysosomal enzyme glucocerebrosidase (GCase), is the key enzyme in
ceramide metabolism and catalyzes the hydrolysis of glucosylceramide to glucose and
ceramide. GCase is expressed in most tissues, especially in the brain, endocrine issue, liver,
spleen, skin (https://www.proteinatlas.org, accessed on 21 September 2021). GBA muta-
tions resulted in the most common lysosomal storage disorder (LSD), Gaucher disease (GD),
characterized with lysosphingolipid accumulation, presumably in blood macrophages.
Generally, the two most common mutations in the GBA gene N370S (c.1226A > G) and
L444P (c.1448 T > C) account for 60–70% of the mutant alleles amongst others [4,5]. PD
carriers of the severe L444P mutation in the GBA gene are characterized by an earlier age
at onset and rapid progression [6] compared to N370S and other mild mutations. The

Genes 2021, 12, 1545. https://doi.org/10.3390/genes12101545 https://www.mdpi.com/journal/genes

https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://doi.org/10.3390/genes12101545
https://doi.org/10.3390/genes12101545
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.proteinatlas.org
https://doi.org/10.3390/genes12101545
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes12101545?type=check_update&version=3


Genes 2021, 12, 1545 2 of 18

molecular mechanisms of an association between GBA mutations and PD are unclear [7].
We, and others, have previously demonstrated that mutations in the GBA gene lead to a
decrease of GCase activity and an increase of blood lysosphingolipid concentration, even in
heterozygous carriers of GBA mutations [8–11]. However, not all carriers of GBA mutations
develop PD. GCase dysfunction does not seem to be enough to launch the pathogenic
mechanism of PD among GBA mutation carriers.

Transcriptome analysis using next-generation sequencing (RNA-seq) is a powerful
method to analyze the genome transcriptomic profile with high-resolution. Although
variations in the transcriptome are tissue specific, the blood and brain demonstrated sig-
nificant gene expression similarities [12,13]. It is worth noting that RNA-seq revealed
the difference between transcriptomic profiles in the peripheral blood of symptomatic
and asymptomatic G2019S LRRK2 mutation carriers and identified common differentially
expression genes functionally involved in the pathways and related with LRRK2-PD patho-
genesis, such as Akt signaling, glucose metabolism, or immunity [14,15]. Monocyte-derived
macrophages represent one of the most promising models for investigating molecular
mechanisms of GCase dysfunction, as this cell type is vulnerable for disturbances in ce-
ramide metabolism [16,17]. In particular, we and others demonstrated high potential of
peripheral blood monocyte-derived macrophages to reflect individual sensitivity for drugs
influencing GCase activity [18,19]. Here, we first generated the transcriptomic profiles
for GBA-PD patients, asymptomatic GBA mutation carriers (GBA carriers), and controls
in monocyte-derived macrophages, in order to investigate what variations in monocyte-
derived macrophage transcriptomes can be attributed to the presence of GBA mutation
and what can be viewed as a trigger of PD in GBA mutation carriers. Our results will be
useful to others looking for potential triggers of PD among GBA mutation carriers, and
provides future directions for PD preclinical research.

2. Materials and Methods

This project was approved by the Pavlov First Saint-Petersburg State Medical Univer-
sity. A formal written consent form was provided to all included subjects to read and sign
prior to the study.

2.1. Subjects

Five patients with GBA-PD, four GBA carriers, and four neurologically healthy in-
dividuals were enrolled for the current study. Demographic data of the studied groups
are summarized in Table 1. Controls had no history of parkinsonism. GBA-PD patients
were diagnosed at two neurological clinic centers in St. Petersburg, Russia: Pavlov First
Saint-Petersburg State Medical University and the Institute of the Human Brain of RAS.
A standard neurologic clinical examination was performed for all participants and the
diagnosis of PD was based on previously published criteria [20]. GBA-PD patients were
recruited by genotyping of N370S, L444P mutations in the GBA gene among PD patients,
as previously described [3]. GBA carriers were collected from first-degree relatives of GD
patients at the Research Centre for Medical Genetics where GBA mutations were confirmed
by target sequencing of all exons in the GBA gene.

Table 1. Demographic characteristics of the compared groups.

Groups
Age at Exam,
Mean ± SD,

Years

Age at Onset,
Mean ± SD,

Years

Gender
(Male:Female)

Mutations in
the GBA Gene

GBA-PD, N = 5 53.5 ± 8.73 49.0 ± 10.89 3:2 4 L444P/N
1 N370S/N

GBA-carriers, N = 4 54.9 ± 8.9 - 2:2 3 L444P/N
1 N370S/N

Controls, N = 4 54.4 ± 9.5 - 2:2 -
GBA-PD—Parkinson’s disease associated with mutations in the GBA gene; GBA-carriers—asymptomatic GBA
mutation carriers; SD—standard deviation.
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2.2. Differentiation of Human Monocytes to Macrophages

Peripheral blood mononuclear cells (PBMCs) were isolated from 24 mL of peripheral
blood from participants, by density gradient centrifugation (Ficoll–Paque PLUS, GE Health-
care, Chicago, IL, USA). PBMCs were differentiated by the macrophage colony-stimulating
factor (M-CSF) (10 ng/ml) (Sigma-Aldrich, Burlington, MA, USA) in RPMI 1640 medium
(Gibco, Waltham, MA, USA) supplemented with 10% FCS (Gibco, Waltham, MA, USA)
with harvesting after 5 days. Phenotypical maturation of monocyte-derived macrophages
was confirmed by light microscopy and flow cytometry with specific antibodies to CD14+
and CD68+ (eBioscience, San Diego, CA, USA), as described earlier [18,21].

2.3. RNA Isolation and RNA Sequencing (RNA-Seq)

RNA was isolated from monocyte-derived macrophages and amplified following the
user manual of the SMART-Seq™ v4 Ultra™ Low Input RNA Kit for sequencing. Sequencing
libraries were generated using the NEBNext® Ultra™ DNA Library Prep Kit for Illumina®

(NEB, Ipswich, MA, USA), following the manufacturer’s recommendations. The RNA
molecules that contained polyA were then sequenced on the Illumina HiSeq1500 platform.

2.4. Quality Control

Quality control for each sample was performed by FastQC (v0.11.9) [22] and RSeQC
(v4.0.0)) [23]. In this step, clean data (clean reads) were obtained by removing low-quality
reads, reads containing adapters, and reads containing ploy-N from raw data. The removal
adapter was conducted with Cutadapt [24]. All downstream analyses were based on
clean data.

2.5. Reads Mapping to Reference Genome

Human reference genome assembly GRCh38 (hg38) and gene model annotation files
were downloaded from the Gencode website (https://www.gencodegenes.org/human/
(accessed on 9 September 2021)) directly (release 37). HISAT2 (v2.2.1) [25] was used with
default parameters to build the index of the reference genome and mapping reads to
the genome.

2.6. Quantification of Gene Expression Level

Counting sequencing reads mapping to each gene after the alignment step was per-
formed using the HTSeq-count function from the HTSeq framework (v.0.6.1) [26].

2.7. Analysis of Gene Differential Expression

Gene differential expression analyses of three groups were performed using the
DESeq2 package (v.1.30.1) [27] in R (v.4.0.3). DESeq2 provides statistical routines for
determining differential expression in digital gene expression data using a model based on
negative binomial distribution. The resulting p-values were adjusted using Benjamini and
Hochberg’s approach for controlling the false discovery rate (FDR). Detected differential
expression of genes was considered statistically significant at FDR ≤ 0.05 and a fold change
(FC) threshold >1.5. The differentially expressed genes were visualized in a volcano plot
built by using ggplot (v.3.3.3) in R (v4.0.3).

2.8. GO Enrichment Analysis of Differentially Expressed Genes

Gene Ontology (GO) enrichment analysis of differentially expressed genes was per-
formed using GO resource (http://geneontology.org (accessed on 9 September 2021)) and
was carried out using the apps ClueGO v. 2.5.7 [28] and CluePedia v. 1.5.3 [29] for Cy-
toscape v. 3.6.1. GO terms with a corrected p-value of less than 0.05. Term groups were
selected by ClueGO based on the number of common genes/terms (>50%). Term clusters
were selected based on common genes. A network of selected metabolic processes and
DEGs was built using CluePedia v. 1.5.7.

https://www.gencodegenes.org/human/
http://geneontology.org
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3. Results
3.1. RNA-Seq Experiments

A whole-transcriptome analysis of monocyte-derived macrophages obtained from
four patients with L444P/N GBA-PD, three L444P/N GBA carriers, and controls without
any GBA mutations (N = 4) was performed. Transcriptome analysis of monocyte-derived
macrophages was also conducted for all GBA-PD patients (L444P/N, N = 4, N370S/N,
N = 1), and GBA carriers (L444P/N, N = 3, N370S/N, N = 1). Using the Illumina HiSeq
1500 sequencer, we generated 10–14M raw reads, trimming from the 13 samples, with
a read length of 50 bp. After strict quality control, more than 20G clean bases were
retained. Overall, 21,980 genes were identified in each of the 13 samples. Post-trimming
and mapping results for all groups are provided in Table S1. Between 85.20% and 95.97%
of the clean reads was aligned to the reference genome. Raw data were subjected to
differential expression testing with DESeq2.

3.2. Changes in the Transcriptome Attributed to the Presence of GBA L444P/N Mutation

First, we conducted comparative transcriptome analysis of GBA-PD patients baring
L444P/N mutation and controls, which revealed 32 DEGs, and asymptomatic carriers
of the GBA L444P/N mutation and controls, which revealed 18 DEGs (Tables S2 and S3,
Figure 1A,B). Moreover, 36 DEGs were revealed between L444P/N GBA-PD patients and
L444P/N GBA carriers (Table S4, Figure 1C). The top list of revealed DEGs in L444P/N
GBA-PD patients compared to controls included the genes, JUNB, NR4A2, and EGR1, which
played roles in neurogenesis. GBA-PD was characterized by downregulated expression of
those genes. GO term enrichment analysis was conducted for all determined DEGs. We con-
sidered “metabolic process” terms with a p-value (Bonferroni corrected) <0.05 and all types
of GO terms to gene connections. Significant terms are presented in Table 2 and networks
are performed (Figure 2A–C). Pathways from GO databases enriched by DEGs that were
found when comparing GBA-PD patients to the controls were associated with cytokine
secretion (cellular response to chemokine (GO:1990869) and immune response (monocyte
chemotaxis (GO:0002548), neutrophil chemotaxis (GO:0030593), and myeloid leukocyte
migration (GO: 0097529)) (Table 2, Figure 2A). Altered biological GO pathways in L444P/N
GBA-PD patients compared to L444P/N GBA carriers were the pathways related to cellular
response to cadmium ion (GO:0071276), cellular response to zinc ion (GO:0071294), cellular
zinc ion homeostasis (GO:0006882), detoxification of copper ion (GO:0010273), cellular
response to copper ion (GO:0071280) (Table 2, Figure 2B). The 13 genes deregulated in
L444P/N GBA carriers compared to the controls were involved in the enriched pathways
related to immune response (system development (GO:0048731), immune system devel-
opment (GO:0002520), myeloid leukocytes differentiation (GO:0002573)), and regulation
negation axon extension involved in regeneration (GO:0048692) and axon extension in-
volved in regeneration (GO:0048677) (Table 2, Figure 2C). The Venn diagram demonstrated
one upregulated DEG, KIAA0319, which was upregulated in both L444P/N GBA-PD
patients and L444P/N GBA carriers compared to the controls and two DEGs, DUSP1
and ARL4C, which were downregulated in L444P/N GBA-PD patients compared to both
L444P/N GBA carriers and controls (Figure 3A). The comparison between the list of DEGs
from the GO analysis and the list of DEGs obtained by the Venn diagram revealed five
genes (IL31RA, ACOD1, OSCAR, MT1M, TBX3) downregulated in L444P/N GBA carriers
compared to L444P/N GBA-PD and controls, and one downregulated gene (DUSP1) in
L444P/N GBA-PD patients compared to L444P/N GBA carriers and controls (Figure 3A),
and one upregulated gene (KIAA0319) in L444P/N GBA-PD patients and L444P/N GBA
carriers compared to controls (Figure 3B).
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Figure 1. Volcano plot for DEGs between the studied groups (FDR < 0.05 and |FC| > 1.5); the upregulated genes are
represented by red dots and the downregulated genes are represented by blue dots. (A). L444P/N GBA-PD patients and
controls, (B). L444P/N GBA carriers and controls, (C). L444P/N GBA-PD patients, and L444P/N GBA carriers. (GBA-
PD—Parkinson’s disease associated with mutations in the GBA gene; GBA carriers—asymptomatic GBA mutation carriers;
DEGs—differentially expressed genes).

Table 2. Functional clusters selected according to the results of the GO analysis between L444P/N GBA-PD patients,
L444P/N GBA carriers, and controls.

(GO ID] GO Terms padjusted DEGs

L444P/N GBA-PD vs. Controls

(GO:0097529) myeloid leukocyte migration 6.93 × 10−9 CCL3, CCL3L1, CCL4, CXCL2, CXCL5, DUSP1,
IL6, PPBP

(GO:0002548) monocyte chemotaxis 6.93 × 10−9 CCL3, CCL3L1, CCL4, DUSP1, IL6

(GO:1990869) cellular response to chemokine 6.93 × 10−9 CCL3, CCL3L1, CCL4, CXCL2, CXCL5, DUSP1,
PPBP

(GO:0030593) neutrophil chemotaxis 6.93 × 10−9 CCL3, CCL3L1, CCL4, CXCL2, CXCL5, PPBP

L444P/N GBA-PD vs. L444P/N GBA carriers

(GO:0006882) cellular zinc ion homeostasis 8.09 × 10−9 MT1F, MT1L, MT1M, MT1X, SLC39A8
(GO:0010273) detoxification of copper ion 9.81 × 10−7 MT1F, MT1L, MT1M, MT1X

(GO:0071276) cellular response to cadmium ion 9.81 × 10−7 MT1F, MT1L, MT1M, MT1X
(GO:0071280) cellular response to copper ion 9.81 × 10−7 MT1F, MT1L, MT1M, MT1X

(GO:0071294) cellular response to zinc ion 9.81 × 10−7 MT1F, MT1L, MT1M, MT1X

L444P/N GBA carriers vs. controls

(GO:0048731) system development 0.001035 ACOD1, IL31RA, KIAA0319, OSCAR, TBX3
(GO:0002520) immune system development 0.001035 ACOD1, IL31RA, OSCAR

(GO:0002573) myeloid leukocyte differentiation 0.001011 IL31RA, OSCAR
(GO:0048692) negative regulation of axon

extension involved in regeneration 0.000615 KIAA0319

(GO:0048677) axon extension involved in
regeneration 0.000615 KIAA0319

GBA-PD—Parkinson’s disease associated with mutations in the GBA gene; GBA carriers—asymptomatic GBA mutation carriers; DEGs—
differentially expressed genes; GO—gene ontology.
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Figure 2. Networks of selected metabolic processes and DEGs in (A). L444P/N GBA-PD vs. controls; (B). L444P/N GBA
carriers vs. controls; (C). L444P/N GBA-PD vs. L444P/N GBA carriers (obtained using CluePedia v. 1.5.7 + ClueGo v.2.5.7).
(GBA-PD—Parkinson’s disease associated with mutations in the GBA gene; GBA carriers—asymptomatic GBA mutation
carriers; DEGs—differentially expressed genes).

3.3. Differentially Expressed Genes and Enriched Pathways in GBA-PD Patients (L444P/N
+N370S/N) and GBA Carriers (L444P/N +N370S/N) Compared to Controls

Comparative transcriptome analysis of monocyte-derived macrophages revealed
23 DEGs between GBA-PD patients and GBA carriers, 28 DEGs between GBA-PD patients
and controls. Moreover, eight DEGs were found between GBA carriers compared to con-
trols (Figure 4A,B, Tables S5–S7.) The top list also revealed DEGs in GBA-PD patients
compared to controls, including the genes, JUNB, NR4A2, EGR1. Significant terms of GO
analysis between GBA-PD patients, GBA carriers, and controls are presented in Table S8,
and networks are presented in Figure 5A,B. A total of 25 genes were enriched in 17 GO
pathways. The altered biological pathways in GBA-PD patients compared to the controls
were directly related to the functioning of the immune system, immune response, cy-
tokine metabolism, and the immune response ((GO:0019221) cytokine-mediated signaling
pathway, (GO:0006935) chemotaxis, (GO:0002548) monocyte chemotaxis, (GO:1990869)
cellular response to chemokine), and apoptosis ((GO:0010941) regulation of cell death,
(GO:0010942) positive regulation of cell death). The main of the alerted GO pathways
in GBA carriers compared to the controls was the pathway associated with cytokine
metabolism ((GO:0071345) cellular response to cytokine stimulus). The Venn diagram
demonstrated two genes HOOK2, JUNB downregulated in GBA-PD patients and GBA
carriers compared to controls that can be attributed to the presence of GBA mutations.
The HOOK2, JUNB genes were also involved in the enriched pathway (response to cy-
tokines (GO:0034097)) identified by GO analysis in GBA-PD patients compared to controls
(Figure 6A).
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L444P/N GBA-carriers vs controls
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Figure 3. Venn diagram of (A). DEGs in monocyte-derived macrophages of L444P/N GBA-PD
patients to controls compared to L444P/N GBA-PD patients to L444P/N GBA carriers, and compared
to L444P/N GBA carriers and controls. B. DEGs determined be the Venn diagram in (B) and DEGs
determined by GO analysis for L444P/N GBA-PD patients, L444P/N GBA carriers, controls. All
data are presented as the number of genes with a p-value < 0.05 and |FC| more than 1.5. Three
Venn diagrams were developed using the library VennDiagram (v.1.6.20) in R (v.4.0.3). (GBA-PD—
Parkinson’s disease associated with mutations in the GBA gene; GBA carriers—asymptomatic GBA
mutation carriers; DEGs—differentially expressed genes; GO—gene ontology).
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Figure 4. Volcano plot for DEGs between the studied groups (FDR < 0.05 and |FC| > 1.5); the upregulated genes are
represented by red dots and the downregulated genes are represented by blue dots. (A). GBA-PD patients and controls;
(B). GBA carriers and controls; (C). GBA-PD patients and GBA carriers. (GBA-PD—Parkinson’s disease associated with
mutations in the GBA gene; GBA carriers—asymptomatic GBA mutation carriers; DEGs—differentially expressed genes).
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GBA-carriers (L444P/N +N370S/N) 

B. GBA-carriers (L444P/N +N370S/N) vs controlsA. GBA-PD (L444P/N +N370S/N) vs controls

Figure 5. Networks of selected metabolic processes and DEGs in (A). GBA-PD (L444P/N +N370S/N) vs. controls; (B). GBA
carriers (L444P/N +N370S/N) vs. controls; (C). GBA-PD (L444P/N +N370S/N) vs. GBA carriers (L444P/N +N370S/N)
(obtained using CluePedia v. 1.5.7 + ClueGo v.2.5.7). (GBA-PD—Parkinson’s disease associated with mutations in the GBA
gene; GBA carriers—asymptomatic GBA mutation carriers; DEGs—differentially expressed genes).

3.4. Differential Expression of Genes and Pathways in GBA-PD Patients (L444P/N +N370S/N)
and GBA Carriers (L444P/N +N370S/N)

Differential expression analysis of monocyte-derived macrophages resulted in 23
DEGs in GBA-PD patients compared to GBA carriers (Figure 4C). GO analysis showed the
main altered pathways that are related to immune response ((GO:0042092) type 2 immune
response, (GO:0006952) defense response) (Table S8, Figure 5C). The Venn diagram allowed
us to reveal seven overlapping DEGs (DUSP1, ALR4C, RPL16, TPTEP1, COLEC12, TRIM13,
BCL6) among GBA-PD patients when compared with GBA carriers and controls and two
genes (ACOD1, IL31RA) between GBA carriers compared with GBA-PD patients and
controls (Figure 6B). The comparison between the list of DEGs from GO analysis and list of
DEGs obtained by the Venn diagram revealed two genes (IL31RA, ACOD1) downregulated
in GBA carriers, compared to GBA-PD and controls, and four deregulated genes (two
(DUSP1, COLEC12) downregulated and two (TRIM13, BCL6) upregulated) in GBA-PD
patients, compared to GBA carriers and controls (Figure 6B).

3.5. Searching the Overlapping DEGs between our and Publicly Available Dataset

To identify the similarities between lists of DEGs from our and previously published
studies we used Venn diagram. We revealed overlapping DEGs between list of DEGs from
our analysis of GBA-PD (L444P/N +N370S/N) and list of DEGs of G2019S LRRK2-PD
from study of Infante and colleagues: two genes encoding monocyte attracting chemokines,
such as CCL3L1 gene, in GBA-PD, G2019S LRRK2-PD and PD in comparison with controls,
and the CCL3 gene, when comparing GBA-PD to controls and G2019 LRRK2-PD to PD and
also, JUNB gene when comparing GBA-PD, GBA-carriers, G2019 LRRK2-PD and G2019
LRRK2-carriers [15]. Dataset of Infante and colleagues’ study is available for download
following this link: https://ars.els-cdn.com/content/image/1-s2.0-S0197458015005382-
mmc1.doc [15] (accessed on 9 September 2021).

https://ars.els-cdn.com/content/image/1-s2.0-S0197458015005382-mmc1.doc
https://ars.els-cdn.com/content/image/1-s2.0-S0197458015005382-mmc1.doc
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Figure 6. Venn diagram of (A). DEGs in monocyte-derived macrophages of GBA-PD (L444P/N +N370S/N) patients to
controls compared to GBA-PD (L444P/N +N370S/N) patients to GBA carriers (L444P/N +N370S/N), and compared to
GBA carriers (L444P/N +N370S/N) and controls; B. DEGs determined be Venn diagram in (B) and DEGs determined
by GO analysis for GBA-PD (L444P/N +N370S/N) patients, GBA carriers (L444P/N +N370S/N), controls. All data are
presented as the number of genes with a p-value < 0.05 and |FC| more than 1.5. Three Venn diagrams were developed
using the library VennDiagram (v.1.6.20) in R (v.4.0.3). (GBA-PD—Parkinson’s disease associated with mutations in the GBA
gene; GBA carriers—asymptomatic GBA mutation carriers; DEGs—differentially expressed genes; GO—gene ontology).

4. Discussion

This is the first whole-transcriptome analysis of monocyte-derived macrophages in
GBA-PD patients, GBA carriers, and controls. We intended to cover molecular pathways
involved in GBA-PD pathogenesis and study the differences in the transcriptome between
GBA mutation carriers with and without PD. To date, the last review of genome-wide
transcriptomic studies in sporadic PD identified a total of 96 studies during the period
between 2004 and 2017: 12 meta-analyses, 21 re-analyses of exiting data, and 63 original
studies carried out by means of different genome-wide technologies [30]. Several studies
analyzed transcriptomic profiles in the blood, brain tissue, and dopaminergic neurons
in autosomal dominant PD associated with mutations in the LRRK2 gene (LRRK2-PD)
(OMIM no.609007) [13,31–33], with only one research study conducted with RNA-seq
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technology [14]. In fact, presently, only one research study has examined the transcriptomic
profile in GBA-PD [34] despite the (obvious) actual problems of incomplete penetrance of
GBA mutations.

Here, we compared the gene expression profile in monocyte-derived macrophages
between L444P/N GBA mutation carriers, discordant for clinical manifestation of PD and
controls. This mutation is more severe compared to N370S, and characterized by an earlier
age of PD onset, as well as motor, psychiatric, cognitive, and olfactory symptoms [6].
It also results in more pronounced alpha-synuclein accumulation in in vitro and in vivo
models of PD [35]. According to our previous data, GCase enzyme activity decreases
more strongly and the plasma level of oligomeric alpha-synuclein is higher in L444P/N
GBA-PD patients compared to N370S/N GBA-PD patients [10]. We revealed 32 DEGs
between L444P/N GBA-PD and the controls, 36 between L444P/N GBA-PD and L444P/N
GBA carriers and 18 between L444P/N GBA carriers and controls. First, we focused on
searching for molecular biomarkers involved in PD pathogenesis among L444P/N GBA
mutation carriers. We revealed two potential biomarkers for PD in L444P/N GBA mutation
carriers (downregulation of the DUSP1 and ARL4C gene expression). The DUSP1 gene
encodes the mitogen-activated protein kinase 1 (MKP-1) phosphatase that participates
in regulation of apoptosis, endoplasmic reticulum (ER) stress, cell cycle, and autophagy,
with the cellular process playing a pivotal role in PD [36]. MKP-1 belongs to the class I
classical cysteine-based protein phosphatases (DUSP family) that have the dual ability to
dephosphorylate phospho-serine/threonine and phospho-tyrosine residues [37,38]. MKP-1
is expressed during embryonic development in the midbrain, including dopaminergic
neurons, as well as in adulthood in substantia nigra (SN) and can act as a neuroprotective
agent. ARL4C, known also as ARL7, participates in cholesterol transport between the perin-
uclear compartment and the plasma membrane for ABCA1-associated removal and, thus,
may be integral to the LXR-dependent efflux pathway [39]. Dysregulation of cholesterol
metabolism has been implicated in PD [40].

Next, we aimed to find similarities in symptomatic and asymptomatic L444P/N GBA
mutation carriers that can be attributed to the presence of L444P/N GBA mutations. More-
over, all L444P/N GBA mutation carriers were characterized by an increased KIAA0319
expression level. The KIAA0319 gene was involved in the pathway associated with the
axon extension, involved in regeneration (GO:0048677). The genetic variants of KIAA0319
were found to be associated with dyslexia [41,42].

Additionally, the transcriptomic analysis was conducted for both L444P and N370S
GBA mutations. We revealed 28 DEGs between GBA-PD and controls, 23 between GBA-PD
and GBA carriers, and 8 between GBA carriers and controls. We suggested that four genes,
DUSP1, COLEC12, TRIM13, BCL6, deregulated in GBA-PD patients, might be potential
candidates for PD biomarkers among GBA mutations carriers. Downregulated expression
of DUSP1 and COLEC12 genes and upregulated expression of the TRIM13 and BCL6 genes
were found in GBA-PD patients compared to both GBA carriers and controls. DUSP1 and
TRIM13 are involved in initiation of autophagy and in the ubiquitin-proteasome pathway
of protein degradation during ER stress that may play a critical role in alpha-synuclein
degradation. It has been shown that repression of endogenous TRIM13 inhibits autophagy
induced by ER stress [43]. Family DUSPs have many substrates and modulate diverse
neural functions, such as neurogenesis, differentiation, and apoptosis. DUSP1 critically
contributes to the resolution of acute inflammatory responses of macrophages and mediates
protective glucocorticoids effects, which potently inhibit pro-inflammatory responses, and
are widely used for the treatment of inflammatory diseases [44]. We revealed decreased
expression level of the DUSP1 gene in GBA-PD patients compared to GBA carriers and
controls. Thus, a decreased expression level of the DUSP1 gene may lead to impairment
of macrophage’s inflammatory response and, therefore, contribute increasing inflamma-
tion levels. TRIM13 is a negative regulator of MDA5-mediated type I interferon (IFN)
production and may impact RIG-I-mediated type I IFN production. Proper regulation
of the type I IFN response contributes to maintaining immune homeostasis [45]. Since
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macrophages are vital to immune response, dysregulation of the TRIM13 gene may lead
to disturbance of immune homeostasis and levels of cytokines, which act as important
mediators of the immune system. The COLEC12 gene, known also as SCARA4, SRCLI,
SRCLII, CL-P1, is implicated in innate immune responses [46], and is associated with lipid
metabolism and phagosome formation. In particularly, COLEC12 protein functions as
a receptor for the detection, uptake, and degradation of oxidized modified low-density
lipoproteins by vascular endothelial cells [47]. BCL6 is a critical marker in cell apoptosis
and contributed to the inflammation activation of macrophages [48]. Previous studies on
mouse and human macrophages showed that COLEC12 is a novel receptor involved in
myelin uptake by phagocytes and may play a role in active multiple sclerosis, which is a
chronic, inflammatory, neurodegenerative disease [49]. Considering its role in the uptake
of myelin, COLEC12 likely plays an important role in the pathophysiology of neurode-
generative disease, but as an uptake of myelin leads to both demyelination and central
nervous system repair, depending on whether it concerns intact myelin or myelin debris,
COLEC12-mediated myelin uptake can be beneficial or detrimental. BCL6 is a critical
marker in cell apoptosis and contributes to the inflammation activation of macrophages.
BCL6 overexpression was found to inhibit the increase in reactive oxygen species ROS. Mi-
tochondrial functions lead to exacerbation of ROS generation and susceptibility to oxidative
stress involved in PD pathogenesis [50].

Next, we found similarities in symptomatic and asymptomatic GBA mutation carriers
that consisted of the decreased JUNB and HOOK2 gene expression in both GBA-PD patients
and GBA carriers compared to controls. HOOK2 encodes the Hook2 protein that belongs to
a family of cytoplasmic linker proteins. Hook2 is implicated in the formation of aggresomes,
vesicle trafficking, and fusion, particularly in degradation of neuronal tau aggregates in
Alzheimer’s disease (AD) [51–53].

Comparing the transcriptomes between the GBA-PD independent of the type of mu-
tation (L444P, N370S) as well as in L444P/N GBA-PD revealed three genes (JUNB, EGR1,
NR4A2) encoding transcriptional regulators involved in the maintenance of dopaminergic
neuron function, neuronal differentiation, and neurogenesis from the top of the DEGs
list. It is worth noting that a previous transcriptomic analysis conducted for the blood
and brain for sporadic PD revealed an alteration in the pathways that include dopamine
metabolism, mitochondrial function, oxidative stress, protein degradation, neuroinflamma-
tion, vesicular transport, and synaptic transmission [30]. Our data support the statement
that neurodegenerative mechanisms could be detectable from a peripheral tissue. JUNB,
EGR1, NR4A2 belong to immediate-early genes (IEGs) and encode the transcription fac-
tors, JunB, Egr-1, NR4A2, respectively [54–57]. These factors are activated in respond to
a variety of cellular stimuli and control specific neuronal functions, including neuronal
activity. Both JunB and Egr-1 are key mediators of apoptosis and the inflammatory re-
sponse [58,59]. It is interesting to note that JUNB overexpression protections against cell
death of nigral neurons [60]. Furthermore, JunB modulates expression of canonical markers
of alternative activation in macrophages [61]. The latest study demonstrated that a large
share of EGR1 target regions in macrophages are enhancers associated to the inflamma-
tory response [59]. Egr1 inhibits pro-inflammatory gene expression in macrophages [59].
Egr-1 activation promotes neuroinflammation and dopaminergic neurodegeneration in an
experimental model of PD [62]. NR4A2 (Nurr1) is critical in the development and mainte-
nance of the dopaminergic neurons. It coordinates several key proteins, including tyrosine
hydroxylase (TH), dopamine transporter (DAT), and vesicular monoamine transporter
(SCL18A2/VMAT) [63]. Previous studies demonstrated an association between NR4A2
polymorphisms with PD [64–66] and showed that sporadic PD patients is characterized by
decreased NR4A2 gene expression in PBMCs [67]. Nurr1 also appears to restrain inflam-
matory processes by polarizing macrophages to the M2 type [68]. Thus, the role of these
genes in neuroimmune interaction could not be excluded as monocytes; macrophages may
migrate across the blood–brain barrier and induce the neuroinflammatory processes in the
brain and, therefore, contribute to brain pathology, such as neurodegeneration [69].
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According to the Human Protein Atlas (https://www.proteinatlas.org (accessed on
9 September 2021)), the top of DEGs in GBA-PD patients compared to controls, JUNB,
EGR1, NR4A2, and potential biomarkers of GBA-PD (DUSP1, COLEC12, TRIM13, BCL6,
ARL4C) express not only in the blood, but in brain tissues.

GO enrichment analysis revealed several altered pathways in GBA-PD patients in-
dependent of the type of mutation in the GBA genes (L444P, N370S) generally related to
the immune system. Growing evidence suggests that neuroinflammation may contribute
to the development of Parkinson’s disease and elevated levels of inflammation-related
mediators in the brain and cerebrospinal fluid. Many studies focused on peripheral in-
flammatory processes have found a significant association between immune markers and
disease severity. We should note that, previously, we (and others) demonstrated elevation
of proinflammatory cytokine secretion in plasma of GBA-PD patients compared to sporadic
PD patients and controls [70,71].

Presently, only one paper performed transcriptomic analysis for PD patients baring
GBA mutations. The study was fulfilled on iPSC-derived dopamine neurons from three
GBA-PD patients with the N370S GBA variant [34]. Single-cell profiling demonstrated
disease relevant pathways, even in the carriers of the same mutation. Thus, in one initially
diagnosed as a patient with PD, the patient’s cellular profile prompted a clinical reassess-
ment, leading to a revised diagnosis of progressive supranuclear palsy (PSP). Nevertheless,
on iPSC-derived dopamine neurons from two other patients with N370S GBA-PD, the
authors found 60 deregulated genes that included downregulated genes implicated in
neuronal function, and upregulated genes involved in zinc ion transport [33]. Similar to
Lang and colleagues, we also found upregulation of genes, MT1F, MT1L, MT1M, MT1X,
and SLC39A8, involved in the zinc metabolism pathway in GBA-PD patients, compared
to GBA carriers. Alterations of zinc homeostasis have long been implicated in PD. Zn2+,
besides its role in multiple cellular functions, also acts as a synaptic transmitter in the brain.
Recent meta-analysis studies, though, point to lower zinc levels in serum and plasma and
CSF of PD patients compared to healthy controls. The association between deregulated
levels of circulating zinc and PD has been explained by its antioxidant role since this trace
element is essential for a variety of enzymes and proteins (superoxide dismutase oxidative,
metallothioneins, and interleukins) involved in oxidative stress [72]. Moreover, dysregu-
lated zinc homeostasis zinc plays a critical role in the innate immune system, especially for
maintaining the function of macrophages due to participation in impairment phagocytosis
and an abnormal inflammatory response [73]. The following ingenuity pathway analysis
conducted by Lang and colleagues showed that, among 60 deregulated genes in GBA-PD,
eight (PRKCB, RTN1, ATP1A3, TSPAN7, NTM, L1CAM, BDNF, SLC2A1) are regulated
with histone deacetylase 4 (HDAC4). In our study, both GBA-PD and L444P/N GBA-PD
patients demonstrated decreased expression of the DUSP1 gene involved in ER stress,
implicated previously in PD pathogenesis, particularly GBA-PD [74]. Notably, Lang and
colleagues found downregulation of another gene from the same MKP family—the DUSP4
gene encoding MKP-2 that is closely related with DUSP1/MPK-1 [34,38]. There are cur-
rently few studies assessing the role of the DUSP genes in PD. However, one study reported
decreased DUSP1 mRNA expression in the brain tissue in an idiopathic PD patient [37].
DUSP1 overexpression protects dopaminergic neurons against neurotoxicity induced with
6-hydroxydopamine in vitro [75]. Strategies aimed at increasing the expression of DUSP1
have been discussed as potential therapeutic approaches for PD [37]. Taken together, our
results highlight the potential important role of the DUSP family in the pathogenesis of
GBA-PD. To summarize our results with the study by Lang and colleagues, we could
make a conclusion about the involvement of the downregulation of genes related to neu-
ronal functions and upregulation of pathways related to immune response and zinc ion
homeostasis in GBA-PD pathogenesis.

It is interesting to note that, oppositely, regarding the number of DEGs attributed
to a presence of GBA mutations revealed in our preset study, RNA-seq conducted in
LRRK2 G2019S mutation carriers suggested that G2019S mutation in the LRRK2 gene
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markedly altered blood transcriptome in comparison with sporadic PD [14]. Infante and
colleagues found 174 genes with significant differential expression in the blood between
LRRK2-PD patients with G2019S mutation and asymptomatic carriers and 1139 DEGs
between asymptomatic carriers of G2019S LRRK2 mutation and controls [14]. These data
allow us to suggest that the GBA mutation had less influence on the transcriptome profile
in comparison with LRRK2 mutations. We compared our gene set with the gene set
presented in the study by Infante and colleagues, and revealed overlap genes, encoding
monocyte-attracting chemokines, such as CCL3L1 gene, when comparing GBA-PD, G2019S
LRRK2-PD, and PD to controls, and the CCL3 gene, when comparing GBA-PD to controls
and G2019 LRRK2-PD to G2019S LRRK2-carriers. That observation supports the hypothesis
involving the role of immune response in PD pathogenesis [76]. It is also important to
mention that the difference between the amount of the revealed differentially expressed
genes in our study compared to the study by Infante and colleagues can be explained due
to the fact that their study conducted whole-blood transcriptomic analysis. We could not
exclude the possibility that such discrepancies are attributed to monotype cell populations
used in the present study for transcriptomic analysis.

The current study has some limitations. The small size of the studied groups may
influence the outcome of differential expression analysis for genes with small differences
in expression levels, eliminating nonspecific gene expression differences. Moreover, the
influence of L-DOPA treatment in GBA-PD patients on the gene expression level cannot be
ruled out. In addition, we could not exclude PD manifestation among GBA carriers later in
their lives, as only 10% of carriers of mutations in the GBA gene develop PD at the age of
60, 16% at the age of 70, and 19% at the age of 80 [77]. It is interesting to note that Lang et al.
demonstrated that the genome profile in sporadic PD could—in some cases—be similar
to GBA-PD, suggesting that findings from GBA-PD could be extrapolated to a subset of
sporadic PD patients [34]. A further limitation of our study is the absence of PD patients
without GBA mutations.

5. Conclusions

In conclusion, this study provides new insights into the global transcriptome in GBA-
PD and asymptomatic GBA mutation carriers. Potential involvement of genes of neuronal
functions, inflammation, and zinc metabolism in the pathogenesis of GBA-PD was shown.
Alteration expression of DUSP1 may be considered a potential biomarker of PD among GBA
mutations carriers. This knowledge could assist in answering the fundamental question
about potential triggers, which is important for future studies devoted toward determining
the pathogenesis of PD among GBA mutations carriers.
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