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Abstract: Target of rapamycin (TOR) is a serine/threonine kinase that modulates cell growth and
metabolism in response to environmental changes. Transfer RNA (tRNA) is an abundant and
ubiquitous small non-coding RNA that is essential in the translation of mRNAs. Beyond its canonical
role, it has been revealed that tRNAs have more diverse functions. TOR complex 1 (TORC1),
which is one of the two TOR complexes, regulates tRNA synthesis by controlling RNA polymerase III.
In addition to tRNA synthesis regulation, recent studies have revealed hidden connections between
TORC1 and tRNA, which are both essential players in eukaryotic cellular activities. Here, we review
the accumulating findings on the regulatory links between TORC1 and tRNA—particularly those
links in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe.
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1. TORC1 and tRNA

Target of rapamycin (TOR) is a highly conserved serine/threonine kinase among eukaryotes.
TOR acts as a master regulator that controls cell growth and metabolism in response to environmental
changes (reviewed in [1,2]). TOR forms two distinct multi-protein complexes—TOR complex 1 (TORC1),
and complex 2 (TORC2)—which regulate a variety of cellular activities. Between these, only TORC1 is
sensitive to rapamycin. The activity of TORC1 is regulated by nutrients, growth factors, and cellular
energy. In mammals, growth factors and cellular energy stimulate the activity of mTORC1 through
Rheb GTPase, and via the inhibition of the tuberos sclerosis complex (TSC), which functions as a
GTPase-activating protein for Rheb. When responding to the availability of amino acids, mTORC1 is
activated via RAG GTPases in a TSC-independent pathway. Under nutrient-rich conditions, TORC1
promotes anabolic processes, such as protein, nucleotide, and lipid synthesis, while inhibiting catabolic
processes, such as autophagy.

Transfer RNAs (tRNAs) are abundant, small, and ubiquitous non-coding RNAs that are essential
for decoding genetic information, achieving this by delivering amino acids to the growing polypeptide
chains in ribosomes. Each tRNA is charged with a cognate amino acid on its 3′ end, in an ATP-dependent
manner. This process is catalyzed by aminoacyl-tRNA synthetases (ARSs). Each aminoacyl-tRNA
is brought to the A-site of the ribosome by the translation elongation factor 1A; then, its anticodon
forms base pairs with a corresponding mRNA codon. In recent years, a growing number of reports
have shown that tRNAs have a wide range of cellular functions beyond their canonical role as
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adaptor molecules during protein synthesis [3–5]. For example, tRNA-derived small RNAs have been
extensively studied and demonstrated to be novel, functional, non-coding RNAs (reviewed in [6,7]).
tRNA is an essential biomolecule during translation, and TORC1 participates in the regulation of
translation, suggesting a promising relationship between tRNA and TORC1. In fact, accumulating
reports have demonstrated the involvement of tRNA, and its related factors, in the TORC1 pathway.
In this review, we highlight recent findings on the TORC1-related roles of tRNA, and its related
factors, in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe,
both of which have contributed to our understanding of the cellular signaling pathway, including
TOR signaling.

2. tRNA-Mediated Inactivation of TORC1 in S. cerevisiae

In mammalian cells, the Rag complex, which is composed of RagA/RagB and RagC/RagD,
regulates TORC1 by responding to amino acid levels. Rag proteins are conserved in S. cerevisiae, and
the counterparts of RagA/RagB and RagC/RagD are Gtr1 and Gtr2, respectively [8–10]. The S. cerevisiae
genes that encode the Rag proteins, namely GTR1 and GTR2, are nonessential; this suggests that the
Rag system is not the sole pathway to amino acid sensing by TORC1. In a study wherein the alternative
mechanisms underlying the TORC1 regulation were elucidated, the tRNA-mediated inactivation of
TORC1 in S. cerevisiae was demonstrated [11].

tRNA severely inhibits in vitro TORC1 activity. The inactivation of RNA polymerase III,
which transcribes tRNA, results in the maintenance of TORC1 activity upon starvation. From these
observations, it has been proposed that amino acid starvation increases the number of free uncharged
tRNA that is liberated from protein synthesis; then, the accumulated free tRNA inactivates TORC1
(Figure 1). The result, that TORC1 activity is impaired in ARS mutants, supports this attractive model.
tRNA may be the best player to monitor amino acid levels as it enables a response to the shortage in all
kinds of amino acids.
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Figure 1. Transfer RNA (tRNA)-mediated target of rapamycin complex 1 (TORC1) regulation in
Saccharomyces cerevisiae. Under amino acid-rich conditions, tRNAs are charged with cognate amino
acids, and the resultant aminoacyl-tRNAs are delivered to the ribosome for translation. Upon amino
acid starvation, free uncharged tRNAs increase, and the accumulated free tRNAs inactivate TORC1.

3. tRNA Precursor-Mediated TORC1 Regulation in S. pombe

The synthesis of tRNAs involves several steps of post-transcriptional processing. These events
include the removal of the 5′ leader, processing of the 3′ trailer, splicing of introns, addition
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of the 3′-terminal CCA residues, and modification of multiple nucleoside residues. In S. pombe,
TORC1 represses sexual differentiation and exerts an essential function for vegetative growth, via
a nutrient-sensing pathway [12–16], while TORC2 is required for sexual differentiation [17–19].
The temperature-sensitive mutants of tor2, which encodes the catalytic subunit of S. pombe TORC1,
induce an ectopic initiation of sexual differentiation, even under nutrient-rich conditions at
non-permissive temperatures. Several mutants that phenocopy the TORC1 mutant have been isolated.
Intriguingly, many of their responsible genes encode factors that are involved in tRNA expression and
modification, such as ARSs, a subunit of RNA polymerase III, or a tRNA specific adenosine deaminase
subunit [20]. TORC1 activity is downregulated in these tRNA-related mutants; this suggests that tRNA
may be involved in TORC1 regulation in S. pombe. The observation that the overexpression of tRNA
precursors prevents TORC1 downregulation upon nutrient starvation and inhibits sexual differentiation
indicates that tRNA precursors regulate TORC1 activity in a positive manner (Figure 2). Consistently,
the expression of tRNA precursors drastically decreases with nutrient depletion. Moreover, nutrient
starvation does not significantly affect the level of aminoacylation and the total amount of tRNA [20].
Although precise mechanisms on how tRNA precursors regulate the TORC1 activity remain unknown,
Gtr1, a counterpart of RagA/B, is dispensable for tRNA precursor-mediated TORC1 regulation [20].
Notably, S. pombe Rag GTPases negatively regulate TORC1 activity in contrast to the mammalian Rag
complex [21,22].
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Figure 2. tRNA precursor-mediated TORC1 regulation in Schizosaccharomyces pombe. Under nitrogen-rich
conditions, tRNA precursors positively regulate TORC1 activity. Under nitrogen-starved conditions,
the expression of tRNA precursors decreases, resulting in the inactivation of TORC1.

4. tRNA Modification and TORC1

Rapamycin has no impact on the cell growth of S. pombe wild-type cells, whereas mutants with
reduced TORC1 activity are sensitive to rapamycin [13,23,24]. In a genetic screening for rapamycin
sensitive mutants, the genes involved in tRNA modification were identified as those with the highest
enrichment [25] (Table 1), thereby suggesting a close relationship between tRNA modification and
TORC1. Among all types of cellular RNAs, tRNAs undergo highly diverse post-transcriptional
modifications [26,27]. tRNA modifications are vital for the folding, stability, and function of
tRNAs [5,28–30]; these modifications are found on approximately 12% of the residues of all sequenced
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tRNAs from a wide range of organisms [31]. Furthermore, more than 100 tRNA modifications have
been discovered according to the MODOMICS database (http://genesilico.pl/modomics/) [32].

tRNA modifications occur most frequently within the anticodon loop, especially at positions 34
and 37. Position 34, which is the so-called wobble position, pairs with a third mRNA codon base,
in the A-site of the ribosome, during translation [33]. A uridine base at the wobble position, U34, is
carboxymethylated by the highly conserved Elongator complex [30,34–37].

Table 1. tRNA-modification genes whose deletion causes rapamycin sensitivity in S. pombe.

Systematic ID Gene Name Product

SPAC30C2.04 asc1 Cofactor for cytoplasmic methionyl-and glutamyl-tRNA synthetases
SPBC2G5.03 ctu1 Cytosolic thiouridylase subunit
SPAC25B8.05 deg1 tRNA-pseudouridine synthase

SPBC36.07 elp1 Elongator complex WD repeat protein
SPAC29A4.20 elp3 Elongator complex tRNA uridine (34) acetyltransferase subunit

SPCC11E10.06c elp4 Elongator complex subunit
SPBC3H7.10 elp6 Elongator complex subunit
SPAC30.02c kti12 Elongator complex associated protein

SPAC57A10.10c sla1 La protein, tRNA chaperone
SPBP8B7.09c los1 Karyopherin/importin-β family nuclear import receptor

Interestingly, in S. pombe, mutant strains that lack the Elongator complex subunits show exaggerated
sensitivity to rapamycin [25,38] (Table 1). The deletion of the genes that encode the Elongator subunits
results in the lower expression of TORC1 repressors, such as Tsc1 and Tsc2 [39]. Furthermore,
the overexpression of tor2, which encodes the catalytic subunit of S. pombe TORC1, increases the
sensitivity to rapamycin. This observation suggests that the hyperactivation of TORC1 leads to a higher
sensitivity to rapamycin, as in the case of the downregulation of TORC1 activity, even though there
may be a possibility that the overexpression of the catalytic subunits results in the downregulation of
TORC1 by perturbing the balance of the components. From these observations, it is concluded that
Elongator contributes to the downregulation of TORC1 by promoting the expression of repressors,
such as Tsc1 and Tsc2. The positive regulation of TORC2 by Elongator has also been proposed [39].

The participation of tRNA modification in TORC1 regulation has been found in S. cerevisiae;
however, its effect on TORC1 is opposite in both yeasts. In S. cerevisiae, the Elongator mutant cells
have been shown to exhibit hypersensitivity to rapamycin [40–42]. Moreover, in the tRNA anticodon
loop modification mutants (e.g., a double mutant of modification factors at positions 34 and 37),
starvation responses, such as the starvation–responsive gene expression and autophagy, which are
prevented by TORC1, are untimely observed under nutrient-rich conditions [43]. This implies that
tRNA modification acts positively on TORC1 (Figure 3). While many of the TORC1 regulators are
conserved in S. cerevisiae and S. pombe, there are differences. For instance, S. cerevisiae does not have
homologs of TSC1 and TSC2. Thus, it is rational that the roles of tRNA modification in TORC1 signaling
differ between two yeast species.

Rapamycin cannot prevent the growth of S. pombe [23]. However, the simultaneous treatment of
rapamycin and caffeine, the latter of which is also known to decrease TORC1 activity [44,45], inhibits
S. pombe growth [46]. Gene expression profiling was performed, after the combined treatment of
rapamycin and caffeine, using DNA microarrays [47]. We surveyed the genes that are upregulated or
downregulated by more than three-fold after treatment with rapamycin and caffeine, and selected the
genes related to the tRNA metabolic pathway or the tRNA binding in an S. pombe database, PomBase
(https://www.pombase.org). Shown in Tables 2 and 3 are the tRNA-related genes that are upregulated
or downregulated, via the inactivation of TORC1. Further studies of these genes would shed light on
the roles of tRNA-related factors in the TORC1 pathway.

http://genesilico.pl/modomics/
https://www.pombase.org
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Figure 3. tRNA modification and TORC1. In Schizosaccharomyces pombe, Elongator, which catalyzes
modification of the wobble base, negatively regulates TORC1. In Saccharomyces cerevisiae, tRNA
modification acts positively on TORC1.

Table 2. tRNA-related S. pombe genes upregulated more than three-fold after treatment with rapamycin
and caffeine.

Systematic ID Gene Name Product Viability of Deletion Mutant

SPBC16D10.10 tad2 tRNA specific adenosine deaminase subunit inviable

SPCC4B3.01 tum1 Thiosulfate sulfurtransferase, involved in
tRNA wobble position thiolation unknown

Table 3. tRNA-related S. pombe genes downregulated more than three-fold after treatment with
rapamycin and caffeine.

Systematic ID Gene Name Product Viability of Deletion Mutant

SPAC9G1.12 cpd1 tRNA (m1A) methyltransferase complex
catalytic subunit viable

SPAC20G8.09c nat10 rRNA/tRNA cytidine N-acetyltransferase depends on conditions

SPCC126.03 pus1 TruA family tRNA/U2 snRNA
pseudouridine synthase viable

SPAC22A12.05 rpc11 DNA-directed RNA polymerase III
complex subunit inviable

SPAC57A10.10c sla1 La protein, tRNA chaperone viable

SPBC16D10.02 trm11 tRNA (guanine-N2-)-methyltransferase
catalytic subunit viable

SPAC31A2.02 trm112
eRF1 methyltransferase complex and

tRNA (m2G10) methyltransferase
complex regulatory subunit

viable

SPCPB16A4.04c trm8 tRNA (guanine-N7-)-methyltransferase
catalytic subunit viable

SPCC18.13 trm82 tRNA (guanine-N7-)-methyltransferase
WD repeat subunit viable
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5. tRNA Nuclear Transport and TORC1

As mentioned above, tRNAs are synthesized as tRNA precursors (pre-tRNAs) prior to the
post-transcriptional modifications. In S. cerevisiae, intron-containing pre-tRNAs are exported from
the nucleus to the cytoplasm for the removal of introns, and the spliced tRNAs return to the
nucleus via a so-called tRNA retrograde transport [48,49]. Amino acid starvation induces a nuclear
accumulation of spliced tRNAs [48]; this suggests the involvement of TORC1 in tRNA retrograde
transport. Two independent studies have demonstrated the link between TORC1 and tRNA retrograde
transport [50,51]; however, the detailed mechanisms are yet to be addressed. Whitney et al. showed
that rapamycin treatment during amino acid starvation prevents the nuclear accumulation of spliced
tRNA, whereas the treatment with rapamycin under nutrient-rich conditions does not induce the
nuclear tRNA accumulation [50]. This suggests that TORC1 plays a crucial role in tRNA accumulation
during amino acid starvation. Pierce et al. demonstrated that the inhibition of TORC1 by rapamycin
results in the nuclear accumulation of spliced tRNAs even in nutrient-rich conditions, thus implying
that TORC1 regulates the nuclear re-export of retrograde transported spliced tRNAs [51]. Therefore,
the role of TORC1 in tRNA localization must be clarified in further studies.

Notably, the S. pombe mutant cells that were lacking Los1, which is a nuclear tRNA export receptor,
showed sensitivity to rapamycin [25] (Table 1). There may be a relationship between TORC1 and the
regulation of the tRNA localization in S. pombe.

6. tRNA Synthesis by RNA Polymerase III and TORC1

Eukaryotes have three major RNA polymerases: Pol I, II, and III. tRNAs are synthesized by Pol
III [52,53]. Pol III activity is regulated in response to diverse extracellular signals. Moreover, the rapid
repression of RNA pol III-dependent transcription ensures cellular survival against environmental
stress. TORC1 regulates pol III transcription by controlling Maf1, which is the evolutionarily conserved
repressor of pol III. Here, we present a brief overview of the TORC1-mediated regulation of Maf1.
For more details on the function and regulation of Maf1, please refer to other excellent reviews [54–57].

Maf1 represses pol III-dependent transcription during the various stress conditions, including
nutrient starvation, rapamycin treatment, and DNA damage [58,59]. Maf1 is phosphorylated during
normal growth conditions. Under stress conditions, Maf1 is dephosphorylated; this leads to the nuclear
import of Maf1. Subsequently, Maf1 in the nucleus binds to pol III and represses pol III activity [60–62].
The phosphorylation of Maf1 is largely mediated by the TORC1 pathway. While mammalian Maf1 is
phosphorylated by mTORC1, S. cerevisiae Maf1 is mainly phosphorylated by the Sch9 kinase, which is a
target of TORC1 [63–67]. The direct phosphorylation of S. cerevisiae Maf1 by TORC1 has been observed,
at least in vitro [68]. In S. pombe, the phosphorylation of Maf1 has been reported to be dependent on
TORC1; however, whether TORC1 is directly involved or not remains unclear [69].

In S. cerevisiae, TORC1 also regulates tRNA synthesis through the LAMMER/Cdc-like kinase Kns1
and casein kinase II CK2 [70]. Kns1 is negatively regulated downstream of TORC1. When TORC1 is
inhibited, the activated Kns1 phosphorylates Ckb1, which is a CK2 regulatory subunit. This causes a
reduction in the CK2 occupancy of the tRNA genes, and results in the repression of pol III. Kns1 also
phosphorylates Rpc53, a pol III subunit [71]; the significance of this phosphorylation remains unknown.

In S. cerevisiae, several subunits of pol III, including Rpc82, Rpc53, and Ret1, are sumoylated in a
TORC1-dependent manner. The sumoylation of Rpc82 contributes to the stabilization of the pol III
complex and is required for an efficient tRNA transcription under optimal growth conditions [72].

A recent study has shown an interesting relationship between pol III and the longevity downstream
of TORC1 in S. cerevisiae, the fly, and nematode [73]. A reduction in pol III activity has been reported to
result in the expansion of the chronological lifespan of S. cerevisiae. In S. pombe, the downregulation
of TORC1 upon nutrient starvation causes the activation of the GATA transcription factor Gaf1 [74].
Recently, Gaf1 has been shown to bind tRNA genes and repress their transcription, thereby leading to
the extension of the chronological lifespan [75].
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7. Leucyl-tRNA Synthetase and TORC1

In mammals and S. cerevisiae, the heterotrimeric protein complexes GATOR1 and SEACIT function
as GTPase-activating proteins for RagA/RagB and Gtr1, respectively. GATOR2 and SEACAT bind to
and negatively regulate GATOR1 and SEACIT. In mammals, Sestrin 2 binds to leucine and regulates
the GATOR2–GATOR1 pathway. In S. cerevisiae, leucine activates TORC1 via Gtr1; however, there is no
Sestrin ortholog [76].

In addition to Sestrin 2, S. cerevisiae and mammalian leucyl-tRNA synthetase (LeuRS) have been
reported to act as a cytoplasmic leucine sensor to activate TORC1, although the detailed mechanisms
on how LeuRS acts in the TORC1 pathway are different between these two species [77–80].

In S. cerevisiae, LeuRS Cdc60 was isolated as a coprecipitating protein with Gtr1 [80]. LeuRS has
two functionally separate activities: an essential aminoacylation activity and nonessential amino acid
editing activity. A model has been proposed that leucine-bound LeuRS interacts with Gtr1 through the
editing domain and positively regulates TORC1.

While the novel function of LeuRS as a leucine sensor is appealing, we have proposed alternative
rational models for both S. pombe and S. cerevisiae. We isolated S. pombe ARS mutants, including a
LeuRS mutant, during a screening for mutants that phenocopy the TORC1 mutant [20]. In the mutant
cells, the expression of tRNA precursors decreases, thereby suggesting a monitoring system that affects
the expression of tRNA precursors by checking the subsequent aminoacylation step. We considered
that the reduction in tRNA precursors might have caused the downregulation of TORC1, as mentioned
above. In S. cerevisiae, in addition to LeuRS, other ARSs, such as HisRS and IleRS, are involved in
TORC1 regulation [11]. Therefore, we have proposed the model that uncharged tRNA accumulates in
S. cerevisiae ARS mutant cells, and that the accumulated free tRNAs inhibit TORC1 activity. Further
studies would reveal similarities and differences in the mode of action of tRNAs in the TORC1 pathway
of the two yeast species.

8. Conclusions

There is accumulating evidence that tRNAs have more diverse functions than originally thought.
For instance, tRNA-derived small RNAs (tsRNAs) have drawn increasing attention; tsRNAs are
produced by cleavage at specific sites in tRNAs or pre-tRNAs, and have various biological functions,
including the regulation of gene expression, inhibition of translation, prevention of apoptosis,
and regulation of epigenetic inheritance. Furthermore, tsRNAs have been demonstrated to be involved
in tumorigenesis [3,6,7,81]. However, their detailed mechanisms have not been fully understood.

It has long been known that TORC1 regulates tRNA synthesis in downstream events. As we
have discussed here, studies over the past few years have uncovered the involvement of tRNA in
the regulation of TORC1 activity, in both S. cerevisiae and S. pombe. tRNA is likely to be one of the
ideal molecules that transduces nutrient availability, especially for amino acid availability, to TORC1,
as it enables the fine-tuned regulation of the TORC1 activity in response to the cellular levels of
each of the 20 amino acids. Although, as discussed above, the modes of action of tRNA seem to be
different between S. cerevisiae and S. pombe, it is intriguing that tRNA plays important roles in these two
evolutionarily distant yeast species. A comparison between the two divergent systems will bring us
closer to understanding the novel regulatory mechanisms of TORC1 signaling. Further investigations,
not only in yeasts but also in other eukaryotes, would lead us to a comprehensive understanding of
the promising tRNA roles in the TORC1 pathway.
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