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1. Supplementary methods 

 

 

Methods S1: Reconstruction of the phylogeny of the E. globulus populations 

 

The phylogeny of the E. globulus populations was reconstructed using a set of 812,158 high-

quality, genome-wide SNPs called from whole-genome shotgun sequence data (Illumina Paired-

read) obtained from 136 individuals in 17 E. globulus populations. The SNPs were filtered by 

Jacob Butler (University of Tasmania) from an original SNP data set generated by Josquin 

Tibbits (AgriBioc) and Hossein Kahrood (University of Melbourne). The trees sampled were 

from the field trial studied in the current work, with each individual belonging to a unique open-

pollinated family [1]. Nei's genetic distances [2] among populations were calculated using the 

StAMPP R-package [3], and the matrix of genetic distances was used to calculate a phylogenetic 

tree via the neighbour-joining method (e.g. [4]). E. globulus belongs to a complex of four taxa (E. 

maideni, E. bicostata, E. peudoglobulus and E. globulus) which have geographically and 

morphologically distinctive cores, but clinally integrade [5]. Genome-wide phylogenetic studies 

indicate that E. peudoglobulus is the sister species to E. globulus (Figure 9 in [6]). The mainland 

populations of E. globulus, particularly the Strezlecki Ranges population, have closer affinities to 

this sister species than do the Tasmanian and Bass Strait island populations [5]. Accordingly, the 

neighbour-joining tree was rooted on the Strezlecki population, and trimmed to the ten 

populations used in the present study. Assuming equal rates of evolutionary change for the ten 

populations, the branches of this tree were then extended to produce an ultrametric tree (Figure 

S1). Phylogenetic analyses were undertaken using the phytools R-package [7]. 
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Methods S2: Measures that capture the potential for evolution 

 

The mean-standardized G matrices from the Mainland and Island groups were compared by 

using multivariate measures that capture the potential for evolution, as developed by Hansen and 

Houle [8] (see also [9]). In this context, we evaluated the unconditional evolvability [e(β )], the 

conditional evolvability [c(β )] and the evolutionary autonomy [a(β )], which can be computed 

given a G matrix and a vector β  of selection gradients (comprising directional selection acting on 

a trait). For a vector β  normalized to unit length: e(β ) is estimated from the length of the 

projection of the response vector ( z∆  = Gβ ) onto β , and computed as Gββ' , where ' denotes 

the transpose operator; c(β ) is estimated by -1-1 )'( βGβ , where 
-1

 denotes the inverse operator 

and G is assumed to be positive definite; and a(β ) is calculated by the ratio c(β )/e(β ) [8]. In the 

absence of knowledge about the actual β  vector operating on the traits, we computed these 

multivariate measures averaged over a large number of β  vectors, that were randomly sampled 

within a wide range of directions of the phenotypic space and then normalized to unit length (see 

the Materials and Methods, and Table 1). 

    The e(β ) measures the potential of a multivariate phenotype to respond to selection in a β  

direction, without regard for the presence of constraints reflected in G-matrix structure. The e(β ) 

calculated on the original trait scale will not be a sensible measure of evolutionary potential 

unless the traits are measured on comparable scales. For mean-standardized G and β , the e(β ) 

has a readily interpretation: it corresponds to the expected proportional change per generation in a 

mean-standardized trait vector when the directional selection along β  is of unit strength (i.e. 

assuming the strength of selection on the trait vector to be as strong as that on relative fitness 

regarded as a trait; [8]). When placed in the univariate context, this interpretation implies that the 

evolvability of a single trait (denote as AI  in the present article) will equal its mean-standardized 

additive genetic variance [8]. This univariate version of unconditional evolvability has been 
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indicated by Hansen et al. [10] as more suitable than narrow-sense heritability for measuring the 

ability of a given trait to respond to selection in natural populations.  

Evolutionary change in a trait or in a trait combination under directional selection may be 

constrained by genetic covariances with other characters that are under stabilizing selection in 

nature [8, 9, 11]. These genetic constraints may reduce the actual genetic variance available for 

directional selection to act on a trait (or a trait combination), which is not incorporated in the 

unconditional evolvability measure. Hansen et al. [11] introduced the concept of conditional 

evolvability to quantify evolutionary response in a trait that may be constrained by its genetic 

covariances with other characters, assumed to be under stabilizing selection and kept constant 

near their fitness optima. In this context, an equilibrium is considered to be reached between 

indirect selection from the focal trait, shifting the genetically correlated characters away from 

their optima, and direct selection on these characters moving them back toward their optima [9]. 

At this equilibrium state, directional selection on a focal trait may only be able to use a specific 

part of the total available genetic variance, as some of this variance may not be independent of 

the constraining effects of genetically correlated characters under stabilizing selection [11]. 

Extending further this concept to quantify constrained evolution along a selection gradient, 

Hansen and Houle [8] have proposed to estimate the multivariate conditional evolvability in a β  

direction [c(β )]. The c(β ) measures the amount of evolutionary change possible along β  given 

that the response is not allowed to deviate from the direction of selection, as it may occur when 

the directions orthogonal to β  are under stabilizing selection. Specifically, c(β ) quantifies the 

ability of a multivariate phenotype to change in a β  direction independently of the variation in 

the remaining (orthogonal) directions of the phenotypic space, which are assumed to be under 

stabilizing selection and in equilibrium with β , so that no response is allowed along any direction 

other than β  [8]. The c(β ) is typically lower than e(β ), and these measures will tend to approach 
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when variation along β  is genetically uncorrelated with variation along the directions orthogonal 

to β  (along which it is assumed that traits will not evolve; [8]). 

The evolutionary autonomy in the direction of selection [a(β )] represents the proportion of 

evolvability along β  that is left after reduction due to genetic covariances with trait combinations 

in the remaining directions of the phenotypic space, assumed to be under stabilizing selection. If 

the variation along β  is independent of (or not integrated with) variation in other directions, then 

a(β ) = 1; conversely, if the variation along β  is completely correlated (or entirely integrated) 

with variation in other directions, then a(β ) = 0 [8].  

Besides  e(β ), c(β ) and a(β ), we also assessed the evolutionary flexibility measure proposed 

by Marroig et al. [12], that quantifies the extent to which a G matrix deflects the response vector 

from the direction of the selection gradient vector, and it is estimated by the correlation (i.e. the 

cosine of the angle) between these vectors. Although not a direct measure of evolvability [9, 13], 

evolutionary flexibility captures the ability of a population to track with the direction of selection 

(i.e. a more "flexible" population tracks closer to the direction of selection; [12]).  

In a recent study, Hansen et al. [9] have indicated that it will be important to estimate both 

unconditional and conditional evolvabilities when evaluating evolutionary potential, since they 

may bracket the realized evolvability. However, capturing all relevant constraining variation is 

unlikely in empirical studies, as it may be impractical to measure a large number of traits. Even 

under these circumstances, conditional evolvability can still improve our understanding of 

evolutionary potential by quantifying the constraining effects inherent in the genetic covariance 

patterns of a given set of measured traits [9]. This can be the case in the present study, as the four 

measured traits may be able to capture important constraining variation in wood properties, 

assuming that this variation is indeed structured along a few number of dimensions. 
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Methods S3: Matrix comparison using the "random skewers" method  

 

To evaluate the difference between the Mainland and Island mean-standardized G-matrices in 

the direction of the response to selection, we quantified the average similarity between the two 

matrices being compared in their response to a set of random selection gradients (i.e. "random 

skewers"; [14, 15]). In this approach: (i) each G matrix is subjected to the same selection gradient 

(β ) normalized to unit length; (ii) the vector of trait responses to selection ( z∆ ) is predicted from 

the i
th

 G matrix as iz∆  = βGi ; and (iii) the angle (in radians) of response vectors between the 

two G matrices is computed from the inverse cosine of the vector correlation as 













 •

21

211-

 

 
cos

z∆z∆

z∆z∆
, where •  and  denote the dot product and the vector norm, respectively. 

After repeating this procedure over a large number of selection gradients of random direction, the 

mean value of the angles (or, alternatively, the average correlation) of response vectors between 

the two G matrices is calculated, providing a measure of the multivariate similarity in the 

directions of the response to selection. The mean angle (denoted as ϕ ) will tend to be small when 

the G matrices being compared share a similar pattern of genetic covariance structure, and thus 

will be indicative of matrix similarity in orientation. 

 

Methods S4: Krzanowski's geometric approach 

 

The Krzanowski geometric approach compares subspaces from different variance-covariance 

matrices, enabling to evaluate whether the matrices being compared share similar orientation [16, 

17, 18]. Following a principal component analysis of each variance-covariance matrix, a subset of 

k eigenvectors within a q-dimensional trait space (e.g. q = 4 in our study) is selected for each 

matrix to define k-dimensional subspaces for comparison. Ideally, the selected subset of k 

eigenvectors should explain most of the total variation in the matrices being compared, although 

k must be ≤ q/2 [17, 18]. 
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For the comparison of two variance-covariance matrices, let the two k-dimensional subspaces 

be represented by the matrices A and B whose columns contain the loadings of the selected 

eigenvectors. The matrix S = A'BB'A (with the superscript ' denoting the transpose operation) is 

then defined for finding the closest alignment between k dimensions of A and B, with the angles 

between pairs of best-matching vectors being given by nλcos-1 , where nλ  is the n
th

 eigenvalue 

of S. These angles measure the extent to which k dimensions of A and B differ in orientation, and 

will vary from 0º to 90º (corresponding to iλ  values of 1 and 0, respectively); the minimum angle 

between two subspaces defined by k dimensions is given by 1
-1
λcos , where 1λ  is largest 

eigenvalue of S. In addition, the sum of the eigenvalues of S equals the sum of squares of the 

vector correlations between each of the eigenvectors of A and each one of B. This sum will vary 

from 0 to k, providing a bounded index of overall similarity in orientation (denoted as SλΣ  in the 

current study) between the two matrix subspaces; a value of this index approaching 0 indicates 

that the two subspaces are dissimilar (no shared structure), whereas a value close to k indicates 

that the two subspaces are coincident (share similar structure) [16, 17, 18].   

In the present study, the Krzanowski method was used to pursue a two-dimensional 

comparison between the Mainland and Island G-matrices (see the Materials and Methods), and 

also between a G matrix common to all populations and a phylogenetically-corrected D matrix 

(see Methods S5). The Krzanowski approach is particularly useful to evaluate whether G and D 

matrices share a similar orientation as, albeit having equal dimension, the two matrices being 

compared do not contain the same type of information (i.e. they are not both G matrices; e.g. see 

[19, 20]). Under the applied two-dimensional matrix comparisons, the matrix S finds the planes 

in A and B that are closest to each other, with the angles 1
-1
λcos  and 2

-1
λcos  determining 

the extent to which these planes are non-coincident. In the case of a one-dimensional matrix 

comparison, 1
-1
λcos  is equivalent to the angle between the leading eigenvectors of the matrices 



8 

 

being compared (e.g. the angle between the gmax and dmax axes for a comparison of G and D 

matrices).  

 

Methods S5: Comparison of G and D matrices 

 

To complement the approach based on the estimation of evolvability along the direction of 

population divergence, we also evaluated the putative influence of genetic architecture on 

population differentiation by comparing the pooled within-population G-matrix with a variance-

covariance matrix summarizing the divergence in multivariate phenotype among populations (D) 

(e.g. [20, 21]). Instead of obtaining the latter matrix from trait (co)variances based on phenotypic 

means estimated for populations, we modified the model described in Equation (1) (see the 

Materials and methods) to fit populations as a random term (rather than a fixed effect), and thus 

to construct D from REML estimates of trait (co)variances. This has the advantage of controlling 

for environmental effects (captured by experimental design features - replicates and incomplete 

blocks - and also by the residual term in the model) in estimating population (co)variances, while 

also enabling access to their sampling error via the inverse of the Average Information matrix.  

Estimation of D adjusted for phylogenetic relationships among populations will be preferable 

when populations share a common history [22, 23]. To account for non-independence of 

populations due to common ancestry, we incorporated a phylogenetic relatedness matrix for 

modelling population (phylogenetic) effects fitted as a random term (hereafter denoted by the 

vector pu ) in the linear mixed model [4, 24, 25] . In this context, the distribution of the effects in 

pu  was assumed to be multivariate normal with a zero-mean vector and a variance matrix 

defined as CD   ⊗ , where D  is a matrix of phylogenetic-corrected among-population 

(co)variances and C  is a phylogenetic relatedness matrix. The (co)variances in D  were estimated 

by excluding a random term for a residual population effect in the mixed model (e.g. [4]); yet, 

previous univariate analyses of each trait indicated that the variance associated with this term was 
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either zero or not statistically significant according to a likelihood-ratio (LR) test (not shown). 

Based on an ultrametric tree obtained from the reconstructed phylogeny of the populations 

(Methods S1; Figure S1), the C  matrix was estimated by using the vcvPhylo function in the R-

package Phytools [7], assuming Brownian motion. C  was incorporated in ASReml as a 

correlation matrix (so that its diagonal elements pertain to the root-to-tip length in the phylogeny 

scaled to unity, and the off-diagonals refer to the shared branch lengths between the populations), 

and then inverted by ASReml to model the effects in pu . Overall trait means estimated from this 

mixed model correspond to the inferred ancestral states for the traits (which were alternatively 

estimated by using the fastAnc function in Phytools). LR tests were applied to assess the 

statistical significance of the estimated population (co)variances and correlations.   

The pooled G-matrix estimated from the initial mixed model remained virtually unchanged 

when populations were modelled as random effects (as described above), and thus it was used for 

comparison with the phylogenetically-adjusted D matrix to be consistent with previous analyses. 

A geometric approach was undertaken to compare these matrices in terms of their size, shape and 

orientation. Following principal component analysis of each matrix, the sum of all eigenvalues 

(i.e. the total variance, which equals the trace of a matrix when it is positive definite) of a matrix 

provided a descriptor of its size; shape was described by a measure of matrix eccentricity, 

calculated as the ratio of the first eigenvalue to the total variance (e.g. Equations (2) and (3) in 

[26]). The Krzanowski geometric approach [16, 17, 18] was applied to evaluate whether the two 

matrices had similar orientation (see the Materials and Methods, and Methods S4, for further 

details on this method). Under this approach, the first two eigenvectors of the G and D matrices 

(accounting, respectively, for 95% and 99% of the total variance in each matrix; Table S8) 

defined the subspaces to be used in a two-dimensional matrix comparison (k = 2). We also 

pursued a one-dimensional comparison between the two matrices, which is equivalent to 

calculating the angle between their leading eigenvectors (gmax and dmax), hence evaluating 

whether populations have diverged close to the direction of a genetic line of least resistance. Both 
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G and D matrix estimates were compared on a common scale, via their mean-standardization 

using the estimated phylogenetically-weighted trait means (i.e. inferred ancestral states). 

 

Methods S6: REML-MVN sampling approach 

 

The REML-MVN sampling approach assumes that the REML (co)variance estimates from a 

linear mixed model asymptotically have a multivariate normal distribution, with means given by 

the vector of REML parameter estimates at convergence ( θ̂ ) and a (co)variance matrix 

approximated by the inverse of the Average Information matrix ( -1)(θ̂H ) [27, 28] (see also [29, 

30, 31]); both θ̂  and -1)(θ̂H  are provided by ASReml. Thus, samples of a variance-covariance 

matrix that had been estimated by REML can be obtained by directly sampling its elements from 

the distribution N( θ̂ , -1)(θ̂H ). However, such direct sampling procedure may result in matrix 

samples with (co)variance values outside of the theoretical parameter space, particularly when an 

estimated variance-covariance matrix has eigenvalues approaching zero.  

Alternatively to a direct sampling procedure, REML-MVN sampling can be performed on the 

elements of the lower triangular matrix L pertaining to the Cholesky factors of an estimated 

variance-covariance matrix, and those sampled elements of L are then used to construct samples 

(obtained from 'LL ) of the estimated matrix that are positive semi-definite [27, 28]. Analogously 

to this sampling on the L-scale, we pursued REML-MVN sampling on the elements of the factors 

obtained from the parameterization of a (unstructured) variance-covariance matrix as a reduced-

rank factor analytic (FA) structure. In this context, for the effects in fu , the standard multiple-

trait variance-covariance matrix (described in Equation (2); see the Materials and methods) was 

parameterized by an equivalent model that used a FA structure of order 4 (equal to the number of 

traits) with the trait specific variances set to zero [32, 33]. This was also done for population 

effects in the case where the model described in Equation (1) was modified to fit populations as a 

random term (i.e. estimation of the among-population D matrix; Methods S5). ASReml was used 
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to model the FA structure, and to provide the inverse of the Average Information matrix from 

where the sampling (co)variances of the relevant parameter estimates (i.e. factor loadings) were 

obtained. We then applied the REML-MVN sampling approach to construct 100,000 samples of 

either G or D matrix estimates, calculated the target measures for each sample, and generated the 

sampling distribution for each measure across samples. 

Constraints on the parameter space associated with sampling on the L-scale ensures that 

matrix samples are positive semi-definite, but (in contrast to direct sampling on matrix elements) 

may lead to means of the sampling distributions of the (co)variance parameters that differ from 

their REML estimates [27, 28]. In this context, the relative bias we have observed (using 

sampling distributions based on 100,000 REML-MVN matrix samples) was fairly small for our 

estimated variance-covariance matrices (i.e. in general, less than 10% for individual parameter 

estimates, and with a bias averaged over parameters not exceeding 5% for any of the G matrices 

estimated within or across the Mainland and Island groups, as well as for the estimated among-

population D matrix). In addition, both the boundary constraints and the concentration of 

sampling variance in leading eigenvalues may result in their overestimation [31]. Nevertheless, in 

general, the means we have observed in our generated sampling distributions of eigenvalues 

(again based on 100,000 REML-MVN matrix samples) did not differ substantially in relation to 

the corresponding values obtained from the principal component analysis of the estimated 

variance-covariance matrices (e.g. relative differences of 9%, 7% and 4% for the leading 

eigenvalue of the G matrices estimated for the Mainland, Island and all populations across the 

two groups, respectively, and 8% for the leading eigenvalue of the estimated among-population D 

matrix).      
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Methods S7: Statistical support for similarity of two estimated (co)variance matrices 

 
Evaluating the statistical support for similarity of two estimated variance-covariance matrices 

being compared depended on whether measures were computed separately for each matrix and 

then compared between matrices (i.e. measures that capture the potential for evolution; measures 

of matrix size and shape), or were directly calculated from a between-matrix comparison (i.e. ϕ , 

SλΣ  and angle between gmax and dmax) [34]. 

For a measure computed separately for each matrix and then compared between matrices, we 

generated the sampling distribution for the difference between matrices, based on 100,000 

REML-MVN matrix samples of either estimated matrix. In particular, for a multivariate measure 

of evolutionary potential compared between the Mainland and Island groups, the generated 

sampling distribution referred to a difference in means (i.e. e  , c , a , or f ), with each mean 

being computed over 5000 unit-length random selection gradients (as described in the Materials 

and Methods) for a given REML-MVN matrix sample drawn from the estimated G matrix of 

either group. Based on a sampling distribution generated from 100,000 observations, the 95% 

confidence interval for the difference between matrices in a measure was then approximated: 

when overlapping with zero, this 95% confidence interval will be indicative of statistical support 

for similarity between the estimated matrices in the measure under consideration. 

For a measure m directly computed from a between-matrix comparison, the statistical support 

for similarity of two estimated (co)variance matrices - denoted here as 1C  and 2C  for descriptive 

purposes - can be assessed by comparing estimates of m obtained within 1C  and 2C  (in which 

case any difference of m from complete matrix similarity is expected to reflect sampling error 

only) with m estimated between 1C  and 2C  [34, 35]. In this sense, pairs of samples (a and b) 

from both 1C  and 2C  are used to calculate the following statistic: 
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) ,( 21 CCmΨ = [ ) ,(  ) ,( 2211
baba

mm CCCC + ] - [ ) ,(  ) ,( 2121
bbaa

mm CCCC + ]                            

  

where the first term of the right-hand side of the equation refers to the measure m estimated from 

samples of the same matrix, and the second term pertains to the measure m estimated from 

samples of different matrices [35, 36]. Thus, for a given measure m (i.e. ϕ , SλΣ  or angle 

between gmax and dmax), ) ,( 21 CCmΨ  evaluates whether differences within 1C  and 2C  due to 

sampling error are similar to differences between 1C  and 2C . For either estimated matrix being 

compared, 100,000 pairs of REML-MVN matrix samples were drawn, and mΨ  was then 

calculated for each generated pair. Based on a sampling distribution generated from 100,000 

observations, the 95% confidence interval for mΨ  was then approximated: when overlapping 

with zero, this 95% confidence interval will be indicative of statistical support for similarity 

between the estimated matrices in the measure m under consideration.  
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2. Supplementary results 

 

Results S1: Comparison of G and D matrices 

 

Table S5 presents the phylogenetically-corrected D matrix, describing the actual among-

population (co)evolution that has occurred for the traits, together with the G matrix common to 

all populations. The phylogenetically-corrected variances in D represent evolutionary rates for the 

traits (i.e. their mean-scaled variances accumulated over the length of the phylogeny; e.g. [4, 23]), 

with the descriptor of matrix size (i.e. the trace of D) providing a measure of the overall rate of 

population diversification in the four-trait phenotypic space. Highly significant (P < 0.001) 

variances were detected for all traits in both G and D (Table S5). Statistical support for similarity 

in matrix size could not be rejected (Figure S3a), although the total variance in D was slightly 

higher than that in G (Table S9). Thus, in general, the mean-scaled variances in D were not large 

when compared to the corresponding estimates in G. However, this pattern was not apparent for 

the trait covariances, which tended to be stronger in D (Table S5). This was reflected in the 

descriptor of matrix shape, which provided 94% and 84% for the percentage of the total variance 

being accounted for by the first eigenvector of D and G, respectively (Tables S8 and S9). 

Similarity in matrix shape was not statistically supported, as the 95% CI for the difference 

between matrices in this measure did not include zero (Figure S3b), and thus indicated that G and 

D were not proportional. This suggests that genetic drift may not have played an important role in 

generating population differentiation, as G and D are expected to be proportional under neutral 

divergence (see Discussion). The high eccentricity of the D matrix, indicated by the large 

concentration of variance in the main axis of among-population variation, suggests a narrow 

range of directions along which populations have diverged. Such pattern of population 

diversification may reflect the uneven distribution of the genetic variation in G (Table S8), which 

may have limited the amount of highly evolvable directions in the phenotypic space, as indicated 
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by a  ≈ 0.3 (Table S6). In addition, the moderate level of average flexibility (i.e. f  ≈ 0.6; Table 

S6) associated with G indicated a reduced ability for response to a broad range of directions of 

selection. 

Although having a stronger magnitude in D, the covariance estimates showed that the traits co-

varied in a similar direction in the G and D matrices (Table S5). This considerable resemblance 

in trait relationships was reflected in the high level of similarity between G and D in orientation. 

Under a two-dimensional matrix comparison using the Krzanowski method, the index SλΣ  of 

overall similarity was 1.91 (95% CI: 1.66, 1.98) of a possible 2 (Table S9). The gmax and dmax 

directions were closely aligned, with an angle of 5.9º (95% CI: 2.6º, 11.8º) between them. 

Statistical support for similarity in matrix orientation could not be rejected for either of these two 

measures (Figures S3c and S3d). In addition, the angle between the second eigenvectors of G and 

D was also relatively small (i.e. 17.5º; 95% CI: 9.3º, 35.9º), with the 95% CI of the statistic mΨ

including zero (not shown), and thus providing statistical support for shared orientation between 

these two axes. These results suggest that axes of greatest within-population genetic (co)variance 

may have determined trajectories of evolutionary change, with population divergence occurring 

mainly close to the direction of a genetic line of least resistance. 
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3. Supplementary figures 

 

 

 

 

Figure S1. The phylogenetic tree generated for the ten studied populations of Eucalyptus globulus using 812,158 genome-wide 

SNPs. The tree was derived from Nei's genetic distance matrix by using the neighbour-joining method, as detailed in Methods S1. 

See Table S1 for the identification of the studied populations within the Mainland and Island groups, as well as the number of 

families and trees measured per population.    
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(a) 

 
 

(b) 

 

(c) 

 
 

(d) 

 

Figure S2. Simulated sampling distributions and 95% confidence intervals (depicted by the dashed vertical lines), obtained by the REML-

MVN sampling approach [27, 28], for the difference between the Mainland and Island population groups in mean values of the following 

multivariate measures that capture the potential for evolution: (a) unconditional evolvability; (b) conditional evolvability; (c) autonomy; and 

(d) flexibility. These measures were calculated separately for each group, based on the corresponding mean-standardized G-matrix (see 

Table 1, and the Materials and Methods, for further details). When overlapping with zero, a 95% confidence interval for the difference 

between groups in a given measure indicates statistical support for similarity between the two matrices being compared. 
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(a) 

 
 

(b) 

 

(c) 

 
 

(d) 

 

Figure S3. Simulated sampling distributions and 95% confidence intervals (depicted by the dashed vertical lines), obtained by the REML-

MVN sampling approach [27, 28], for the differences in measures of matrix size and shape, and for the statistic Ψm evaluating similarity in 

matrix orientation, used to compare the mean-standardized additive genetic (G) and among-population (D) variance-covariance matrices 

estimated across all studied populations. Plots (a) and (b) refer to the difference between G and D in descriptors of matrix size and shape, 

respectively, calculated separately for each matrix. Plots (c) and (d) pertain to the statistic Ψm used to assess whether the G and D matrices 

had a similar orientation based, respectively, on the following measures directly computed from a between-matrix comparison: angle 

between gmax and dmax ; and Krzanowski's index of overall similarity in orientation between matrix subspaces. For each of these two latter 

measures, the statistic Ψm evaluates whether differences within matrices due to sampling error are similar to differences between matrices 

(see Methods S7). A given 95% confidence interval that overlaps with zero provides indication of similarity between the two matrices being 

compared for the aspect (size, shape or orientation) of interest.  
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4. Supplementary tables 

 

 

Table S1. Mainland and Island population groups of E. globulus: identification of the studied populations within groups, and 

number of families and trees measured per population.  

Population group Population Number of families Number of measured trees 

Mainland Cape Patton 16 72 

Eastern Otways 23 112 

Strzelecki Ranges 57 263 

Western Otways 107 482 

Island Flinders Island 48 216 

Southern Furneaux 45 204 

Inland North-eastern Tasmania 18 86 

North-eastern Tasmania 16 73 

South-eastern Tasmania 53 238 

Southern Tasmania 25 111 
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Table S2. Means, phenotypic standard deviations ( 2
pσ̂ ), mean-scaled within-family variance ( WI ) and narrow-sense 

heritabilities (
2

ĥ ) for wood property traits (S/G, KL, BD and EX) measured in E. globulus, and estimated for the Mainland 

and Island population groups. 

 Mainland group Island group 

 Mean 2
pσ̂  WI  2

ĥ  
Mean 2

pσ̂  WI  2
ĥ  

S/G 

 

1.9 0.124 0.27 ± 0.03 0.37 

(± 0.08) 

2.0 0.114 0.18 ± 0.03 0.42 

(± 0.08) 

KL 

(%) 

20.8 0.955 0.16 ± 0.02 0.26 

(± 0.08) 

20.2 0.929 0.15 ± 0.02 0.28 

(± 0.08) 

BD 

(kg/m3) 

549.4 33.53 0.22 ± 0.03 0.42 

(± 0.08) 

532.8 31.89 0.18 ± 0.03 0.49 

(± 0.09) 

EX 

(%) 

5.3 1.29 4.5 ± 0.5 0.22 

(± 0.08) 

4.3 0.95 2.8 ± 0.4 0.41 

(± 0.08) 

Traits: S/G = syringyl to guaiacyl ratio; KL = lignin (Klason) content; BD = basic density; EX = extractive content. All the 

estimates presented in the table pertain to unstandardized data, except WI  (with values multiplied by 100) which refers to 

mean-standardized data via the trait means within a population group. The WI  were estimated from Ae I0.6 - 2σ̂  (see 

alternative formula in Fig. 8 in [10]), where 
2
eσ̂  is the residual variance estimated from the model described in Equation (1) 

and AI  is the univariate mean-scaled evolvability (estimated by using a coefficient of relationship between OP-sibs of 0.4; 

see the Materials and Methods); WI  will approximate the mean-scaled variance associated with micro-site environmental 

effects on individual trees, under the assumption that environmental variance is strong relative to the variance related to non-

additive genetic effects (i.e. dominance and epistasis). The standard errors of 
2

ĥ (within parentheses) were approximated by 

using the Delta method.  
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Table S3. Principal component (PC) analysis of the additive genetic (G) variance-covariance matrices estimated for wood 

traits (S/G, KL, BD and EX) within the Mainland and Island population groups of E. globulus. The variance accounted for by 

each PC is indicated by the eigenvalue (with the value within parentheses referring to the percentage of the total variance 

explained by the PC), and the eigenvector shows the component loadings on each of the wood property traits. 

 Mainland G-matrix Island G-matrix 

 PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 

Eigenvalue  a) 

 

1.410 

(86.3 %) 

0.154 

(9.4 %) 

0.050 

(3.1 %) 

0.020 

(1.2 %) 

2.017 

(86.3 %) 

 

0.224 

(9.6 %) 

0.069 

(2.9 %) 

0.028 

(1.2 %) 

Eigenvector         

 

S/G 

 

-0.282 

 

-0.110 

 

0.950 

 

0.073 

 

-0.104 

 

-0.527 

 

0.814 

 

-0.220 

 

KL 

 

0.158 

 

-0.075 

 

-0.037 

 

0.984 

 

0.104 

 

-0.210 

 

0.137 

 

0.962 

 

BD 

 

0.065 

 

0.987 

 

0.128 

 

0.070 

 

-0.039 

 

0.823 

 

0.557 

 

0.105 

 

EX 

 

0.944 

 

-0.088 

 

0.282 

 

-0.148 

 

0.988 

 

-0.001 

 

0.093 

 

-0.121 

Traits: S/G = syringyl to guaiacyl ratio; KL = lignin (Klason) content; BD = basic density; EX = extractive content. For each 

population group, G was estimated as a single matrix to represent the populations within the group. The results are based on 

mean-standardized G matrices via the trait means within a population group (see the Material and Methods).  
a) The eigenvalues are multiplied by 100.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 

 

 

 

Table S4. Pearson correlations (with significance probabilities in parentheses) between the 

estimated G-matrices of the Mainland and Island groups for multivariate measures reflecting 

evolutionary potential along different random directions.  

e c a f 

 

0.91 

(P < 0.001) 

 

 

0.89 

(P < 0.001) 

 

 

0.83 

(P < 0.001) 

 

 

0.72 

(P < 0.001) 

 

Unconditional evolvability (e), conditional evolvability (c), autonomy (a) and  flexibility (f)  

were computed along 5000 unit-length random selection gradients uniformly distributed in a  

4-dimensional space. For each group, G was estimated as a single, mean-standardized matrix 

to represent the populations within the group. Prior to assessing the Pearson correlation, the 

5000 observations for each measure were transformed to a normal shape by using a rank-based 

inverse normal transformation (i.e. transformation to rankit scores), as suggested by Bishara  

and Hittner [37].  
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Table S5. Additive genetic (G) and population divergence (D) variance-covariance matrices estimated for wood traits (S/G, 

KL, BD and EX) across all the studied populations of E. globulus. Phylogenetically-corrected (co)variances are provided in 

D. Parameter estimates are given together with their standard errors for variances (diagonal), covariances (below diagonal) 

and correlations (above diagonal). 

 S/G KL BD EX 

 

G-matrix common to all populations 

 

S/G 

 

0.142 ± 0.024 

(P < 0.001) 

 

-0.28 ± 0.12 

(P = 0.033) 

-0.31 ± 0.10 

(P = 0.005) 

-0.57 ± 0.10 

(P < 0.001) 

KL 

 

-0.026 ± 0.012 

(P = 0.033) 

0.059 ± 0.012 

(P < 0.001) 

 

-0.18 ± 0.12 

(P > 0.05) 

0.70 ± 0.08 

(P < 0.001) 

BD 

 

-0.048 ± 0.017 

(P = 0.005) 

 

-0.018 ± 0.012 

(P > 0.05) 

0.166 ± 0.024 

(P < 0.001) 

0.01 ± 0.12 

(P > 0.05) 

EX 

 

-0.256 ± 0.064 

(P < 0.001) 

0.203 ± 0.050 

(P < 0.001) 

0.005 ± 0.060 

(P > 0.05) 

1.443 ± 0.294 

(P < 0.001) 

 

D-matrix of population divergence 

 

S/G 

 

0.145 ± 0.072 

(P < 0.001) 

 

-0.53 ± 0.26 

(P > 0.05) a) 

-0.80 ± 0.14 

(P = 0.006) 

 

-0.81 ± 0.13 

(P = 0.004) 

KL 

 

-0.055 ± 0.041 

(P > 0.05) 

0.074 ± 0.037 

(P < 0.001) 

 

0.03 ± 0.36 

(P > 0.05) 

0.86 ± 0.10 

(P = 0.001) 

BD 

 

-0.088 ± 0.049 

(P = 0.006) 

 

0.002 ± 0.028 

(P > 0.05) 

0.083 ± 0.043 

(P < 0.001) 

0.43 ± 0.30 

(P > 0.05) 

EX 

 

-0.415 ± 0.229 

(P = 0.004) 

0.314 ± 0.169 

(P = 0.001) 

0.168 ± 0.150 

(P > 0.05) 

1.796 ± 0.898 

(P < 0.001) 

Traits: S/G = syringyl to guaiacyl ratio; KL = lignin (Klason) content; BD = basic density; EX = extractive content. All the 

(co)variance estimates presented in the table are multiplied by 100, and pertain to mean-standardized matrices via the 

phylogenetically-weighted trait means (see Methods S5). Significance probabilities from likelihood ratio tests are given 

within parenthesis (note that testing a variance estimate was pursued by fitting a univariate model that ignored the trait 

covariances, in order to avoid estimation and convergence problems that could arise with a multivariate model when 

constraining a variance estimate to remain fixed at zero under the null hypothesis). 
a) P ≈ 0.10. 
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Table S6. Mean values of unconditional evolvability ( e ), conditional evolvability ( c ), autonomy ( a )  

and flexibility ( f ) (with 95 % confidence intervals within parentheses) based on the estimated G-matrix  

common to all populations of E. globulus. 

e  a) c  a) a  f  

 

0.452 

(0.340, 0.611) 

 

0.111 

(0.084, 0.135) 

 

0.326 

(0.242, 0.395) 

 

0.627 

(0.582, 0.676) 

 

The e , c , a  and f  mean values were computed over 5000 unit-length random selection gradients  

uniformly distributed in a 4-dimensional space. The estimated G-matrix common to all populations (i.e. 

a pooled matrix obtained by combining data across all the open-pollinated families nested within the  

studied populations) was mean-standardized via the phylogenetically-weighted trait means (see the 

Materials and Methods, and Methods S5). 

a) The e  and c values are multiplied by 100.   
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Table S7. Amount of divergence from the inferred ancestral states, unconditional ( )(ze ) and conditional ( )(zc ) 

evolvabilities along the direction of divergence (z), and angle between z and gmax, for the studied populations of E. globulus. 

Population 

 

Amount of 

divergence (%) 
)(ze  (%) )(zc  (%) Angle between z and gmax (º) 

a) 

Western Otways 1.46 0.290 0.086 69.4 

Cape Patton 5.02 1.410 0.603 16.5 

North-eastern Tasmania 7.27 1.264 0.462 25.7 

Strzelecki Ranges 11.65 1.394 0.589 17.6 

Eastern Otways   11.66 1.416 0.882 16.1 

Flinders Island 14.27 1.516 1.417 3.2 

Inland North-eastern Tasmania 17.08 1.203 0.492 29.1 

South-eastern Tasmania    17.79 1.359 0.708 20.3 

Southern Furneaux 18.17 1.514 1.359 3.8 

Southern Tasmania 27.54 1.500 1.131 7.0 

For details on the estimation of the amount of divergence from the inferred ancestral states, and )(ze  and )(zc  along the z-

direction, see Table 2 and the Materials and Methods. The gmax direction corresponds to the first eigenvector of the G-matrix 

common to all populations (Table S8). The angle between z and gmax was calculated by [cos-1(z, gmax)]180/π, where the two 

vectors are normalized to unit length, and ' denotes the transpose operator.  
a) The actual angle between a divergence vector (z) and gmax may vary from 0º (completely aligned) to 90º (orthogonal). To 

evaluate whether the directions of population divergence were significantly aligned with gmax, we compared each of these 

angles to a null distribution that was generated by simulating 100,000 pairs of random vectors uniformly distributed in a 4-

dimensional space (i.e. equal to the number of measured traits). The elements of each of these vectors were randomly drawn 

from a normal distribution with a mean of 0 and a variance of 1, and then each vector was normalized to unit length. The 

critical values of the null distribution were 28.6º, 16.6º and 8.2º, corresponding to the 5th, 1th and 0.1th percentiles of the 

simulated distribution, respectively. Thus, all populations except Western Otways appeared to be well aligned with gmax 

(although for Inland North East Tasmania the alignment was marginally non-significant, i.e. 29.1º versus 28.6º). 
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Table S8. Principal component (PC) analysis of the additive genetic (G) and population divergence (D) variance-covariance 

matrices estimated for wood traits (S/G, KL, BD and EX) across all the studied populations of E. globulus. The variance 

accounted for by each PC is indicated by the eigenvalue (with the value within parentheses referring to the percentage of the 

total variance explained by the PC), and the eigenvector shows the component loadings on each of the wood property traits. 

 G-matrix common to all populations D-matrix of population divergence 

 PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 

Eigenvalue  a) 

 

1.520 

(84.0 %) 

0.191 

(10.6 %) 

0.071 

(3.9 %) 

0.027 

(1.5 %) 

1.966 

(93.7 %) 

 

0.116 

(5.5 %) 

0.012 

(0.6 %) 

0.005 

(0.2 %) 

Eigenvector         

 

S/G 

 

-0.183 

 

-0.429 

 

0.880 

 

-0.089 

 

-0.227 

 

-0.571 

 

0.659 

 

0.434 

 

KL 

 

0.138 

 

-0.140 

 

0.060 

 

0.979 

 

0.165 

 

-0.341 

 

-0.664 

 

0.645 

 

BD 

 

0.008 

 

0.890 

 

0.446 

 

0.099 

 

0.096 

 

0.731 

 

0.255 

 

0.625 

 

EX 

 

0.973 

 

-0.069 

 

0.153 

 

-0.157 

 

0.955 

 

-0.150 

 

0.246 

 

-0.071 

Traits: S/G = syringyl to guaiacyl ratio; KL = lignin (Klason) content; BD = basic density; EX = extractive content. G was 

estimated as a additive genetic variance-covariance matrix common to all populations (i.e. a pooled matrix obtained by 

combining data across all the open-pollinated families nested within the studied populations). D refers to a matrix of 

population divergence with phylogenetically-corrected (co)variances. Both matrices were mean-standardized via the 

phylogenetically-weighted trait means (see Methods S5). 
a) The eigenvalues are multiplied by 100.  
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Table S9. Comparison of the additive genetic (G) and population divergence (D) variance-covariance matrices estimated 

across all studied populations of E. globulus, based on descriptors of matrix size and shape, and on measures of matrix 

similarity in orientation (with 95% confidence intervals within parentheses). Phylogenetically-corrected (co)variances were 

estimated in D. 

 Size a) Shape Orientation 

   Angle between  

gmax and dmax (º) 
Krzanowski's index ( SλΣ ) 

of overall similarity 

G-matrix common to 

all populations  

1.8 

(1.3, 2.4) 

 

0.84 

(0.78, 0.89) 

 

 

5.9 

(2.6, 11.8) 

 

 

1.91 

(1.66, 1.98) 

D-matrix of 

population divergence 

  

2.1 

(1.1, 3.6) 

0.94 

(0.86, 0.97) 

  

Descriptors of matrix size and shape were calculated separately for each matrix, whereas similarity in matrix orientation was 

quantified by measures directly computed from a between-matrix comparison. Both matrices were mean-standardized via the 

phylogenetically-weighted trait means (see Methods S5). See Figure S3 to evaluate the statistical support for similarity of the 

G and D matrices in the measures provided in the table.   
a) The eigenvalues were multiplied by 100 in the calculation of the descriptor of matrix size. 
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