Supplementary Figures and Tables

Figure S1. The flowchart regarding the classification of the samples. The detailed operating procedures and information about classification of samples.

Figure S2. The results of the Fisher Ratio. Bar plot presented the interval of genes' fisher ratio and the number of genes in each interval.

Figure S3. Screen plot of 300 representative genes. Scree plot was drawn to show the correlation between variance and the number of main components.

Figure S4. The bubble diagram of functional enrichment. The enriched Gene Ontology for subtype 1, subtype 2 and subtype 3. Count means the number of genes enriched in a certain annotation.

Figure S5. The heatplot for the molecular subtypes, pathologic stage and TNM staging. Tnm_m, tnm_n and tnm_t were the TNM staging.

Gene Symbol	Discription	Reference	<i>p</i> -Value	Fold Change
GABRD	stage-specific differentially expressed in hepatocellular carcinoma	[38]	3.368509 × 10 ⁻⁶²	34.8256
ANGPTL6	highly expressed in liver cancer	[43]	1.338193 × 10 ⁻²³	0.1879
MSTO1	Required for mitochondrial fusion and mitochondrial network formation	GeneCards	2.034419 × 10 ⁻⁹⁴	5.1055
EBF2	A potential therapeutic target of HCC	[40]	3.463284 × 10 ⁻⁴⁹	56.8254
GBA	inhibit liver cancer	[45]	9.070282 × 10 ⁻⁸³	4.0856
CLEC4M	a valuable biomarker for the prognosis of the patients with HCC	[30]	2.854162 × 10 ⁻¹⁴	0.0273
MIR3658	involved in tumor progression of bladder cancer	[52]	4.156083 × 10 ⁻⁶⁸	5.0915
GPAA1	a therapeutic target for gastric cancer	[51]	1.874503 × 10 ⁻⁷⁰	4.0789
САСҮВР	highly expressed and associated with poor prognosis in HCC	[33]	6.909608 × 10 ⁻⁶⁹	3.3634
SFTA1P	significant association with overall survival in HCC patients	[32]	3.449638 × 10 ⁻⁴⁸	123.5817
CXCL14	linked with impaired liver function	[49]	5.819188 × 10 ⁻²⁰	0.1507
CKS1B	represented a potential research target for therapeutics of retinoblastoma	[46]	9.562192 × 10 ⁻⁶⁸	3.7726
APLN	played an oncogenic role in HCC	[35]	1.226416 × 10 ⁻⁴²	24.4214
KRTCAP2	The gene is overexpressed in Liver	GeneCards	8.404593 × 10 ⁻⁸⁸	3.4930
ESM1	serve as a biomarker for diagnosing and monitoring renal cell carcinoma	[50]	1.897959 × 10 ⁻³⁷	29.5066
TBCE	Low tissue specificity	The Human Protein Atlas	2.562632 × 10 ⁻⁹²	3.3832
CLEC1B	a signature gene highly associated with tumor progression	[47]	9.306855 × 10 ⁻¹⁷	0.0368
PPOX	played a crucial role in the development of HCC	[41]	8.340677 × 10 ⁻⁹⁷	3.5038
CDH13	a potential noninvasive biomarker of HCC	[36]	7.580294 × 10 ⁻⁷¹	7.8091
NTF3	controls survival and differentiation of mammalian neurons	GeneCards	1.135516 × 10 ⁻²²	0.1380

Table S1. The detailed information for the 34 DEGs.

C1orf35	related to pathway Innate Immune System	GeneCards	9.410057 × 10 ⁻⁸⁶	3.9379
C8orf33	correlated with overall survival in HCC patients	[37]	5.074940 × 10 ⁻⁷⁴	3.7787
MIR4793	involved in post-transcriptional regulation of gene expression in multicellular organisms	GeneCards	2.573851 × 10 ⁻⁴⁴	17.7375
HIGD1B	links to tumorigenesis and the progression of pituitary adenomas	GeneCards	1.753135 × 10 ⁻⁷⁹	13.1410
BLOC1S3	induce hepatocyte apoptosis	[44]	1.733118 × 10 ⁻⁷⁴	3.1598
LOC1053696 32	an RNA Gene, affiliated with the IncRNA class	GeneCards	1.855580 × 10 ⁻⁶⁹	4.5705
COL15A1	Prognostic marker in liver cancer (favourable)	The Human Protein Atlas	9.020337 × 10 ⁻⁴¹	21.5720
CRIP3	Cancer enhanced (liver cancer)	The Human Protein Atlas	2.201642 × 10 ⁻³⁵	7.0812
SMYD3	promoted the tumor igenicity and intrahepatic metastasis of HCC cell	[39]	3.849815 × 10 ⁻⁴⁶	4.5849
DDX11-AS1	played important role during HCC oncogenesis	[34]	7.968983 × 10 ⁻⁵²	12.1320
CYP2C8	downregulated in HCC and could be a potential prognostic biomarker	[31]	2.130738 × 10 ⁻²⁰	0.2245
CEP72	the major microtubule-organizing center in animal cells	GeneCards	6.352548 × 10 ⁻⁴⁸	4.2004
HCG25	an RNA Gene, and is affiliated with the lncRNA class	GeneCards	5.731509 × 10 ⁻⁵⁹	5.1442
FAM83H	expressed higher in HCC cells compared to normal liver	[48]	1.191638 × 10 ⁻⁶³	4.2419

 Table S2. Function enrichment analysis of the 34 DEGs.

Function	p-Value	Genes	
Receptor regulator activity	1.592 × 10 ⁻³	NTF3,CXCL14	
Cell development	1.927×10^{-3}	NTF3, TBCE, SMYD3	
Positive regulation of response to external stimulus	2.429 × 10 ⁻³	NTF3, CDH13	
Multicellular argenismal process	2.607 × 10 ⁻³	NTF3,GBA,ANGPTL6,	
Municentiar organismai process		TBCE, CDH13	
Muscle structure development	3.298×10^{-3}	CXCL14, SMYD3	
Viral genome replication	5.250×10^{-3}	CLEC4M	
Membrane lipid catabolic process	5.250×10^{-3}	GBA	
Cellular response to glucocorticoid stimulus	5.250×10^{-3}	SMYD3	
Modulation by virus of host morphology or	5 250 × 10-3	CLECAM	
physiology	3.230 × 10 °		
Protein localization to microtubule organizing	5.250×10^{-3}	CED72	
center	5.250 * 10 °	CE172	

Cellular response to dexamethasone stimulus	5.250×10^{-3}	SMYD3	
Skin morphogenesis	5.250×10^{-3}	GBA	
Maintenance of protein localization in	5.250×10^{-3}	CDAA1	
ndoplasmic reticulum 5.250 × 10		GFAAT	
Negative regulation of peptidyl-tyrosine	5 250 x 10 ⁻³	NTF3	
phosphorylation	3.230 ** 10	1110	
Regulation of locomotion	5.405×10^{-3}	NTF3, CDH13	
regulation of the force of heart contraction	6.122 × 10 ⁻³	APLN	
Adhesion of symbiont to host	6.122 × 10 ⁻³	CLEC4M	
Muscle atrophy	6.122×10^{-3}	TBCE	
Intracellular signal transduction	6.400×10^{-3}	CLEC4M,NTF3, GBA	
Anatomical structure development	6 801 × 10-3	NTF3,COL15A1,CLEC1B,	
	0.091 × 10 -	CXCL14	
Pigment cell differentiation	6.993 × 10 ⁻³	BLOC1S3	
Aromatase activity	6.993 × 10 ⁻³	CYP2C8	
Oxygen binding	6.993 × 10 ⁻³	CYP2C8	
GABA receptor activity	6.993 × 10 ⁻³	GABRD	
Response to testosterone	6.993 × 10 ⁻³	GBA	
Cell activation	7.107×10^{-3}	CLEC1B, BLOC1S3	
Cadherin binding	7.864×10^{-3}	CDH13	
Axo-dendritic transport	7.864×10^{-3}	BLOC1S3	
Phosphate-containing compound metabolic	9 059 × 10-3		
process	8.038 × 10 5	NTF3,GDA,GFAAT	
Regulation of cyclin-dependent protein	8.734×10^{-3}	CVS1B	
serine/threonine kinase activity	8.734 × 10 °	CK31D	
Positive regulation of receptor-mediated	8 734 x 10-3	NTE3	
endocytosis	0.754 × 10 *	1115	
Extracellular matrix structural constituent	8.734 × 10 ⁻³	COL15A1	
Endocrine hormone secretion	8.734 × 10 ⁻³	APLN	
Developmental process	9.700×10^{-3}	FAM83H,CLEC1B,	
Developmental process	8.799 × 10 °	EBF2,BLOC1S3	
Catalytic activity, acting on a protein	9.024 × 10 ⁻³	SMYD3,GPAA1,CKS1B	
Positive regulation of transport	9.557 × 10 ⁻³	NTF3, APLN	
Chemokine receptor binding	9.604 × 10 ⁻³	CXCL14	
Porphyrin-containing compound metabolic	9 604 ~ 10-3		
process	7.004 × 10 ⁻³	ΓΓΟΛ	

Table S3. Pathway enrichment analysis of the 34 L	EGs.

Pathway	P-Value	Genes	
C-type lectin receptor signaling pathway	3.9220 × 10 ⁻³	CLEC4M, CLEC1B	
Other glycan degradation	1.6532×10^{-2}	GBA	
Glycosylphosphatidylinositol (GPI)-anchor biosynthesis	2.2556 × 10 ⁻²	GPAA1	
Linoleic acid metabolism	2.5981 × 10 ⁻²	CYP2C8	
Nicotine addiction	3.5343 × 10 ⁻²	GABRD	
Neuroactive ligand-receptor interaction	3.5760 × 10 ⁻²	GABRD, APLN	
Matabalia pathurana	$2(020 \times 10^{-2})$	CYP2C8,GBA, PPOX,	
Metabolic pathways	5.0029 × 10 2	GPAA1	
Porphyrin and chlorophyll metabolism	3.7036 × 10 ⁻²	PPOX	

Sphingolipid metabolism	4.1255×10^{-2}	GBA
Arachidonic acid metabolism	5.4635×10^{-2}	CYP2C8
Retinol metabolism	5.7952×10^{-2}	CYP2C8
Drug metabolism - cytochrome P450	6.2082×10^{-2}	CYP2C8
Chemical carcinogenesis	7.0290×10^{-2}	CYP2C8
GABAergic synapse	7.5993 × 10 ⁻²	GABRD
Protein digestion and absorption	7.6805×10^{-2}	COL15A1
Morphine addiction	7.7617×10^{-2}	GABRD
Small cell lung cancer	7.9237 × 10 ⁻²	CKS1B
Viral protein interaction with cytokine and	9 1999 - 10-2	CVCI 14
cytokine receptor	0.4000 ^ 10 -	CACL14
Serotonergic synapse	9.6883 × 10 ⁻²	CYP2C8