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Abstract: DNA methylation plays several roles in regulating neuronal proliferation, differentiation,
and physiological functions. The major de novo methyltransferase, DNMT3, controls the DNA
methylation pattern in neurons according to environmental stimulations and behavioral regulations.
Previous studies demonstrated that knockout of Dnmt3 induced mouse anxiety; however, controversial
results showed that activation of Dnmt3 causes anxiolytic behavior. Thus, an alternative animal model
to clarify Dnmt3 on modulating behavior is crucial. Therefore, we aimed to establish a zebrafish
(Danio rerio) model to clarify the function of dnmt3 on fish behavior by behavioral endpoint analyses.
We evaluated the behaviors of the wild type, dnmt3aa, and dnmt3ab knockout (KO) fish by the novel
tank, mirror biting, predator avoidance, social interaction, shoaling, circadian rhythm locomotor
activity, color preference, and short-term memory tests. The results indicated that the dnmt3aa KO fish
possessed abnormal exploratory behaviors and less fear response to the predator. On the other hand,
dnmt3ab KO fish displayed less aggression, fear response to the predator, and interests to interact
with their conspecifics, loosen shoaling formation, and dysregulated color preference index ranking.
Furthermore, both knockout fishes showed higher locomotion activity during the night cycle, which
is a sign of anxiety. However, changes in some neurotransmitter levels were observed in the mutant
fishes. Lastly, whole-genome DNA methylation sequencing demonstrates a potential network of
Dnmt3a proteins that is responsive to behavioral alterations. To sum up, the results suggested that
the dnmt3aa KO or dnmt3ab KO fish display anxiety symptoms, which supported the idea that Dnmt3
modulates the function involved in emotional control, social interaction, and cognition.
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1. Introduction

DNA methylation plays an important role in epigenetic modification [1]. The add on and
off of methyl group onto DNA without altering protein-coding sequences is catalyzed by DNA
methyltransferases (DNMTs) and demethylase (TETs) [2,3]. The family of Dnmt homolog genes,
Dnmt1, Dnmt2, Dnmt3A, Dnmt3B, and Dnmt3L, have been identified in mammals [4,5]. In general,
Dnmt1 plays a role in DNA methylation maintenance, while Dnmt3a, Dnmt3b, and Dnmt3L take
charge of performing de novo methylation [6–8]. Dnmt2 is known for its catalytic role on cysteine
methylation; however, the precise function is still ambiguous [9]. Due to the importance of DNMTs in
genomic modification, dysregulation on DNMTs may result in inherited diseases, such as chromosome
instability [10], developmental abnormality [11], and cancer formation [12,13].

Previous evidence has shown that neuronal diseases, such as Alzheimer’s disease, anxiety, major
depression, and Schizophrenia are closely related to dysregulation of DNA methylation [14–17] or
Dnmt3 expression level in the brain [12,16]. Previous studies showed that changes in DNA methylation
in brain tissue affect learning and memorial behaviors in the mouse models [18,19]. The Dnmt3a
plays an important role in de novo DNA methylation in mice, which is modulated by environmental
factors to regulate downstream genes and affects behaviors [20]. Moreover, the epigenetic process was
implicated to associate with long-term memory [21,22]. For example, mice with forebrain-specific
Dnmt3a deficiency displayed deficits in long-term potentiation leading to behavioral disorders [23].
However, Dnmt1 knockout (KO) mice displayed an anxiolytic and anti-depression phenotype, while
Dnmt3a deficiency does not alter behavior, which indicated Dnmt1 and Dnmt3a played distinct roles
in controlling emotion in mice [23,24]. On the contrary, Dnmt3a deficiency within the prefrontal
cortex showed an increase of anxiety-like actions [12], which indicated Dnmt3a function remained
controversial. Therefore, considering the complexity of the mouse model, establishing an alternative
animal model to clarify Dnmt3 on modulating behavior by a series of endpoint analyses is crucial.

Zebrafish (Danio rerio), a lower vertebrate model for behavioral study with great potential in the
latest years, was popular in studying behavioral genetics since its whole genome has been decoded.
The genomic pattern and chromosomal localization of five DNMT-related genes in zebrafish have been
successfully identified [24]. Zebrafish encodes multiple homologs of mammalian Dnmt3a (dnmt3a1 and
dnmt3a2) and Dnmt3b (dnmt3b1, 3b2, 3b3, and 3b4) genes that occur in the teleost fish lineage shortly
after their divergence from the tetrapod lineage. Duplicated genes in the zebrafish model provide
a unique opportunity for obtaining new mechanistic insights into the multiple functions of a gene
family [25]. In addition, functional genomic tools to perform gain-of-function (i.e., Tol2 transposon)
and loss-of-function (i.e., TALEN and CRISPR genome editing tools) approaches have been robustly
developed and applied in zebrafish models. Zebrafish demonstrate robust behavioral responses and
evolutionarily conservation to mammalian species [26]. Nowadays, with the computational tools
for locomotion tracking, various zebrafish behavior endpoints are easier ] quantify. Thus, combined
with TALEN techniques used for gene knockout of either dnmt3aa or dnmt3ab gene, this study aimed
to explore the behavior-related functions of two human Dnmt3a homolog genes in zebrafish by
conducting multiple behavior tests and performing DNA methylation profiling. By applying the
systematic investigation of behaviors and genomic analysis, hopefully, the Dnmt-associated network
will be elucidated and may apply to neurogenetic research in the near future.
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2. Materials and Methods

2.1. Animal Ethics

All the experimental protocols and procedures involving zebrafish were approved by the
Committee for Animal Experimentation of the Chung Yuan Christian University (CYCU) (Number:
CYCU104024, issue date 21 December 2015). All experiments were performed in accordance with
the guidelines for laboratory animals issued by the Institutional Animal Care and Use Committees
(IACUCs) of CYCU.

2.2. Fish Lines and Husbandry

TALEN technique was used to create zebrafish mutants that defected in dnmt3aa
(ENSDARG00000005394) and dnmt3ab (ENSDARG00000015566) genes. The custom-design TALEN
vectors were purchased from Zgenebio Inc. (Taipei, Taiwan) and the TALEN target site was designed to
target exon 7 and exon 12 for zebrafish dnmt3aa and dnmt3ab genes, respectively (Figure 1A). The TALEN
target sequences were 5′-ACCTCAGCAACAGCACACtgaccccgcctccccaacGGTTGCCACAACGCCTG-3′

for dnmt3aa and 5′-CCAGCCTCTCCAACTGTtgccaccacaccagagcctGTGTCTATAGGGGATGG-3′ for
dnmt3ab genes (TALEN recognition sites are capitalized and underlined while sequence between two
recognition sites is the spacer). After injection with the 5′-capping in vitro synthesized TALEN left
and right arm mRNAs, the injected embryos were raised to adulthood and mated with wild-type
fish to generate F1 progeny. Afterward, Sanger sequencing was performed to screen the potential
mutant carriers and cross the F1 pairs with the same genotype to generate homozygotic F2 progenies.
Finally, we identified dnmt3aa mutant carrying 8bp deletion and 25 bp insertion (5′-CCTCCCCA-3′

deletion and 5′-TTGCCACACGGTTGACACGGGGAAACTATGGAC-3′ insertion) and dnmt3ab mutant
carrying 5 bp deletion (5′-CACCA-3′ deletion) (Figure 1B). The corresponding translated protein
sizes for mutated dnmt3aa and dnmt3ab genes were shortened from 852 aa to 210 aa and from 978
aa to 347 aa, respectively. The predicted 3D protein structure was analyzed by using an online tool
of PHYRE2 (http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index) and mutated dnmt3aa and
dnmt3ab encoded two internal repeated domains at N-terminus. The key functional domains within
Dnmt3a such as PWWP, RING, and DNA methylase domains were all missing (Figure 1C).

AB strain zebrafish were held and raised in a trapezoid tank with 34 cm at the top, 23 cm along
the bottom, 19 cm along the diagonal side, 18 cm high, and 27 cm wide filled with 8 L of filtered
water. The condition was maintained at 25 ± 1 ◦C with a 14/10 h light/dark cycles in culture water
(UV sterilized and well-aerated water, pH 7.2 + 0.4, dissolved oxygen, 6.5 ± 0.2 mg/L, electrical
conductivity, 0.254 ± 0.004 mS/cm, water hardness, 183 ± 5 mg of CaCO3/L). Fish were fed twice a
day with either commercial dry food or brine shrimps. Maintenance and routine culture were based
on the previously described method [27]. Adult zebrafish of both sexes (≈6 months) with a healthy
condition were used in the current study. Two generations of each fish line were used in this study.
The first generation was used in several behavior tests, which were novel tank, mirror biting, predator
avoidance, social interaction, and shoaling tests. Meanwhile, their offspring, which were the second
generation, were used for other assays, including morphometric, circadian rhythm locomotor activity,
color preference, short-term memory, and biochemical assays. The whole test was divided into two
parts to maintain the consistency of zebrafish age during the test. While the amount of successfully
injected dnmt3ab KO fish in the first generation was numerous (n > 30), slightly fewer dnmt3aa KO fish
were obtained in the first generation (n = ~10). However, based on several prior studies, this sample
size was sufficient to conduct various behavioral tests properly [28–32]. Nevertheless, a higher n
number of fish was generated in the second generation.

http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
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Figure 1. Generation of dnmt3aa and dnmt3ab gene knockout (KO) zebrafish by using TALEN 
(transcription activator-like effector nuclease) genome-editing tool. (A) The location of TALEN right 
arm, spacer, and left arm on targeting zebrafish dnmt3aa and dnmt3ab genes are showed. (B) The 
Sanger sequencing dendrogram showed the sequence of wildtype, heterozygotes, and homozygotes 
of dnmt3aa (upper panel) and dnmt3ab (lower panel) mutants. (C) Three-dimension model predictions 
on the structure of wild type and Dnmt3aa and Dnmt3ab mutated proteins. 
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Figure 1. Generation of dnmt3aa and dnmt3ab gene knockout (KO) zebrafish by using TALEN
(transcription activator-like effector nuclease) genome-editing tool. (A) The location of TALEN right
arm, spacer, and left arm on targeting zebrafish dnmt3aa and dnmt3ab genes are showed. (B) The
Sanger sequencing dendrogram showed the sequence of wildtype, heterozygotes, and homozygotes of
dnmt3aa (upper panel) and dnmt3ab (lower panel) mutants. (C) Three-dimension model predictions on
the structure of wild type and Dnmt3aa and Dnmt3ab mutated proteins.

2.3. Morphometric Analysis

The images of WT and KO fish were captured, and the image files were converted to .tps file
type by using TpsUtil for morphometric analysis (http://life.bio.sunysb.edu/morph/soft-utility.html).
Later, the image landmark was digitized by the TpsDig2 toll and procrustes analysis for zebrafish
was performed by using MorphoJ software which can generate a covariance matrix (http://www.
flywings.org.uk/morphoj_page.htm). Afterward, principal component analysis (PCA) was performed
to compare the morphometric difference between the WT and mutant fish as described in the previous
study [33].

2.4. Measurement of 5-mC and 5-hmC Levels

The global DNA methylation levels for 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine
(5-hmC) were conducted by using commercial ELISA kits (D5425 and D5426, Zymo Research, Taipei,
Taiwan). Initially, the genomic DNA was isolated from fishtail fin clips by following the instruction
provided by Easy tissue and cell genomic DNA purification kit (DP021E-150, GeneMark, Taipei,
Taiwan). Later, about 100 ng of isolated genomic DNA was applied to perform ELISA to quantify 5-mC
and 5-hmC levels by using antigen-specific antibodies immobilized onto 96-well plates. After the color
development reaction, the ELISA plate was measured by an ELISA reader (ThermoFisher Scientific,

http://life.bio.sunysb.edu/morph/soft-utility.html
http://www.flywings.org.uk/morphoj_page.htm
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Waltham, MA, USA) at 405 nm and the concentration of 5-mC and 5-hmC was calibrated by using a
standard curve according to the protocol provided by the commercial kit.

2.5. Multiple Behavior Test

A novel tank, mirror biting, predator avoidance, social interaction, shoaling, and circadian rhythm
locomotor activity tests were performed according to our previously published methods [34,35].
In these tests, a trapezoid test tank with 22 cm along the bottom, 28 cm at the top, 15.2 cm high,
and 15.9 cm along the diagonal side was used during the experiment after being filled with ≈1.25 L
of filtered water. Novel tank test is a test for evaluating fish anxiety levels in the new environment.
Based on the natural tendency for zebrafish to seek protection by diving, freezing, and spending the
majority of time at the bottom when introduced into a novel environment, fish gradually acclimated
over time, increasing in expanding their swimming area to higher portions of the test tank [36,37].
Generally, when zebrafish demonstrate anxious behavior, they tend to spend more time at the bottom
of the area. Meanwhile, the mirror biting test is an assay to evaluate the aggressiveness of zebrafish.
When zebrafish are introduced into a tank with a mirror attached, fish immediately display mirror
biting behavior to drive away from the potential intruder. Next, the predator avoidance test is a test
for evaluating the fish’s fear and escape response as innate responses to reduce the chance of being
captured by the predator. When zebrafish contact with a predator, which in the current study was
Amatitlania nigrofasciata, they display high anxiety, an elevation of serum cortisol levels, or freezing
behavior [38,39]. Social interaction and shoaling tests were conducted to evaluate the social interaction
between two or multiple fish. In the social interaction test, normally, zebrafish display sociality between
either male–male or male–female conspecific individuals while the shoaling test was used to observe
the zebrafish capability to form a shoal. Circadian rhythm locomotor activity, which reflects zebrafish
circadian rhythm pattern, was also measured in the current study by monitoring their locomotor
activity for 24 h [35]. In this test, six custom-made small fish tanks (20 × 10 × 5 cm) which were placed
above a lightbox were used. In addition, the color preference test was also performed according to
our recently published method reported by Siregar et al. [40]. This test was conducted in a 21 × 21 ×
10 cm acrylic tank filled with ≈1.5 L of filtered water. Two-color combinations among red, green, blue,
and yellow colors were applied in each test tank. The color perception was conducted to investigate
whether the dnmt3aa and dnmt3ab KO fish exhibited any vision alteration.

2.6. Short-Term Memory Test (Passive Avoidance Task)

The passive avoidance task is a performance test based on fear conditioning and classically used to
examine short-term or long-term memory on small laboratory animals (rats, mice, fish) [41–43]. In this
test, a subject learns to escape an unpleasant stimulus (such as an electrical shock). Since previous
studies showed that DNA methylation in the brain regulates learning and memory processes [44],
we evaluated the short-term memory in dnmt3a KO zebrafish. We used an experimental tank
(20 × 20 × 20 cm) that was divided into two chambers (bright and dark) by a separator. The zebrafish
was placed in the bright chamber, and then the separator was removed. The crossing time to the dark
chamber (latency) was recorded for up to 300 s. A mild electrical shock was used to punish zebrafish
when it crossed into the dark chamber. Three repeated trials of training were conducted to build up
the ability of zebrafish to learn and remember. The short-term memory test by passive avoidances was
performed according to our previously published method reported by Bui et al. [45].

2.7. Video Tracking and Data Analysis

The tracked videos were recorded using open source software, idTracker that converts the fish
movement data to trajectories as previously described [46]. The X and Y coordinates obtained from
idTracker were then processed to obtain multiple behavioral endpoints by following our previous
publication reported by Audira et al. [47].
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2.8. Total Protein Extraction from Tissues

After the behavioral analysis, fish were randomly collected for biochemical assays. Brain and
whole-body tissues were removed and a pool of three zebrafish tissues was used for homogenate
preparation. Tissues were homogenized at medium speed with Bullet blender tissue homogenizer
with 50 volumes of (v/w) ice-cold phosphate buffered saline (PBS), pH 7.2. Samples were further
centrifuged at 12,000 g for 15 min and the crude homogenates were stored in 100 uL aliquots at −80 ◦C
until further use. Tissue homogenates were also analyzed at the end of the behavioral experiment to
observe the changes in neurotransmitters, oxidative stress, lipid peroxidation, and antioxidant activity
levels. Ten biological replicates and three technical replicates were used in the analysis.

2.9. Determination of Neurotransmitter Contents in the Brain

The relative contents of the neurotransmitters like dopamine, GABA, serotonin, acetylcholine,
glutamate, glycine, and histamine were measured using commercial target-specific ELISA kits
(ZGB-E1573, ZGB-E1574, ZGB-E1572, ZGB-E1585, ZGB-E1588, ZGB-E1587, ZGB-E1586, Zgenebio
Inc., Taipei, Taiwan). The oxidative stress marker (ROS), stress hormones (cortisol, catecholamine,
norepinephrine, and epinephrine), and sleeping controlling hormone (melatonin) were also measured
using commercial target-specific ELISA kits (ZGB-E1561, ZGB-E1575, ZGB-E1590, ZGB-E1571,
ZGB-E1589, ZGB-E1597, Zgenebio Inc., Taipei, Taiwan). Initially, zebrafish tissues were minced
and completely homogenized in PBS solution by using a tissue homogenizer. The target protein content
of each sample was calibrated by interpolation from the standard calibration curve and normalized to
the amount of total protein (µg) in each sample. The target protein content or activity was measured
by following the manufacturer’s instructions.

2.10. Library Preparation and Whole-Genome Bisulfite Sequencing

Before bisulfite treatment, 25 ng lambda DNA was added to 5 µg fish genomic DNA. The mixed
DNA was then sonicated to 450 bp and edited to blunt ending by 3′-end adenylation. Indexed
paired-end adapters were added according to the manufacturer’s instructions by the Paired-End DNA
Sample Prep Kit (Illumina, San Diego, CA, USA). The bisulfite conversion PCR and amplification were
carried out before sequencing. Ultra-high-throughput sequencing was performed by Illumina HiSeq
4000 according to the manufacturer instructions at Genewiz Co., Ltd. (Suzhou, China). Data analyses
were performed by Genewiz Co., Ltd. by using a standardized computational mapping approach to
analyze the methylome.

2.11. DNA Extraction

Genomic DNA samples were isolated from zebrafish by using QIAamp Fast DNA Tissue Kit
(QIAGEN, Hilden, Germany) according to the manufacturer’s instructions. Genomic DNA was
quantified by NanoDrop 2000 (ThermoFisher Scientific, Waltham, MA, USA). High-quality DNA
samples (OD 260/280 = 1.8–2.0, > 6 µg) were used to conduct the following profiling.

2.12. Statistical Analysis

All statistical analyses were plotted and compiled by using GraphPad Prism (GraphPad Software
version 7 Inc., La Jolla, CA, USA). Before statistical analyses were conducted, data distribution normality
tests were conducted to determine the statistical analysis used in each test. For behavioral tests, every
fish group was compared to the wildtype zebrafish group by using different statistical analyses for
each behavioral test which depended on its format and data distribution normality. Two-way ANOVA
test with Geisser-greenhouse correction was used to analyze the novel tank test results while one-way
ANOVA followed by Tukey post hoc test was utilized to analyze the color preference test. Meanwhile,
for other behavioral tests, Mann–Whitney test was used to find the statistical significance in the
distribution ranks among the groups. For the short-term memory tests, each fish group was compared
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using a two-way ANOVA test followed by Tukey post hoc test. Lastly, one-way ANOVA followed by
Fisher’s LSD post hoc test was used to analyze the Global DNA methylation and biochemical data.
The statistic details for each behavioral test are summarized in Table A1.

3. Results

3.1. Morphometric Analysis and Detection of Global DNA Methylation Levels in dnmt3aa and
dnmt3ab Mutants

From the morphometric analysis results, we found that the homozygotic mutants carrying either
dnmt3aa or dnmt3ab gene deficiency were viable and displayed no significant difference in their
outlook to the WT zebrafish (Figure 2A,B). Afterward, the relative content of 5-mC (5-methylcytosine),
5-hmC (5-hydroxymethylcytosine), and the 5-hmC/5-mC ratio was measured to detect the Global
DNA methylation. Surprisingly, based on the results obtained from ELISA, 5-mC (Figure 2E), 5-hmC
(Figure 2D), and 5-hmC/5-mC ratio (Figure 2F) displayed no significant difference in either dnmt3aa or
dnmt3ab KO fish lines. This result rejected our previous hypothesis and clearly demonstrates the global
DNA methylation content is largely unaltered in either dnmt3aa or dnmt3ab zebrafish mutants.Genes 2020, 11, x FOR PEER REVIEW 8 of 33 
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Figure 2. Morphometric and DNA methylation level comparison for wild types, dnmt3aa, and dnmt3ab
gene knockout zebrafish. (A) Morphologies of six-month-old wild types, dnmt3aa, and dnmt3ab knockout
zebrafish. Female fish is shown in the upper panel and male fish in the bottom panel. (B) Morphometric
analysis of wild types, dnmt3aa, and dnmt3ab gene knockout zebrafish by principal component analysis
(PCA) method. (C) Schematic diagram showing the biochemical pathway on key proteins involving
cytosine DNA methylation. Comparison of 5-hmC (D), 5-mC (E), and 5-hmC/5-mC ratio (F) between
wild types, dnmt3aa, and dnmt3ab knockout zebrafish. The data are expressed as the mean with S.E.M.
and analyzed by one-way ANOVA followed by Fisher’s LSD post hoc test (n = 6 for wild type; n = 4 for
dnmt3aa KO fish; n = 5 for dnmt3ab KO fish).
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3.2. Effects of dnmt3a Gene-Deficient on Zebrafish Locomotor Activity and Exploratory Behavior in Novel
Tank Assay

Overall, all of the mutant fish exhibited a quite similar level of locomotor activity compared to the
control fish in the novel tank test. However, slightly more unstable locomotion activities were shown
by fish with a loss function of dnmt3ab function. In this mutant fish, a higher average speed in the
first 15 min and a lower speed with a high freezing time movement ratio afterward were observed
(Figure 3A,B). Meanwhile, a similar pattern of locomotor activity with control fish was displayed by
dnmt3aa KO fish during the whole section of the novel tank test (Figure 3A,B). However, we found that
deficiency of dnmt3aa in zebrafish altered their exploratory behavior, which was shown by less time
spent in the top area, the number of entries to the top, total distance traveled in the top, and a longer
latency to enter the top portion of the tank (Figure 3C–F). Interestingly, these behavioral alterations
were not found in the dnmt3ab KO fish (Figure 3C–F). Taken together, these observations suggested that
the dnmt3aa KO fish may have a more severe anxious phenotype when exposed to a novel environment
compared to the dnmt3ab mutant. The swimming trajectories for the dnmt3aa and the dnmt3ab KO fish
are summarized in Figure 3G–L, and the tapped video of the behavior is included in Video S1.
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Figure 3. Comparison of behavior endpoints among the wild-type, dnmt3aa, and dnmt3ab mutant fish
during a 30-min novel tank exploration test. (A) Average speed, (B) freezing time movement ratio,
(C) time in bottom duration, (D) number of entries to the top, (E) latency to enter the top, and (F)
total distance traveled in the top fish tank were analyzed. The data are expressed as the median with
interquartile range and analyzed by two-way ANOVA (n = 30 for wild type; n = 7 for dnmt3aa KO
fish; n = 30 for dnmt3ab KO fish; ** p < 0.01, *** p < 0.005, ****, p < 0.0001). (G–I) The locomotion
trajectories of a single fish of wild type, dnmt3aa KO, and dnmt3ab KO fish, right after introduced to a
novel environment. (J–L) The locomotion trajectories of a single fish of the wild type, dnmt3aa KO,
and dnmt3ab KO fish after 15 min of novel tank exposure.
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3.3. Effects of dnmt3a Gene-Deficient on Zebrafish Aggressiveness in Mirror Biting Test

A reduced aggressive behavioral response was observed in the dnmt3ab KO fish (Figure 4A,B).
Interestingly, the aggressiveness of the dnmt3aa KO fish remained unaltered (Figure 4A,B). In addition,
higher average speed and rapid movement were detected in the dnmt3aa KO fish (Figure 4C, Figure A1C).
Meanwhile, both ratios of freezing time movement and swimming time movement showed no difference
between the wild type and mutant fish (Figure A1A,B). Together, we suggested that the dnmt3ab KO
fish might have a more pronounced loss of aggression phenotype, compared to the dnmt3aa mutant.
The mirror biting behavioral trajectories for the dnmt3aa and the dnmt3ab KO fish are summarized in
Figure 4D–F, and the tapped video of the mirror biting behavior is in Video S2.Genes 2020, 11, x FOR PEER REVIEW 10 of 33 
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3.4. Effects of dnmt3a Gene-Deficient on Zebrafish Predator Avoidance Behavior

Next, from the predator avoidance test result, we found increments in approaching predator
time and a decrease in average distance from separator in both the dnmt3aa and the dnmt3ab KO fish
(Figure 5A,B). These observations suggested that loss of function on dnmt3aa and dnmt3ab activities
may result in loss of fear response in zebrafish, which was considered as loss of innate life ability.
Interestingly, the dnmt3ab KO fish demonstrated higher locomotor activity than control fish, which was
shown by a significantly high level of average speed and swimming time movement ratio, and low
level of freezing time movement ratio (Figure 5C, Figure A1D,E). Nonetheless, there were no differences
in their rapid movement time ratio (Figure A1F). The predator avoidance behavioral trajectories for the
dnmt3aa and the dnmt3ab KO fish are summarized in Figure 5D–F. The video of the predator avoidance
test for all of the groups can be found in Video S3.
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3.5. Effects of dnmt3a Gene-Deficient on Zebrafish Social Interaction

Overall, in the social interaction test, either dnmt3aa or dnmt3ab KO fish did not display a
pronounced social behavior alteration (Figure 6B,C). However, after further observations were
conducted, a slight aberrant social behavior occurred in dnmt3ab KO fish, indicated with a significantly
high level of the average distance to the conspecific separator (Figure 6D). Meanwhile, there was
no difference in locomotion activity between dnmt3aa KO mutant and wild type fish, yet, a slight
increase of locomotion activity was observed in the dnmt3ab KO mutant fish (Figure 6A). The social
interaction behavioral trajectories for the control, dnmt3aa KO, and the dnmt3ab KO fish are summarized
in Figure 6E–G, and the video for the social interaction behavior can found in Video S4.

3.6. Effects of dnmt3a Gene-Deficient on Zebrafish Shoaling Formation

Shoaling test, another social behavior test to evaluate socializing, showed the associated effect
caused by dnmt3ab deficiency. Significantly high levels of average inter-fish distance, shoal area,
nearest neighbor distance, and farthest neighbor distance were shown in the dnmt3ab mutant group
(Figure 7A–D). On the other hand, zebrafish with a deficiency in dnmt3aa exhibited similar shoaling
behavior to the control group (Figure 7A–D). However, consistent with the novel tank test result, loss of
exploratory behavior was displayed by dnmt3aa KO mutant fish. This phenomenon was indicated by
significantly low levels of time in top duration and slightly lower average distance to the center of the
tank (Figure A1H,I). Interestingly, a less pronounced exploratory behavior was also observed in the
dnmt3ab KO mutant fish, which was also shown by a slightly lower average distance to the center of
the tank, which may be related to the low locomotion activity exhibited by the mutant fish during
the test (Figure A1G,I). In summary, loss of function of dnmt3ab in adult zebrafish related to the loose
shoal formed during the test. The shoaling behavioral trajectories for the WT, dnmt3aa KO, and the
dnmt3ab KO fish are summarized in Figure 7E–G, and the tapped videos for the shoaling behavior of
each group can be found in Video S5.
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interquartile range and analyzed by Mann–Whitney test (n = 30 for wild type; n = 7 for dnmt3aa KO
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The conspecific interaction zones were highlighted with yellow color.
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3.7. Effects of dnmt3a Gene-Deficient on Zebrafish Circadian Rhythm Locomotor Activity 

Figure 7. Comparison of shoaling behavior endpoints among the wild-type, the dnmt3aa, and the
dnmt3ab mutant fish. (A) Average inter-fish distance, (B) average shoal area, and (C) average nearest
neighbor distance, and (D) average nearest neighbor distance were analyzed. Three fish were used in
one group (shoal) for the shoaling test. The data are expressed as the median with interquartile range
and analyzed by Mann–Whitney test (n = 30 for wild type; n = 9 for dnmt3aa KO fish; n = 12 for dnmt3ab
KO fish; ** p < 0.01, *** p < 0.001, ****, p < 0.0001). (E–G) The locomotion trajectories of three fish of the
wild type, the dnmt3aa KO, and the dnmt3ab KO fish, respectively, during the shoaling test.
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3.7. Effects of dnmt3a Gene-Deficient on Zebrafish Circadian Rhythm Locomotor Activity

During circadian rhythm locomotor activity test with a light/dark (12/12) condition, we observed
that control fish and the mutant fish showed different speed and meandering patterns in most of the
time intervals, suggesting that loss of function of the dnmt3a gene in the zebrafish caused an irregular
pattern of circadian rhythm locomotor activity (Figure 8A,B). Interestingly, after further examination,
both dnmt3a KO zebrafish were found to maintain a similar level of average speed during the daytime
interval compared to the control fish (Figure 8C). However, irregular movement of zebrafish, indicating
by the abnormalities in average angular velocity and meandering, was observed in both KO fishes.
A higher average angular velocity was exhibited by dnmt3aa KO mutant fish while a low angular
velocity was seen in the dnmt3ab KO mutant fish during the day cycle (Figure 8D,E). Furthermore,
hyperactivity-like behavior during the night cycle was observed in both KO fishes (Figure 8F–H). Video
for circadian rhythm locomotor activity behavior can be found in Video S6.
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3.8. Effects of dnmt3a Gene-Deficient on Zebrafish Color Preference Ranking 

We found that the color preference patterns of the dnmt3aa and dnmt3ab KO fish were more 
diverse compared to the wild type. While the wild type fish showed color preference ranking as red 
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Figure 8. The circadian rhythm locomotor activity for wild-type, dnmt3aa, and dnmt3ab mutant fish.
(A,B) Comparison of the average speed and meandering, respectively, between wild-type, dnmt3aa,
and dnmt3ab KO fish during the light and dark cycles. Comparisons of the average speed (C,F), average
angular velocity (D,G), and meandering (E,H) in light and dark cycles, respectively, were demonstrated.
Data are presented as median with interquartile range and analyzed by Mann–Whitney test (n = 28 for
wild type; n = 18 for dnmt3aa KO fish; n = 18 for dnmt3ab KO fish; * p < 0.05, ** p < 0.01, *** p < 0.005,
**** p < 0.0001).

3.8. Effects of dnmt3a Gene-Deficient on Zebrafish Color Preference Ranking

We found that the color preference patterns of the dnmt3aa and dnmt3ab KO fish were more diverse
compared to the wild type. While the wild type fish showed color preference ranking as red > blue >
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green > yellow, the dnmt3aa KO fish showed altered color preference ranking as red > blue = green >

yellow, and dnmt3ab KO fish showed altered color preference as red = green > blue > yellow. Color
preference between green and blue was reduced or reversed in dnmt3a mutants. The dnmt3aa KO fish
did not have preferences between green or blue, while dnmt3ab KO fish switched their preferences from
blue to green preferences (Figure 9A). In addition, the dnmt3aa KO fish showed the same preference
pattern as the wild type, yet, the dnmt3ab KO fish showed no preferences between green and red
color (Figure 9D). All other color combinations showed a significant decrease in choice index value for
the dnmt3aa and the dnmt3ab KO fish. The green-yellow combination showed a decrease in both the
dnmt3aa and the dnmt3ab KO fish showed a decrease in the green-yellow preference index. Moreover,
the dnmt3ab KO fish display the most significant reduction in green preference (Figure 9B). Lastly,
although both KO fish showed less preference in red-yellow (Figure 9E) and blue-yellow (Figure 9F)
combination, no significant difference was found.
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Figure 9. Comparison of color preference ranking and index between wild type, dnmt3aa KO,
and dnmt3ab KO mutant zebrafish: (A) green vs. blue combination; (B) green vs. yellow combination;
(C) red vs. blue combination; (D) green vs. red combination; (E) red vs. yellow combination; and (F)
blue vs. yellow combination. Data were analyzed with one-way ANOVA followed by Tukey post-hoc
test. The data were presented as mean ± S.E.M. (n = 24, ** p < 0.01, **** p < 0.0001).

3.9. Effects of dnmt3a Gene-Deficient Zebrafish on Short-Term Memory

In short-term memory test, we observed the latency on all zebrafish groups was increased
along with trials in the training session but was not significantly longer (Figure 10A). Additionally,
no significant difference can be found in the latency during first to third training between wild type,
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dnmt3aa KO, and dnmt3ab KO zebrafish. However, the dnmt3aa and dnmt3ab mutant zebrafish displayed
significantly lower memory retention with a reduction of the latency down to below 100s in one day
after the training session (Figure 10B). This result demonstrated that the loss of dnmt3a function can
induce short-term memory loss.Genes 2020, 11, x FOR PEER REVIEW 15 of 33 
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given in three training sessions. (B) The latency of fish swimming into the dark chamber one day
after training sessions. Data were analyzed with two-way ANOVA followed by Tukey post hoc test.
The data are presented with mean ± S.E.M. (n = 15 for WT and dnmt3ab KO fish; n = 16 for dnmt3aa KO
fish, * p < 0.05, ** p < 0.01).

3.10. Biochemical Assay of dnmt3a Gene-Deficient Zebrafish

By using ELISA (enzyme-linked immunosorbent assay), the relative content of several important
neurotransmitters (like dopamine, GABA, serotonin, norepinephrine, acetylcholine, glutamate, glycine,
histamine, catecholamine, and epinephrine) and other biomarkers (ROS, cortisol, melatonin) in the
fish brain or whole-body tissues were measured. To our surprise, ELISA quantification results in
zebrafish brain tissue showed no significant difference in the neurotransmitter levels between control
and mutant fish brains (Table 1). Later, to better explore the potential mechanism, we also measured
the neurotransmitter contents in the whole-body tissue. Neurotransmitters, such as acetylcholine,
catecholamine, and epinephrine were higher within the body area of dnmt3ab KO fish and lower in the
dnmt3aa KO fish compared to those in the wild type fish (Table 2). Acetylcholine, a neurotransmitter
that releases signals to adjacent motor neurons, activates the skeletal muscle and causes contraction [48].
It is associated with physiological and behavioral processes in central neuron system (CNS) during
cholinergic signaling [49]. A previous study proved that acetylcholine in the brain altered neuronal
excitability and modified brain response to internal and external inputs [48]. In our study, differences
in acetylcholine level altered innate behaviors in dnmt3aa and dnmt3ab zebrafish. Both catecholamine
and epinephrine would be increased in stressful conditions [50]. The reactive oxygen species (ROS)
level was also higher in the dnmt3ab and lower in the dnmt3aa compared to that in wild type fish,
suggesting the ROS scavenging capacity in the dnmt3ab KO fish was somehow attenuated (Table 2).
ROS has been associated with oxidative stress and signaling stress response [51]. ROS is also known
for its effect on neuronal death and neurological defect that correlated with behavior alteration [52].
These data might explain the aberrantly anxious behavior, especially in the dnmt3ab KO fish. However,
in the dnmt3aa KO fish, all the detected neurotransmitters in the fish body showed less expression than
that in the wild type fish; the dnmt3aa fish only showed a slight loss of exploratory ability and minor
dysregulation of the circadian rhythm locomotor activity. Taken together, these results emphasized
that the deficiency in dnmt3ab is more dominant to fish; however, gene expression profiling will help to
unveil the rationale of disparate modulation of emotion and social interaction.
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Table 1. Comparison of neurotransmitter and other biomarker levels in the brain of wild type (WT), dnmt3aa KO, and dnmt3ab KO zebrafish. The data are expressed as
the mean with S.E.M. and analyzed by one-way ANOVA followed by Fisher’s LSD post hoc test (n = 10 for all groups).

Biomarkers
WT dnmt3aa KO dnmt3ab KO

Unit F (DFn, DFd)
ANOVA

Concentration Concentration p-Value Concentration p-Value Significance

Dopamine 1.7380 ± 0.2852 1.9060 ± 0.3808 0.7410 1.7550 ± 0.3898 0.9737 pg/µg F (2, 27) = 0.06767 NO
GABA 0.0093 ± 0.0017 0.0099 ± 0.0023 0.8345 0.0091 ± 0.0020 0.9445 nmol/µg F (2, 27) = 0.04286 NO

Serotonin (5-HT) 0.0290 ± 0.0058 0.0331 ± 0.0087 0.7020 0.0289 ± 0.0077 0.9925 ng/µg F (2, 27) = 0.1022 NO
Norepinephrine 0.1711 ± 0.0333 0.1749 ± 0.0379 0.9417 0.1499 ± 0.0378 0.6837 ng/µg F (2, 27) = 0.1369 NO

ROS 0.5943 ± 0.0918 0.5890 ± 0.1273 0.9721 0.4874 ± 0.0961 0.4831 U/mL F (2, 27) = 0.3212 NO
ACh 0.7061 ± 0.1742 0.9756 ± 0.2387 0.3193 0.8205 ± 0.1360 0.6701 ug/µg F (2, 27) = 0.5187 NO

Cortisol 2.2670 ± 0.3324 2.2670 ± 0.3272 0.9985 1.7780 ± 0.1878 0.2445 pg/µg F (2, 27) = 0.9451 NO
Glutamate 0.0262 ± 0.0044 0.0311 ± 0.0054 0.4975 0.0329 ± 0.0052 0.3554 ug/µg F (2, 27) = 0.4737 NO

Glycine 0.1369 ± 0.0207 0.1788 ± 0.0240 0.1911 0.1526 ± 0.0214 0.6194 ug/µg F (2, 27) = 0.9181 NO
Histamine 0.0170 ± 0.0049 0.0183 ± 0.0040 0.8360 0.0177 ± 0.0043 0.9112 ng/µg F (2, 27) = 0.02188 NO

Catecholamine 1.4080 ± 0.3270 1.3790 ± 0.2444 0.9437 1.3450 ± 0.2853 0.8792 ng/µg F (2, 27) = 0.01179 NO
Melatonin 0.0596 ± 0.0083 0.0718 ± 0.0096 0.5514 0.0782 ± 0.0213 0.3659 pg/µg F (2, 27) = 0.4366 NO

Epinephrine 0.0091 ± 0.0014 0.0092 ± 0.0012 0.9579 0.0099 ± 0.0013 0.6733 ng/µg F (2, 27) = 0.1079 NO

Table 2. Comparison of neurotransmitter and other biomarker levels in the body of wild type (WT), dnmt3aa KO, and dnmt3ab KO zebrafish. The data are expressed as
the mean with S.E.M. and analyzed by one-way ANOVA followed by Fisher’s LSD post hoc test (n = 10 for all groups, ** p < 0.01, *** p < 0.001).

Biomarkers
WT dnmt3aa KO dnmt3ab KO

Unit F (DFn, DFd)
ANOVA

Concentration Concentration p-Value Concentration p-Value Significance

Dopamine 0.7943 ± 0.2082 0.5660 ± 0.1293 0.3937 1.0830 ± 0.2098 0.2821 pg/µg F (2, 27) = 1.938 NO
GABA 0.0041 ± 0.0012 0.0026 ± 0.0007 0.3083 0.0054 ± 0.0010 0.3761 nmol/µg F (2, 27) = 1.882 NO

Serotonin (5-HT) 0.0086 ± 0.0022 0.0051 ± 0.0010 0.2629 0.0138 ± 0.0027 0.1009 ng/µg F (2, 27) = 4.091 YES
Norepinephrine 0.0013 ± 0.0004 0.0007 ± 0.0002 0.2669 0.0033 ± 0.0004 0.0008 *** ng/µg F (2, 27) = 13.07 YES

ROS 0.1864 ± 0.0465 0.1204 ± 0.0196 0.2376 0.3410 ± 0.0440 0.0087 ** U/mL F (2, 27) = 8.586 YES
ACh 0.5470 ± 0.1099 0.3712 ± 0.0536 0.1991 0.7664 ± 0.1086 0.1120 ug/µg F (2, 27) = 4.398 YES

Cortisol 1.1900 ± 0.2340 0.8416 ± 0.1621 0.2683 1.5870 ± 0.2474 0.2082 pg/µg F (2, 27) = 2.932 NO
Glutamate 0.0054 ± 0.0013 0.0035 ± 0.0006 0.2452 0.0074 ± 0.0014 0.2218 ug/µg F (2, 27) = 2.974 NO

Glycine 0.0321 ± 0.0056 0.0193 ± 0.0037 0.0644 0.0349 ± 0.0046 0.6765 ug/µg F (2, 27) = 3.139 NO
Histamine 0.0129 ± 0.0038 0.0104 ± 0.0025 0.5926 0.0178 ± 0.0034 0.2979 ng/µg F (2, 27) = 1.33 NO

Catecholamine 0.6510 ± 0.1080 0.4566 ± 0.0871 0.2636 0.9893 ± 0.1557 0.0572 ng/µg F (2, 27) = 5.012 YES
Melatonin 0.0235 ± 0.0065 0.0155 ± 0.0034 0.2450 0.0335 ± 0.0037 0.1490 pg/µg F (2, 27) = 3.59 YES

Epinephrine 0.0044 ± 0.0013 0.0032 ± 0.0007 0.4703 0.0075 ± 0.0013 0.0693 ng/µg F (2, 27) = 3.667 YES
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3.11. Profiling of Genome-Wide DNA Methylation Sequencing

Since no difference in methylation level was detected by measuring the 5-hmC/5-mC ratio,
we performed whole-genome methylation sequencing to get better resolution. To elucidate the
genome-wide methylation status, genomic DNA isolated from wild type AB strain (WT), dnmt3aa,
and dnmt3ab KO zebrafish brain tissues were subjected to construct genomic library to perform bisulfite
deep sequencing. In total, 332,343,888, 323,975,024, and 332,003,988 bisulfite deep sequencing reads by
paired-end sequencing were obtained from WT, dnmt3aa, and dnmt3ab KO zebrafish, respectively. Of the
raw reads from each sample, 75.34% (250,402,950), 74.83% (242,424,388), and 74.70% (248,000,732),
respectively, can be successfully mapped back to the reference genome, while of the 85.87% (215,030,868),
85.60% (207,507,370), and 86.01% (213,315,676) of the mapped reads were uniquely mapped to the
reference genome, respectively. The coverage of sequencing data was 84.61%, 84.19%, and 85.08% for
each sample. The CG percentages were 19.66%, 19.94%, and 19.50%, respectively. The mean depths
were 25.69, 24.88, and 25.38, which were sufficient for high-quality genome-wide methylation analysis.
Following the bisulfite sequencing to analyze the genome-wide methylated cytosines (mC), a total of
39,055,549, 38,502,276, and 39,404,575 mC were counted for wild type, dnmt3aa, and dnmt3ab mutants,
respectively. The percentages of CG methylation in total CG number in WT, dnmt3aa, and dnmt3ab
samples were 77.01%, 76.32%, and 77.20%, respectively. Not only the total count of mC, but also each
type of methylation, including mCG, mCGH, and mCHH (H = A, T, or G) showed no significant
difference between groups. The distribution of bases near mC sites and the probability of methylated
types were calculated between 9 bp bases by using WebLogo (http://weblogo.berkeley.edu/logo.cgi).
Among the methylation sites, the complete distribution on zebrafish chromosomes are listed in Tables
S1–S3 for WT vs. dnmt3aa KO, WT vs. dnmt3ab KO, and dnmt3aa KO vs. dnmt3ab KO, respectively.
Eight functional regions were divided based on gene structures, including exonic, intergenic, intronic,
splicing, upstream, downstream, 3′ untranslated region (UTR3), and 5′ untranslated region (UTR5)
regions. The term of upstream and downstream represents 1000 bp from the coding gene. Among these
regions, the intronic region revealed the highest methylation level in all three groups (summarized in
Table 3).

Table 3. DNA methylation counts and differentially methylated regions (DMR) in zebrafish with
different genetic backgrounds for either wild type (WT), dnmt3aa KO, or dnmt3ab KO zebrafish.

Categories
DNA Methylation Counts Differentially Methylated Regions (DMRs)

WT dnmt3aa
KO

dnmt3ab
KO

WT vs
dnmt3aa KO

WT vs
dnmt3ab KO

dnmt3aa KO vs
dnmt3ab KO

Exonic 2,176,682 2,186,207 2,183,519 640 430 613
Intergenic 14,826,766 1,5002,735 14,869,769 6279 3740 6215
Intronic 17,219,672 17,423,241 17,313,624 6870 4035 6622
Splicing 6,211 6,276 6,225 4 4 4

Upstream 533,791 538,935 535,204 1038 651 963
Downstream 471,226 475,277 472,228 322 195 318

UTR3 568,462 572,270 569,330 287 161 273
UTR5 331,319 332,694 331,889 436 280 459
Total 36,166,511 36,570,202 36,314,198 15,962 9543 15,554

3.12. Identification of Differentially Methylated Regions (DMR) and Functional Analysis of DMR-Associated
Genes

To address the effects of dnmt3a mutants on the methylation level, the differentially methylated
regions (DMRs) between three groups were analyzed. A total of comparison between WT vs. dnmt3aa,
WT vs. dnmt3ab, and dnmt3aa vs. dnmt3ab are listed in Table 3. We found that wild type zebrafish
showed more DMRs between dnmt3aa KO (15962 sites), compared to dnmt3ab KO (9543 sites). Among
all DMRs, a threshold was set at > ±0.8 in β value difference (delta β value) as hyper-methylated,
while < ±0.2 in β value as hypo-methylated. Additionally, 5103 (10 hyper and 5097 hypo), 1912

http://weblogo.berkeley.edu/logo.cgi


Genes 2020, 11, 1322 17 of 32

(2 hyper and 1910 hypo), and 806 (561 hyper and 245 hypo), 3658 (12 hyper and 3646 hypo) DMRs were
identified in three comparisons, respectively. On the other hand, the top 30 genes that consisted of
most DMRs are listed in Tables S1–S3. To evaluate the genes affected by dnmt3a mutations, annotated
pathways for the top 30 DMR sites between groups were predicted with The Database for Annotation,
Visualization, and Integrated Discovery (DAVID) (Table S4). Among these, pathways with p < 0.05
were significantly enriched. We also input differential expression genes into STRING to analyze
the potential protein–protein interaction networks (Figure 11). Within the genes that significantly
expressional diverse between WT and dnmt3aa KO fish, neurod6b, ptfa1, mafba, isl2a, uncx4.1, dmbx1b,
and mab21l2 encoded DNA-binding proteins that involved in neural development (Figure 11A).
Meanwhile, the genes that significantly expressional diverse between WT and dnmt3ab KO fish,
including ENSDARP00000099145 (abcc3), abca2, and abcb5, were reported to relate ATP-binding cassette
(ABC) transporter pathway. On the other hand, aadat, acy1, acss2, aclya, and aanat1 were associated
with various metabolic pathways, which involved in acetyl-CoA synthesis and aminotransferase
(Figure 11B). We concluded those DMRs identified by whole genome methylation sequencing might be
associated with behavioral alteration in dnmt3aa or dnmt3ab mutants and provide a good entry point
for functional validation in the future.

Genes 2020, 11, x FOR PEER REVIEW 19 of 33 

 

hyper and 1910 hypo), and 806 (561 hyper and 245 hypo), 3658 (12 hyper and 3646 hypo) DMRs were 
identified in three comparisons, respectively. On the other hand, the top 30 genes that consisted of 
most DMRs are listed in Tables S1–S3. To evaluate the genes affected by dnmt3a mutations, annotated 
pathways for the top 30 DMR sites between groups were predicted with The Database for 
Annotation, Visualization, and Integrated Discovery (DAVID) (Table S4). Among these, pathways 
with p < 0.05 were significantly enriched. We also input differential expression genes into STRING to 
analyze the potential protein–protein interaction networks (Figure 11). Within the genes that 
significantly expressional diverse between WT and dnmt3aa KO fish, neurod6b, ptfa1, mafba, isl2a, 
uncx4.1, dmbx1b, and mab21l2 encoded DNA-binding proteins that involved in neural development 
(Figure 11A). Meanwhile, the genes that significantly expressional diverse between WT and dnmt3ab 
KO fish, including ENSDARP00000099145 (abcc3), abca2, and abcb5, were reported to relate ATP-
binding cassette (ABC) transporter pathway. On the other hand, aadat, acy1, acss2, aclya, and aanat1 
were associated with various metabolic pathways, which involved in acetyl-CoA synthesis and 
aminotransferase (Figure 11B). We concluded those DMRs identified by whole genome methylation 
sequencing might be associated with behavioral alteration in dnmt3aa or dnmt3ab mutants and 
provide a good entry point for functional validation in the future. 

 
Figure 11. STRING protein interaction networking analysis between the (A) WT and dnmt3aa, and 
(B) WT and dnmt3ab KO zebrafish gene sets. (A) Red node represented protein involving in neuronal 
development; blue node represented DNA binding proteins; green node represented nucleic proteins. 
(B) Red node represented ABC transporter-related proteins; blue node represented proteins that 
associated metabolic pathways. 

4. Discussion 

4.1. Novel and Non-Overlapped Functions of dnmt3aa and dnmt3ab Genes on Modulating Behaviors in 
Zebrafish 

In this study, two zebrafish mutant lines carrying either dnmt3aa or dnmt3ab gene deficiency 
were established by TALEN genome editing tool and reported having different behavioral alterations 
for the first time. Previous studies demonstrated that in rat models, dysregulation of DNA 
methylation is related to anxiety and major depressive disorder [14–17]. Furthermore, mice that lack 
Dnmt exhibited abnormal hippocampal CA1 long-term plasticity and deficits of learning and 
memory [53]. By multiple behavior assay, dnmt3aa KO fish were noticed with exploratory behavior, 
predator avoidance, and sleep behavioral alterations. Meanwhile, alterations in aggressiveness, 
predator avoidance, social interaction, shoaling formation, sleep behavior, and color preference index 
ranking was detected in the dnmt3ab KO fish. These findings provided in vivo and direct evidence on 
supporting that dnmt3aa and dnmt3ab genes play important and non-overlapping roles in modulating 
behavior in zebrafish for the first time. In addition, since the aim of the current study was to study 

Figure 11. STRING protein interaction networking analysis between the (A) WT and dnmt3aa, and (B)
WT and dnmt3ab KO zebrafish gene sets. (A) Red node represented protein involving in neuronal
development; blue node represented DNA binding proteins; green node represented nucleic proteins.
(B) Red node represented ABC transporter-related proteins; blue node represented proteins that
associated metabolic pathways.

4. Discussion

4.1. Novel and Non-Overlapped Functions of dnmt3aa and dnmt3ab Genes on Modulating Behaviors in
Zebrafish

In this study, two zebrafish mutant lines carrying either dnmt3aa or dnmt3ab gene deficiency were
established by TALEN genome editing tool and reported having different behavioral alterations for the
first time. Previous studies demonstrated that in rat models, dysregulation of DNA methylation is
related to anxiety and major depressive disorder [14–17]. Furthermore, mice that lack Dnmt exhibited
abnormal hippocampal CA1 long-term plasticity and deficits of learning and memory [53]. By multiple
behavior assay, dnmt3aa KO fish were noticed with exploratory behavior, predator avoidance, and sleep
behavioral alterations. Meanwhile, alterations in aggressiveness, predator avoidance, social interaction,
shoaling formation, sleep behavior, and color preference index ranking was detected in the dnmt3ab
KO fish. These findings provided in vivo and direct evidence on supporting that dnmt3aa and dnmt3ab
genes play important and non-overlapping roles in modulating behavior in zebrafish for the first
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time. In addition, since the aim of the current study was to study the functions of these genes in
zebrafish behavior in general, one has to keep in mind that this study used zebrafish of mixed gender.
Additionally, this was also taken based on several prior studies in zebrafish behaviors that also used
mixed-gender zebrafishes [34,54–56]. However, even though several studies showed that there is no
gender effect in some zebrafish behavior tests [57–59], there are also several studies that mentioned the
existence of gender effect in zebrafish behavior tests [60–62]. Thus, there is still a possibility that the
gender effect in these behavioral tests might be possessed by the mutant fishes, which is worth trying
in future studies.

4.2. The dnmt3a Gene Contributes to Zebrafish Behavior Responses to a New Environment

In our study, abnormal locomotor activity pattern after novel environment exposure was detected
in dnmt3ab KO fish. Altered catecholamine (epinephrine and norepinephrine) and acetylcholine
levels in these mutant fish may be related to their abnormal behavior. In all vertebrate species,
catecholamines are released into the general circulation that is required to enhance blood oxygen
transport and the mobilization of energy substrates. Therefore, the release of catecholamines is an
integral part of the physiological response to stressors in all vertebrate groups [63]. Supporting the
result of this study, a previous study in the rainbow trout (Oncorhynchus mykiss) found that exposure to
carbamate pesticides altered catecholamine levels and affected its neurotransmitters and behavior [64].
In addition, another previous study found that the administration of polychlorinated biphenyls in
the killifish (Fundulus grandis) altered brain levels of dopamine and norepinephrine and affected
locomotor activity [64]. Furthermore, an abnormal level of acetylcholine (ACh), a neurotransmitter
at a synaptic junction, may also play a role in the locomotion behavior alteration of fish due to
inhibition of acetylcholinesterase (AChE) activity in the brain. A prior study found that sublethal
exposure of chlorpyrifos, an organophosphorus insecticide that elicits toxicity through inhibition
of AChE enzyme, in mosquitofish (Gambusia affinis) caused a stressful condition and reduced their
locomotion behavior [65,66]. Next, exploratory behavior deficits showed by dnmt3aa KO fish may also
be related to altered levels of catecholamine found in this study. Homozygous deletion on COMT
(catechol-O-methyltransferase), one of the major mammalian enzymes involved in the metabolic
degradation, impairment in emotional reactivity in the dark/ light exploratory model of anxiety were
displayed in female, but not in male mice [67]. Exposure of chlorpyrifos in common carp fingerlings
also caused the carp to exhibit irregular, erratic, and darting swimming movements, hyperexcitability,
loss of equilibrium, and sinking to the bottom. The detected behavioral changes may be due to the
abnormal level of ACh in cholinergic synapses leading to hyperstimulation and cessation of neuronal
transmission (paralysis) [68].

4.3. The dnmt3ab Gene Contributes to Zebrafish Aggressive Behavior

Aggression is an important component of the behavioral repertoire of animals that plays a major role
in their Darwinian fitness [69], which served various adaptive functions, including the establishment
of dominant relationships, hierarchies, and the competition for life resources in zebrafish [26,69].
In general, aggressive behavior is regulated by hormones in the brain [70]. However, the role of dnmt3aa
and dnmt3ab genes in aggression is rarely studied. In our study, we provided direct evidence that
connects the dnmt3a gene to aggression. Our results indicated that the dnmt3ab KO fish showed loss of
aggression, which was supported by a dysregulated level of serotonin (5-HT), one of the chemicals
that is critically involved in the neural circuits for many types of human and animal aggression [71],
detected in the dnmt3ab KO fish body. Alterations in 5-HT neurotransmission have been found in
several of the KO mice that displayed unusual aggressive behavior [72]. In humans, serotonergic
dysfunction that altered levels of brain 5-HT also influences aggression [73]. Furthermore, an altered
level of norepinephrine (NE), one of the classic neurotransmitters found in the peripheral and central
nervous system (CNS), may also contribute to behavior alteration, which regulates physiological status,
including mood, learning and memory, arousal, blood flow, and metabolism [74,75]. In addition,
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studies from the psychiatric clinic implied that alterations of NE and 5-HT, as well as the third
monoamine, dopamine (DA), were present in humans with emotional disorders [76].

4.4. The dnmt3aa and dnmt3ab KO Fish Behaved Boldly in the Presence of a Predator

Predator avoidance, one of the fear responses [77], is conducted to respond to danger and may
allow the zebrafish to avoid dangers in nature. Here, a novel finding was shown indicating dnmt3aa and
dnmt3ab play a role in the reduction of zebrafish predator avoidance response. Consistent with previous
studies, serotonin and catecholamine may be involved in this behavior dysregulation. For example,
dysfunction of the serotoninergic system has been associated with fear (anxiety), locomotion, feeding,
asymmetry of alcohol effects, depression, stress, and aggression [78,79]. Furthermore, catecholamines
generally appear to be closely related to behavioral arousal. Existing data in rats indicate that the
catecholamines may be important at least during the early acquisition of learned responses motivated by
fear [80]. Another study in rats also found that depletion of local catecholamines including dopamine
impaired extinction of a conditioned fear response under particular conditions [81]. In addition,
tyrosine, a precursor in the biosynthesis of catecholamines, has been shown to enhance fear-induced
immobility when administered systemically in rats [82].

4.5. The dnmt3ab KO Fish Displayed Alterations in Both Social Tests

Shoaling behavior is characterized by distance within a group that would be expected in case
of random spatial distribution between individuals [78]. According to our results, it was found that
the loss function of dnmt3ab resulted in loosened shoal. The aberrant shoaling behavior may due
to an increased anxiety level in the dnmt3ab KO fish. Furthermore, this finding is also supported
by the less conspecific interaction displayed by this mutant fish in the social interaction test. These
phenomena are consistent with previous studies that found the relationship between serotonin and
social behavior [83]. Despite the association with aggression, dysfunction of the serotoninergic
system has been known to be associated with antisocial behavior in humans. In zebrafish, a reduced
level of serotonin was shown to be related to shoaling [79,84,85]. Besides, serotonergic activity
has also been correlated to the social status in primates, other mammals, reptiles, and fishes [79].
Moreover, DDT (Dichloro-Diphenyl-Trichloroethane) exposure, which increased spontaneous activity
and interfered with schooling behavior, elevated brain 5-HT, and decreased dopamine levels in goldfish
(Carassius auratus) [64].

4.6. The dnmt3aa and dnmt3ab Genes Inducing the Abnormalities toward Circadian Rhythm Locomotor
Activity

To cope with environmental cycles, fish display circadian rhythm as their response [86]. Circadian
rhythm changes on a daily basis and is driven by autonomous circadian clocks. Circadian clocks
affect most aspects of vertebrate physiology and behavior by generating daily cycles in sleep and
alertness, body temperature, hormone secretion, metabolism, blood pressure, intraocular pressure,
and visual sensitivity. However, little is known about how the dnmt3a gene function controls zebrafish
circadian rhythm. In our study, direct evidence that links dnmt3aa and dnmt3ab gene function on
modulating circadian rhythm in zebrafish was reported. As the result, altered levels of melatonin and
serotonin found in the mutant fish may be connected to this phenomenon. Melatonin, an endogenous
indolamine, is a well-conserved feature in vertebrates that contributes to the entrainment of daily
and annual physiological rhythms [87]. Melatonin synthesis occurs in the pineal gland and in the
retina. Studies on amphibians, birds, and rodent retinas indicate that melatonin synthesis exhibits
circadian rhythmicity [88]. Cahill and colleagues demonstrated that the zebrafish pineal contains a
self-sustaining circadian oscillator that regulates melatonin synthesis, as well as a phototransduction
mechanism sufficient for the entrainment of the oscillator [89]. In addition, serotonin appeared to be
necessary for slow-wave sleep norepinephrine for arousal and REM (rapid eye movement) sleep [76].
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4.7. Distinct Preferences of dnmt3aa and dnmt3ab KO Fish toward Visual Stimuli

The changes for the color preferences can be seen as a phenotypic mutation caused by several
factors that still need to be explored. Several reports have described the decrease in color preferences
as vision-related mutation [90], depression-related behavior [91], dark-light preferences have been
linked with the left-habenula [92], and heavy-metal exposure also has been reported to alter zebrafish
color preference [93]. The color preference may be used as one of the parameters to assess anxious
phenotype that was used to study the loss function of dnmt3aa and dnmt3ab effect, especially in the
zebrafish color perception. The changes can be seen related to the green and blue preferences for the
pattern changes. The zebrafish has been reported to prefer lower wavelength compared with higher
wavelength [93,94], however, dnmt3aa and dnmt3ab mutant fish did not show that behavior. Further
investigations are needed to link the behavior changes with the mutation caused by dnmt3aa and
dnmt3ab gene deficiency at the molecular level.

4.8. dnmt3a Gene is Essential for Memory Retention in Zebrafish

The memory impairment on dnmt3a gene-deficient zebrafish was displayed by the passive
avoidance test. This finding is consistent with the previous publication that revealed the knockout
of dnmt3a in adult mice has deficits in hippocampus-dependent learning and memory. The deletion
of dnmt3a also can further affect brain development with smaller hippocampi found in dnmt3a KO
mice compared to control mice [53]. DNMT3a together with other DNMTs are important DNA
methyltransferases that might target specific genes involved in gene expression, synaptic function,
learning, and memory [44]. A previous study showed that DNA methylation modulates the expression
of reelin, calcineurin, brain-derived neurotrophic factor (BDNF), and protein phosphatase-1 (PP1) which
are associated with learning and memory [95–97]. Another study also showed that the restoration of
the dnmt3a level in the adult brain of mice improved memory in fear conditioning tasks [97]. From the
prior study, the deletion of dnmt3a also can further affect brain development with smaller hippocampi
found in dnmt3a KO mice compared to control mice [53]. Supported by these findings, our data also
found the loss or depletion of dnmt3aa or dnmt3ab could impact cognition formation resulting in the
deficit of learning and memory in the mutant zebrafish.

4.9. The Differences in Neurotransmitters and Methylation Level of dnmt3a Gene-Deficient Zebrafish

Surprisingly, the neurotransmitters and other biomarkers in brain tissues of mutant zebrafish were
relatively on a similar level with the wild type. On the contrary, several neurotransmitters from the whole
body of dnmt3a mutant fish were altered. The changes in the mutant zebrafish might be compromised only
on the epigenetic scale. DNA methylation is a common type of epigenetic modification [98]. Epigenetics is
associated with phenotypic variation, including behavioral variation [99,100]. We observed phenotype
changes with behavioral alteration although no biochemical variation in the brain of mutant zebrafish.
Additionally, the methylation in each tissue and even in each cell is unique. Each tissue has its
own methylation pattern that specifies its identity and functions [101]. That explains why the
neurotransmitters and biomarkers content in the brain of dmnt3a KO fish could remain unaltered, while
on the other hand altered the level of the neurotransmitters in the whole body. The exact mechanism
of how the methylation is specified into specific cell types remains unknown. However, one thing is
certain, dnmt3a mutations or loss lead to a differentiated phenotype [102].
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Following our findings, we further measured the methylation level in dnmt3a mutant zebrafish.
Methylation and demethylation are critical tools to regulate the neuronal methylome in the context
of cognition and behavior [103]. The DNA methylation process is involved in the interaction with
several elements such as hormones, transcription factors, and neurotransmitters [101]. The remaining
unaltered DNA methylation level in this experiment also might have happened because we only
generated zebrafish with a lack of dnmt3a. A previous study found only double knockout on both
dnmt1 and dnmt3a exhibited a decrease in DNA methylation [53]. It suggested that dnmt1 and dnmt3a
are DNMT members that have overlapping functions. Dnmt3a and Dnmt3b are the de novo DNMT
family that contribute to establishing the DNA methylation pattern during primordial germ cell
development and early embryogenesis. While, dnmt1 is responsible for the maintenance of genomic
DNA methylation patterns globally [104]. A prior study showed that the disruption in dnmt3a and
dnmt3b mice embryos leads to an impairment of de novo methylation during development, but it
has no effect on the preexisting methylation. Conversely, the inactivation of dnmt1 results in global
demethylation [6]. Our results, therefore, demonstrated that dnmt3a actually plays role in methylation
during early development, thus might affect behavior and cognition in the mutant zebrafish.

According to the diverse genetic pattern obtained from whole-genome methylation sequencing
between WT and dnmt3aa KO fish, neurod6b, ptfa1, mafba, isl2a, uncx4.1, dmbx1b, and mab21l2 were
associated with neural development, which indicated that dnmt3aa KO affects neurons through
these genes. Neurod6, an abbreviation of neurogenetic differentiation 6, was reported to associate
with the neurodevelopmental disease, long-term potentiation, as well as synaptic transmission
defects [105,106]. In addition, ptfa1 was also considered as one of the regulators of transcriptional
homeodomain during neuronal specification [107]. Not only neuronal disorder, but pax6b mutant
zebrafish also showed eye defects, which suggested the color preference in our study may be due
to aberrant Pax6b expression [108,109]. On the other hand, compared to WT and dnmt3ab KO
fish, ABC transporter-associated network was affected. One of the ATP-binding cassettes, Aabca7,
was considered as a novel biomarker in Alzheimer’s disease. Moreover, epigenetic markers on Abcaa7
are also significantly related to Alzheimer’s disease [110], which provided the evidence that dnmt3ab
may cause brain damage through ABC transporters and showed early onset of anxiety in our KO
model. Another key pivot within dnmt3ab affected network is acetyl-CoA-associated genes, which are
linked to several neurodegenerative disorders and aging [111,112].

In conclusion, this study generated two important zebrafish mutants carrying either dnmt3aa or
dnmt3ab gene mutations by the TALEN-mediated genome editing tool. Similar but non-overlapped
functions were identified by a battery behavioral assay between dnmt3aa or dnmt3ab mutants.
We successfully demonstrated that the dnmt3ab mutants display very strong anxiety identified and
predicted by the novel dnmt3a-associated gene network that is related to cognitive behaviors, although
the morphometric and biochemical levels remain unaltered (summarized in Table 4). However,
how those genes function associated with dnmt3a genes requires further examination. Additionally,
a histopathology measurement, to validate the possible reason for alteration in behavior related to
tissue or organ developmental, deserves further attention. Future studies to elucidate specific roles of
dnmt3aa and dnmt3ab in the developmental and neurogenetic disorder could provide valuable new
insights. In addition, as mentioned above, it is also intriguing to conduct another study for observing
whether there is a gender-effect related to these KO fish behavior abnormalities.
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Table 4. Summary of dnmt3aa and dnmt3ab KO zebrafish phenotypes collected at morphological,
biochemical, and behavioral levels compared to the control group. The signatures of the zebrafish
behavioral and biochemical tests are summarized (↓: downregulated, ↑: upregulated).

Fish Lines dnmt3aa KO Fish dnmt3ab KO Fish

Morphological analysis
Morphometric analysis unaltered unaltered

Biochemical analysis
5-hmC/5-mC ratio unaltered unaltered

Neurotransmitters in the brain unaltered unaltered
Neurotransmitters in the whole body ↓ ↑

Behavioral analysis
Locomotor Activity in Novel Environment unaltered abnormal

Exploratory Behavior in Novel Environment ↓ unaltered
Aggressiveness unaltered ↓

Predator Avoidance ↓ ↓

Social Interaction unaltered ↓

Shoaling unaltered loosen
Circadian Rhythm Locomotor Activity (Light Cycle) unaltered unaltered
Circadian Rhythm Locomotor Activity (Dark Cycle) ↑ ↑

Color preference index ranking unaltered dysregulated
Short-term memory ↓ ↓
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Figure A1. Comparison of mirror biting, predator avoidance, and shoaling endpoints among the 
WT, dnmt3aa KO, and dnmt3ab KO mutant fish. (A,D) Freezing time movement ratio, (B,E) 
swimming time movement ratio, and (C,F) rapid movement time ratio measured in mirror biting 
(n = 30 for wild type and dnmt3ab KO fish; n = 10 for dnmt3aa KO fish) and predator avoidance (n 
= 30 for wild type; n = 10 for dnmt3aa KO fish; n = 12 for dnmt3ab KO fish) tests, respectively. (G) 
Average speed, (H) time in top duration, and (I) average distance to the center of the tank 
measured in the shoaling test (n = 30 for wild type; n = 9 for dnmt3aa KO fish; n = 12 for dnmt3ab 
KO fish). The data are expressed as the median with interquartile range and analyzed by Mann–
Whitney test (* p < 0.05, ** p < 0.01, *** p < 0.001, ****, p < 0.0001). 

  

Figure A1. Comparison of mirror biting, predator avoidance, and shoaling endpoints among the WT,
dnmt3aa KO, and dnmt3ab KO mutant fish. (A,D) Freezing time movement ratio, (B,E) swimming time
movement ratio, and (C,F) rapid movement time ratio measured in mirror biting (n = 30 for wild type
and dnmt3ab KO fish; n = 10 for dnmt3aa KO fish) and predator avoidance (n = 30 for wild type; n = 10
for dnmt3aa KO fish; n = 12 for dnmt3ab KO fish) tests, respectively. (G) Average speed, (H) time in top
duration, and (I) average distance to the center of the tank measured in the shoaling test (n = 30 for
wild type; n = 9 for dnmt3aa KO fish; n = 12 for dnmt3ab KO fish). The data are expressed as the median
with interquartile range and analyzed by Mann–Whitney test (* p < 0.05, ** p < 0.01, *** p < 0.001,
****, p < 0.0001).



Genes 2020, 11, 1322 24 of 32

Table A1. The statistic details of each statistic test from each data (Column Factor = fish line factor,
Row Factor = time interval factor, n.s. = not significant, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).

Novel Tank Test

Behavior
Endpoints Fish Lines Source of

Variation F (DFn, DFd) p Value Significance

Average Speed
dnmt3aa KO

Column Factor F(1, 35) = 0.02003 0.8883 n.s.
Row Factor F(3.265, 114.3) = 2.265 0.0794 n.s.

dnmt3ab KO
Column Factor F(1, 58) = 0.0001992 0.9888 n.s.

Row Factor F(4.358, 252.7) = 10.57 <0.0001 ****

Freezing Time
Movement Ratio

dnmt3aa KO
Column Factor F(1, 35) = 0.003813 0.9511 n.s.

Row Factor F(1.745, 61.06) = 0.1133 0.8672 n.s.

dnmt3ab KO
Column Factor F(1, 58) = 1.195 0.2788 n.s.

Row Factor F(3.281, 190.3) = 4.759 0.0024 **

Time in Top
Duration

dnmt3aa KO
Column Factor F(1, 35) = 18.70 0.0001 ***

Row Factor F(3.828, 134) = 1.548 0.1941 n.s.

dnmt3ab KO
Column Factor F(1, 58) = 2.380 0.1284 n.s.

Row Factor F(4.707, 273) = 10.97 <0.0001 ****

Number of Entries
to the Top

dnmt3aa KO
Column Factor F(1, 35) = 7.937 0.0079 **

Row Factor F(3.492, 122.2) = 2.944 0.0287 *

dnmt3ab KO
Column Factor F(1, 58) = 0.9411 0.3360 n.s.

Row Factor F(4.781, 277.3) = 6.991 <0.0001 ****

Latency to Enter
the Top

dnmt3aa KO
Column Factor F(1, 35) = 36.68 <0.0001 ****

Row Factor F(4.262, 149.2) = 7.211 <0.0001 ****

dnmt3ab KO
Column Factor F(1, 58) = 2.980 0.0896 n.s.

Row Factor F(4.675, 271.1) = 21.92 <0.0001 ****

Total Distance
Traveled in the Top

dnmt3aa KO
Column Factor F(1, 35) = 14.51 0.0005 ***

Row Factor F(3.980, 139.3) = 1.620 0.1728 n.s.

dnmt3ab KO
Column Factor F(1, 58) = 2.387 0.1278 n.s.

Row Factor F(5.290, 306.8) = 8.278 <0.0001 ****
Mirror Biting Test

Behavior Endpoints Fish Lines U-Value p Value Significance

Mirror Biting Time Percentage dnmt3aa KO 110 0.2212 n.s.
dnmt3ab KO 161.5 < 0.0001 ****

Longest Duration in the Mirror Side dnmt3aa KO 144 0.8610 n.s.
dnmt3ab KO 164.5 < 0.0001 ****

Average Speed dnmt3aa KO 87 0.0498 *
dnmt3ab KO 384 0.3354 n.s.

Freezing Time Movement Ratio dnmt3aa KO 117.5 0.3190 n.s.
dnmt3ab KO 417.5 0.6359 n.s.

Swimming Time Movement Ratio dnmt3aa KO 117.5 0.3183 n.s.
dnmt3ab KO 416.5 0.6254 n.s.

Rapid Time Movement Ratio dnmt3aa KO 85 0.0417 *
dnmt3ab KO 369 0.2343 n.s.

Predator Avoidance Test
Behavior Endpoints Fish Lines U-Value p Value Significance

Approaching Predator Time dnmt3aa KO 53 0.0016 **
dnmt3ab KO 42 < 0.0001 ****

Average Distance to Separator dnmt3aa KO 19 < 0.0001 ****
dnmt3ab KO 29 < 0.0001 ****

Average Speed dnmt3aa KO 119 0.3464 n.s.
dnmt3ab KO 98 0.0218 *

Freezing Time Movement Ratio dnmt3aa KO 71 0.0123 *
dnmt3ab KO 78.50 0.0038 **

Swimming Time Movement Ratio dnmt3aa KO 48 0.0009 ***
dnmt3ab KO 79.50 0.0042 **

Rapid Time Movement Ratio dnmt3aa KO 124 0.4271 n.s.
dnmt3ab KO 156.5 0.5224 n.s.
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Table A1. Cont.

Novel Tank Test

Behavior
Endpoints Fish Lines Source of Variation F (DFn, DFd) p Value Significance

Social Interaction Test
Behavior Endpoints Fish Lines U-Value p Value Significance

Average Speed dnmt3aa KO 66 0.1379 n.s.
dnmt3ab KO 78 0.0037 **

Interaction Time Percentage dnmt3aa KO 95 0.7186 n.s.
dnmt3ab KO 146 0.3559 n.s.

Longest Duration in Separator Side dnmt3aa KO 80 0.3500 n.s.
dnmt3ab KO 174 0.8800 n.s.

Average Distance to Separator dnmt3aa KO 73 0.2274 n.s.
dnmt3ab KO 79 0.0041 **

Shoaling Test
Behavior Endpoints Fish Lines U-Value p Value Significance

Average Inter-Fish Distance dnmt3aa KO 88 0.1226 n.s.
dnmt3ab KO 60 0.0005 ***

Average Shoal Area dnmt3aa KO 8 0.2867 n.s.
dnmt3ab KO 0 0.0020 **

Average Nearest Neighbor Distance dnmt3aa KO 80 0.0687 n.s.
dnmt3ab KO 43 < 0.0001 ****

Average Farthest Neighbor Distance dnmt3aa KO 91 0.1494 n.s.
dnmt3ab KO 29 < 0.0001 ****

Average Speed dnmt3aa KO 79 0.0636 n.s.
dnmt3ab KO 81 0.0050 **

Time in Top Duration dnmt3aa KO 12 < 0.0001 ****
dnmt3ab KO 158 0.5544 n.s.

Average Distance to Center of the
Tank

dnmt3aa KO 60 0.0111 *
dnmt3ab KO 95 0.0171 *

Circadian Rhythm Locomotor Activity Test

Cycles Behavior
Endpoints Fish Lines U-Value p Value Significance

Day

Average
Speed

dnmt3aa KO 49,862 0.0620 n.s.
dnmt3ab KO 35,242 0.5673 n.s.

Average
Angular
Velocity

dnmt3aa KO 31,207 0.0055 **
dnmt3ab KO 13,886 0.0002 ***

Meandering dnmt3aa KO 17,567 0.6189 n.s.
dnmt3ab KO 32,656 0.0470 *

Night

Average
Speed

dnmt3aa KO 16,195 < 0.0001 ****
dnmt3ab KO 4077 < 0.0001 ****

Average
Angular
Velocity

dnmt3aa KO 31,267 < 0.0001 ****
dnmt3ab KO 27,105 < 0.0001 ****

Meandering dnmt3aa KO 26,506 < 0.0001 ****
dnmt3ab KO 11,843 < 0.0001 ****

Color Preference Test

Color Combinations Fish Line Comparisons F (DFn,
DFd) Colors p Value Significance

Green-Blue

WT vs. dnmt3aa KO

F(5, 124)
= 22.88

Green
0.0016 **

WT vs. dnmt3ab KO < 0.0001 ****
dnmt3aa KO vs. dnmt3ab KO > 0.9999 n.s.

WT vs. dnmt3aa KO
Blue

0.0024 **
WT vs. dnmt3ab KO < 0.0001 ****

dnmt3aa KO vs. dnmt3ab KO 0.2146 n.s.

Green-Yellow

WT vs. dnmt3aa KO

F(5, 124)
= 182.4

Green
0.0016 **

WT vs. dnmt3ab KO < 0.0001 ****
dnmt3aa KO vs. dnmt3ab KO < 0.0001 ****

WT vs. dnmt3aa KO
Yellow

0.0016 **
WT vs. dnmt3ab KO < 0.0001 ****

dnmt3aa KO vs. dnmt3ab KO < 0.0001 ****
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Table A1. Cont.

Novel Tank Test

Behavior
Endpoints Fish Lines Source of Variation F (DFn, DFd) p Value Significance

Red-Blue

WT vs. dnmt3aa KO

F(5, 124)
= 35.28

Red
> 0.9999 n.s.

WT vs. dnmt3ab KO 0.9273 n.s.
dnmt3aa KO vs. dnmt3ab KO 0.9658 n.s.

WT vs. dnmt3aa KO
Blue

> 0.9999 n.s.
WT vs. dnmt3ab KO 0.9274 n.s.

dnmt3aa KO vs. dnmt3ab KO 0.9658 n.s.

Green-Red

WT vs. dnmt3aa KO

F(5, 124)
= 62.59

Green
0.9984 n.s.

WT vs. dnmt3ab KO < 0.0001 ****
dnmt3aa KO vs. dnmt3ab KO < 0.0001 ****

WT vs. dnmt3aa KO
Red

0.9984 n.s.
WT vs. dnmt3ab KO < 0.0001 ****

dnmt3aa KO vs. dnmt3ab KO < 0.0001 ****

Red-Yellow

WT vs. dnmt3aa KO

F(5, 124)
= 381.1

Red
0.0015 **

WT vs. dnmt3ab KO < 0.0001 ****
dnmt3aa KO vs. dnmt3ab KO 0.8337 n.s.

WT vs. dnmt3aa KO
Yellow

0.0015 **
WT vs. dnmt3ab KO < 0.0001 ****

dnmt3aa KO vs. dnmt3ab KO 0.8337 n.s.

Blue-Yellow

WT vs. dnmt3aa KO

F(5, 124)
= 934.6

Blue
< 0.0001 ****

WT vs. dnmt3ab KO < 0.0001 ****
dnmt3aa KO vs. dnmt3ab KO 0.3531 n.s.

WT vs. dnmt3aa KO
Yellow

< 0.0001 ****
WT vs. dnmt3ab KO < 0.0001 ****

dnmt3aa KO vs. dnmt3ab KO 0.3531 n.s.
Short-Term Memory Test

Behavior Endpoints Fish Line
Comparisons F (DFn, DFd) p Value Significance

Latency After 24 h

Before
Training

WT vs. dnmt3aa KO Column Factor
F (2, 86) = 3.487

p = 0.0350 *
Row Factor

F (1, 86) = 24.59
p < 0.0001 ****

0.9993 n.s.
WT vs. dnmt3ab KO > 0.9999 n.s.

dnmt3aa KO vs.
dnmt3ab KO 0.9994 n.s.

After
Training

WT vs. dnmt3aa KO 0.0011 **
WT vs. dnmt3ab KO 0.0443 *

dnmt3aa KO vs.
dnmt3ab KO 0.4340 n.s.

Global DNA Methylation Level Test
Parameters Fish Line Comparisons F (DFn, DFd) p Value Significance

5-hmC
WT vs. dnmt3aa KO

F (2, 12) = 0.9873
0.2012 n.s.

WT vs. dnmt3ab KO 0.3745 n.s.
dnmt3aa KO vs. dnmt3ab KO 0.6478 n.s.

5-mC
WT vs. dnmt3aa KO

F (2, 12) = 1.439
0.1761 n.s.

WT vs. dnmt3ab KO 0.1788 n.s.
dnmt3aa KO vs. dnmt3ab KO 0.9263 n.s.

Ratio
WT vs. dnmt3aa KO

F (2, 12) = 0.006109
0.9247 n.s.

WT vs. dnmt3ab KO 0.9299 n.s.
dnmt3aa KO vs. dnmt3ab KO 0.9908 n.s.
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