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Abstract: In genome-wide association studies, linear mixed models (LMMs) have been widely used
to explore the molecular mechanism of complex traits. However, typical association approaches
suffer from several important drawbacks: estimation of variance components in LMMs with large
scale individuals is computationally slow; single-locus model is unsatisfactory to handle complex
confounding and causes loss of statistical power. To address these issues, we propose an efficient
two-stage method based on hybrid of restricted and penalized maximum likelihood, named HRePML.
Firstly, we performed restricted maximum likelihood (REML) on single-locus LMM to remove
unrelated markers, where spectral decomposition on covariance matrix was used to fast estimate
variance components. Secondly, we carried out penalized maximum likelihood (PML) on multi-locus
LMM for markers with reasonably large effects. To validate the effectiveness of HRePML, we conducted
a series of simulation studies and real data analyses. As a result, our method always had the highest
average statistical power compared with multi-locus mixed-model (MLMM), fixed and random model
circulating probability unification (FarmCPU), and genome-wide efficient mixed model association
(GEMMA). More importantly, HRePML can provide higher accuracy estimation of marker effects.
HRePML also identifies 41 previous reported genes associated with development traits in Arabidopsis,
which is more than was detected by the other methods.

Keywords: restricted maximum likelihood; penalized; computational efficiency; linear mixed
model; GWAS

1. Introduction

Genome-wide association studies (GWAS) can advance our understanding of molecular
mechanism of complex traits [1-4]. Testing each SNP (single nucleotide polymorphism) one time is the
most popular method, which is flexible to perform on all kinds of models. However, each SNP requires
multiple testing adjustment, which will result in strict p-values. One strategy to solve this problem is to
use more information beyond the p-value. For example, Xu, et al. [5] proposed a model-based clustering
method that borrowed information across SNPs and increased the signal strength by properly clustering
SNPs. Lee and Lee [6] presented a web application for the network-based Arabidopsis genome-wide
association boosting, which can identify weak association signals by integrating co-functional gene
network information. Apart from this, the linear mixed model (LMM) has become a widely used
methodology due to its capability in controlling for population stratification and the inclusion of related
individuals [7]. However, the implementation of LMM requires estimating the variance component of
each random effect, leading to increased computational burden. The restricted maximum likelihood
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(REML) is the widely used method for the estimation of variance components. Conventional REML
algorithms are impractical to handle large-scale genomic datasets with thousands of individuals and
millions of SNPs. There are two main reasons limiting REML application: on one hand, it is hard
to obtain closed-form solutions of REML or posterior estimations of variance components. On the
other hand, the inversion of the covariance matrix is required to perform on each computation of
likelihood, an operation that is proportional to the cube of individual number. As a result, improving
the computational efficiency of REML for estimating variance components has become one of the
research hotspots [8-12].

With regards to this, several approaches based on sparse matrix operations have been developed
to improve the calculating speed [13,14]. Lippert, et al. [8] performed spectral decomposition on the
covariance matrix, converting matrix inversion to diagonal reciprocal operation. This strategy not only
greatly improves the computational efficiency but, also, takes advantage of genetic relatedness matrix
to adjust the correlation. Similarly, Zhou and Stephens [9] implemented their method in a genome-wide
efficient mixed model association (GEMMA), which only required a small amount of matrix vector
multiplications to obtain variance components. A different idea was proposed by Loh et al. [10],
which used preconditioned conjugate gradients and stochastic trace estimators to avoid all cubic
operations. This is an asymptotic method via linear system transformations, particularly suitable
for Bio Bank large-scale individuals. In addition to the above two popular ideas, some specialized
methods have been developed to solve variance component estimations efficiently. Lourenco et al. [15]
proposed a robust derivative-free restricted-maximum likelihood framework (DF-REML), which can
tackle normality violations, as well as other model misspecifications. Cesarani et al. [16] investigated
bias in variance components under different genotyping strategies, showing that single-step genomic
restricted maximum likelihood (ssGREML) is more robust compared to GREML. Ganjgahi et al. [4]
proposed a weighted least squares REML (WLS-REML) using a noniterative one-step random effect
estimator to decrease the computational cost. Border and Becker [12] developed stochastic Larnczos
derivative-free REML and Lanczos first-order Monte Carlo REML to further improve the computing
speed. However, these existing methods for REML variance components estimation are mainly aimed
at single-locus LMM, which is not effective enough to handle a complex genetic structure.

Several classical multivariate selection methods have good performances in association analyses
when the number of SNPs is not far more than that of individuals, including Lasso and its
derivatives [17-19], penalized maximum likelihood (PML) [20-23], and Bayesian methods [24,25].
However, most of these methods are not available to analyze large-scale genomic data due to ultra-high
dimensional variables. To address this issue effectively, some improved multi-locus GWAS methods
were proposed. For example, multi-locus mixed-model (MLMM) [26] adopts stepwise mixed-model
regression with forward inclusion and backward elimination using a Bayesian approach and performs
well when the structure is complex, fixed and random model circulating probability unification
(FarmCPU) [27] incorporates multiple markers simultaneously as covariates in a stepwise LMM to
partially remove the confounding between testing markers and kinship, iterative nonlocal prior-based
selection (GWASinlps) [28] considers an iterative structured screen-and-select strategy and nonlocal
priors within it and provides an efficient and parsimonious variable selection for continuous phenotypes,
a machine-learning method combines a random forest-based technique with the modeling of linkage
disequilibrium through latent variables [29] and accelerates the computing speed for multi-locus GWAS,
a gene set analysis with Generalized Berk-Jones (GBJ) statistic [30] introduces a permutation-free
parametric framework, which can increase the power by incorporating information from multiple
signals in the same gene, the SNP set GWAS approach RAINBOW [31] achieves faster computation by
using linear kernel for constructing the Gram matrix of the SNP set of interest, and the multi-locus
random SNP effect mixed linear model (mrMLM) [32] uses the Wald test based on a random SNP effect
linear mixed model to reduce dimensionality; then, all the selected markers are placed into an empirical
Bayes [33] multi-locus model, showing the advantage in controlling a complex population structure.
A limitation of Bayesian method is that Markov Chain Monte Carlo (MCMC) sampling comes at
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the cost of intensive computation, or the posterior distribution of fitness is not easy to calculate [34].
Penalized maximum likelihood is similar to the Bayesian method involving the posterior distribution
of parameters; the difference is that PML adopts a fast approach to obtain the maximum posteriori
estimates of fitness via numerical optimization. Therefore, PML provides an efficient way to perform
multivariate selection.

In this study, we developed an efficiently hybrid method HRePML to perform GWAS, which takes
full advantage of REML and PML. Under the linear mixed model framework, we firstly conducted
single-locus marker scanning using REML and then carried out multi-locus marker selection based on
the reduced subset, taking genetic relatedness and population stratification into account. We used
pure C++ language to implement HRePML and overcome one key issue in the programming limited
memory Broyden-Fletcher-Goldfarb—Shanno (BFGS) method [35]. In order to validate the effectiveness
of HRePML, we conducted a series of simulation studies and real data analyses and compared it with
three methods: MLMM [26], FarmCPU [27], and GEMMA [9].

2. Materials and Methods

2.1. The Arabidopsis thaliana Dataset

A publicly available dataset of Arabidopsis thaliana [36] is used to conduct a simulation study
and real data analysis. This dataset contains 216,130 markers and 199 individuals. There are four
development related traits to be analyzed, which are the number of days between the appearance
of the first flower and the senescence of the last flower (FT duration GH), number of days between
germination and plant complete senescence (LC duration GH), number of days between germination
and senescence of the last flower (LFS GH), and number of days between last flower senescence and
complete plant senescence (MT GH), respectively.

2.2. Restricted Maximum Likelihood (REML) Method in Single-Locus Screening Stage

2.2.1. Single-Locus Linear Mixed Model

A standard linear mixed model for association mapping can be expressed as
y=Fb+Xp+u+e 1)

where y denotes the 11 X 1 observed phenotypic vector of n individuals, F is an 1 X ¢ fixed effect design
matrix, including 17s column vector, b is a ¢ X 1 vector of their corresponding effect sizes, X denotes the
n x 1 marker genotype vector of focal variant, f is the random effect of one focal marker with normal
distribution g ~ N(0, aé), the variance Gé is changed with different markers, and u ~ N (0, 02¥%,) is an
n X 1 random vector and is typically used to account for polygenic effects or confounding factors; here,
aﬁ is the variance, and I, is an 1 X 1 covariance structure defined as T, = G- G /m; G is an n X m
genotype matrix, and m is the number of markers; & ~ N(0, 021,,) denotes an 1 X 1 independently and
identically distributed (i.i.d.) residual vector, and 02 is the residual variance. The covariance of y can
be denoted as
Coov(y) :XXTaé + Z,0% + I,02
=[xXTwg + (Zuwy + L) |02 @)
=(xxTwg + P)o?

where wg = oé / o%, wy = of, / G%, and P = X,w, + I,,. The estimate of w, can be obtained under the null
model, defined as @,,, which only needs to be computed once. Using spectral decomposition, X, can be
expressed as X, = QAQT, where A = diag(A1, A2, -+, Ay) is a diagonal matrix of eigenvalues, and Q
is an n X n eigenvector matrix corresponding to these eigenvalues [32,37,38].
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2.2.2. Equation Transformation and Update Covariance

Transform Equation (1) by left-multiplying Q [32] and generate the following model
yo = Fob+XoB+ QTu+ Qe ©)
where y, = Qly, Fo = Q'F, and Xg = QTX. After transformation, the covariance of y becomes

Cov(yq) =XoXgos + Q' Zu03Q + Q'10;,Q
=XXqoz +Q'QAQ"Qo}, + Q'1Qo;,
:XQXgaé + Aoﬁ + InafZ

—(XXGwg + Ady + L)y

(4)

Let Vo = Ad, +I,and V = XQXga)g + Vy; clearly, diagonal matrix Vj is estimated. To determine
whether a marker has an effect, hypothesis testing needs to be conducted. To estimate the marker
effect 8, its variance ratio w¢ needs to be obtained firstly, so that the estimation of each wy is the most
interesting issue for each corresponding marker.

2.2.3. Optimal Solution via Efficient REML

In order to get the estimation d¢, optimize the following restricted log-likelihood function with
respect to wg,

Ly(wy) :—% log|V] - %log|FgV_1FQ' 2 (yq ~Fob) V(g - Fob)

1 1 T 1 n—c r ©)
=~ logIVI - 5 loglFG V™" Fo| - “5-ugSvq
where .
i (T 1 T 1
b=(FRV'Fg) FLV 'y ©6)
1 1 Ty-1p \ gl -1
S=V'-VIFy(FQV'Fy) FoV @)

Limited-memory BFGS (L-BFGS) [35,39] is an optimized algorithm of quasi-Newton methods for
efficient solution. The libLBFGS is a user-friendly C library implementation of the L-BFGS method
written by Nocedal [40]. This library requires that the objective function L,(wg) and its gradient
dL,(wg)/dwg are computable. However, the gradient function cannot be obtained directly by closed
form. Fortunately, the well-known C++ Boost library [41] provides a finite difference method for
solving the gradient, which is located in a boost/math/differentiation/finite_difference.hpp file. After @,
is estimated, f and 62 can be easily obtained for restricted log-likelihood functions, which are as
follows, respectively,

p= a)gXESyQ 8)
65 = S 9
9n = 1 -cYe%Yq )
so that the variance of B denotes
var(B) = wgd; — wg XV Xqugdy (10)

The Wald test is used to conduct a hypothesis test on each marker effect f—thatis, Hy: § = 0,
Hj : B # 0. The Wald test is

PN

W =

— 11
var(p) (1)
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W follows the chi-square distribution with 1 degree of freedom, and the p-value corresponding to W can
be computed by the C++ Boost library, which is located in a boost/math/distributions/chi_squared.hpp
file. In the single-marker screening stage, a relatively loose and flexible P cutoff is adopted.

2.3. Penalized Maximum Likelihood (PML) Method in Multi-Locus Screening Stage

2.3.1. Multi-Locus Linear Mixed Model and Penalized Likelihood Function

All the markers passing the REML step are placed into a multi-locus model [20] as

t
y=Fb+) xpite (12)
i=1

where y, F, b, and ¢ are the same definitions as Equation (1). x; is the ith n X 1 genotypic vector, and f;
is the fixed effect of corresponding marker. ¢ denotes the total number of selective markers from the
REML step.

Penalized maximum likelihood (PML) is a fast approach to use numerical optimization to
obtain the maximum posteriori estimates when the penalty function is a probability density on
the parameters [20,22,42]. Let 0 = {b, B, ,ﬁt,a%} is the interesting vector of the parameters.
The log-likelihood function denotes

t
L(0) = log (p[y; Fb + Zx,-ﬁi, IoﬁJ (13)
i=1
t t
where (p(y,‘ Fb+ ) x;Bi, Io%) is the normal density with the mean Fb + }, x;f; and covariance Io2.
i=1 i

= i=1
A factor is introduced to penalize on the marker effects f;

p(Bi) = (Birmi0?)  i=1,-t (14)

where (p(‘Bi 5 Wi, a?) is a normal prior with a mean y; and variance 01.2. Then, y; is also assigned a normal
prior distribution

p(ui) :(p(yi;O,a%/T) i=1---,51t>0 (15)

Let 6 = {yl, cee, yt,a%, e ,af} be the hyperparameters that can be estimated along with the
interested parameters at the same time. The logarithm of the penalized prior distribution is

t

P(0,06) = Z[log (p(‘Bi,‘ yi,oiz) + log (p(yi; 0, a?/’c)] (16)
i=1

Then, the logarithm of penalized likelihood function can be defined as
L,(0,6) =L(6)+P(0,0) (17)

2.3.2. Iterative Method for Parameter Estimation

The parameter vector 6 and 6 are estimated by the penalized maximum likelihood simultaneously,
and the solution of PML needs an iterative method to implement. For the interested parameter vector 0,
find the first-order partial derivatives of the elements in 8 and then make them equal to 0.
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7 !913:
_ . . 2 .
closed-form expression on b, f;, and oz, respectively.

Via £1,(0,6) = 0, £L,(0,6) = 0, and %Lp(e,a) = 0and i = 1,---,t, it can obtain a

3
b= (PTF)_IFT[V - inﬁi] (19
i=1
1 !
pi=xixi+on/a}] |xly—Fo— Y x|+ won/o} 19)
k=1
ki

t T t
o = %[y —Fb— inﬁi] [y —Fb - Z xiﬁi] (20)

=1

i=1
For the nuisance parameter vectors, 8, p;, and o? are acquired in the same way. Via a%-LP (0,0)=0
2 .
and %LP(G,(S) =0, =Bi/(t+1) and 07 = %[(ﬁl — i)+ Ty?-] can be obtained.
Set the initial values for 0, 6, and T and update the values of b, f;, 02, ;, and af until convergence.
In order to reach convergence quickly, a criterion according to the experience needs to be considered.

After the parameter estimation, ,81-‘ > 107 are selected to further conduct a likelihood-ratio test.
The logarithm of the odds (LOD) score is used to determine the final identification.

2.4. Design of Simulation Experiments

Four simulation experiments were designed to validate our new method HRePML. In the first
simulation study, our goal was to explore the new method’s performance on the statistical power, mean
square error (MSE), and running time. We generated a set of genotype data consisting of 500 individuals
and 10,000 markers, which was based on the Arabidopsis thaliana dataset [36]. Eight quantitative trait
nucleotides (QTNs) were simulated with heritability of 0.01, 0.03, 0.03, 0.05, 0.08, 0.01, 0.05, and 0.05,
respectively. Their positions and true effects are described in Table 1. The total genetic heritability
is h% = G2G/(Gé +02) = 0.01 X2+ 0.03%x 2+ 0.05x 3+ 0.08 = 0.31, and the residual variance is
02 = 10.0. Then, the total genetic variance o>

G
2 . . . .
each QTN agl.(z =1,---,8). The population mean is set to 10.0. The phenotype is generated by the

can be obtained, as well as the genetic variance of

8
model y = u+ Y x;i + ¢ where ¢ ~ MVN(0,10.0 X I,,). The experiment is repeated 1000 times.
=1

1=
The statistical power for each QTN is defined as the percentage of the number of detected QTN to the
number of repetitions. We used the logarithm of the odds (LOD = 3.0) as the criterion for detecting

S A 2
QTN [32,43,44]. Mean squared error was calculated as MSE;, = % Y (ﬁki - ﬁk) ,wherek =1,---,8,
i=1

S was the number of detected QTN k among 1000 repetitions, f3i; was the effect estimation of QTN k in
the ith repeat, and f; was the kth QTN’s true effect.

In the second simulation study, we aimed at exploring the influence of polygenic background on
HRePML. The polygenic effects were introduced with multivariate normal distribution MVN(0, G%gK),
where the polygenic variance o;%g was set to 2.0, genetic relatedness matrix K was calculated as GT'G/M,
G was the genotype matrix, and M was the number of markers. Other parameters were set to the same

as the first simulation study. The position and true effect of each QTN are listed in Table S1. Based on
8
the model y = u+ Y x;8i + u+ ¢, where u ~ MVN(0,2.0 X K), the phenotypes are simulated.
i=1
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Table 1. Comparison of the statistical power and mean squared errors (MSE) for each quantitative trait nucleotide (QTN) among the hybrid of restricted and penalized

maximum likelihood (HRePML), multi-locus mixed-model (MLMM), fixed and random model circulating probability unification (FarmCPU), and genome-wide

efficient mixed model association (GEMMA) methods in the first simulation study *.

Power (%)

Mean Squared Errors (MSE)

QTN Chr. Position(bp) R2 Effect
HRePML MLMM FarmCPU GEMMA HRePML MLMM FarmCPU GEMMA

1 1 404108 0.01 0.4328 9.9 2.4 1.6 0.0 0.0509 0.1334 0.1224 na*
2 1 636788 0.03 0.7497 45.1 39.9 53.7 0.2 0.0193 0.0440 0.0241 0.3112
3 3 507976 0.03 0.7497 66.7 40.1 13.9 8.1 0.1443 0.0992 0.2756 0.1597
4 3 931437 0.05 0.9679 89.5 69.5 58.8 55.3 0.0321 0.0276 0.0434 0.0770
5 4 75898 0.08 1.2243 100.0 99.8 100.0 97.5 0.0407 0.0375 0.0527 0.0283
6 4 461978 0.01 0.4328 12.7 5.0 8.9 0.7 0.2488 0.3808 0.3429 0.5502
7 4 607026 0.05 0.9679 69.6 80.9 98.5 73.8 0.0421 0.0988 0.0367 0.1544
8 5 282008 0.05 0.9679 89.6 87.6 90.3 55.1 0.0397 0.0334 0.0345 0.0725

* In the first simulation study, the dataset consists of 500 individuals and 10,000 single nucleotide polymorphism (SNP) markers with 1000 replicates. Eight true QTNs are set in each
replicate. Then, this dataset can be regarded as having 10,000,000 SNPs and 8000 true QTN in total. #na” represents not available.
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In the third simulation study, our goal was to investigate the influence of the sample size on the
running time and statistical power. The sample size was set to 500, 1000, 2000, and 4000, respectively.
Meanwhile, the number of markers was fixed at 10,000. In the fourth simulation study, our aim was to
investigate the impact on running time as the number of markers increased. The number of markers
was set to 10,000, 50,000, 100,000, and 200,000, respectively. At the same time, the sample size was fixed
at 500. In these two simulation studies, the repeat times were set to 100. The position and heritability
of each QTN were set to the same as those of first simulation study. Their parameters are listed in
Table S3.

3. Results

3.1. Statistical Properties

We compared the statistical properties of the new HRePML method with those of the multi-locus
mixed-model (MLMM) [26], fixed and random model circulating probability unification (FarmCPU) [27],
and genome-wide efficient mixed model association (GEMMA) [9] methods. Here, the statistical
properties mainly included statistical power and mean squared error (MSE). In the first simulation
study, the dataset consisted of 500 individuals and 10,000 SNP markers with 1000 replicates. Eight true
QTNs were set in each replicate. Then, this dataset was regarded as having 10,000,000 SNPs and
8000 true QTNs in total. The average power of the four methods were 60.39%, 53.15%, 53.21%,
and 36.34%, respectively. HRePML obtained the highest statistical power, which was at least about 7%
higher than the other three methods. In particular, HRePML performed well on QTNs with lower
heritability, such as QTN 1, 3, 4, and 6 (Tables 1 and 2 and Figure 1A). The mean squared error was
used to measure the accuracy of the QTN effect estimates, and smaller MSE represented better accuracy.
The average MSE of the above four methods were 0.0772, 0.1068, 0.1165, and 0.1933, respectively,
demonstrating that the average MSE of HRePML was the minimum (Tables 1 and 2 and Figure 2A).

Table 2. Comparison of average statistical power, average mean squared errors (MSE), and running
time among the HRePML, MLMM, FarmCPU, and GEMMA methods in the first simulation study *.

Statistical Properties HRePML MLMM FarmCPU GEMMA

Average power (%) 60.39 53.15 53.21 36.34
Average MSE 0.0772 0.1068 0.1165 0.1933
Running time (Hour) 3.1419 22.7274 4.6653 2.4186

* The dataset used in Table 2 is the same as that used in Table 1.

To further validate the performance of HRePML, an additive polygenic effect was involved
in the second simulation study. The dataset was the same with that used in the first simulation
study, except that polygenic effect was added to the phenotype. The same trend in statistical power
was observed, and the average powers of HRePML, MLMM, FarmCPU, and GEMMA were 62.45%,
57.08%, 55.18%, and 40.46%, respectively, which showed that HRePML was still powerful and robust
under polygenic interference (Tables S1 and S2 and Figure 1B). As far as the mean squared error
was concerned, the average MSE of the above four methods were 0.0926, 0.1343, 0.1184, and 0.2125,
respectively. HRePML had the most accuracy of the QTN effect estimates, followed by FarmCPU,
MLMM, and GEMMA (Tables S1 and S2 and Figure 2B).

In the third simulation study, we investigated the effect of the sample size on the statistical power
of HRePML. There were four datasets consisting of 500, 1000, 2000, and 4000 individuals, respectively,
and 10,000 SNP markers, with 100 replicates. Eight true QTNs were set in each replicate. Then,
each dataset could be regarded as having 1,000,000 SNPs and 800 true QTNs in total. The average
powers of sample sizes 500, 1000, 2000, and 4000 were 59.88%, 75.75%, 82.00%, and 91.13%, respectively.
Clearly, the statistical power improved as the sample size increased. The results demonstrated that the
statistical power could be more than 80% for QTN, with heritability equal or greater than 0.03 when the
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sample size reached 1000. However, for QTN with very small heritability (0.01), the required sample
size was at least 4000, and then, the statistical power could exceed 60% (Table 3 and Figure 3).

mmm HRePMIT. — MLMM FarmCPU GEMMA

100 A 100 5 B

75 75

50 50 1

Statistical power (%)
Statistical power (%)

25 1 25 1

QINI QTN2 QIN3 QIN4 QTIN5 QIN6 QIN7 QINS QINI QTN2 QTN3 QIN4 QTIN5 QTN6 QIN7 QTINS

Figure 1. Comparison of statistical powers of eight simulated quantitative trait nucleotides (QTNs) using
four genome-wide association study (GWAS) methods (hybrid of restricted and penalized maximum
likelihood (HRePML), multi-locus mixed-model (MLMM), fixed and random model circulating
probability unification (FarmCPU), and genome-wide efficient mixed model association (GEMMA)).
(A) The first simulation study: no polygenic background. (B) The second simulation study: an additive
polygenic variance involved.

| [RePML — MLMM FarmCPU GEMMA
0.8 0.8
A B

5 06 5 06
g £
= =
s 5
= =
-] 9
H] ]
g 04 4 g 04 o
=3 g
b g
=] =
o -
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= 02 A = 0.2 -

0.0 - 0.0 -

QTN1 QTN2 QTN3 QTN4 QTNS QTN6 QIN7 QTN QTN1 QTNZ QTN3 QIN4 QTN5 QIN6 QTN7 QINS

Figure 2. Comparison of mean squared errors of each simulated QTN effect using four GWAS methods
(HRePML, MLMM, FarmCPU, and GEMMA). The descriptions in (A,B) are the same as those in
Figure 1.

Table 3. Effect of the sample size on the statistical power and running time using the HRePML method
in the third simulation study *.

Sample Size: Power (%)

QTN R?

500 1000 2000 4000
1 0.01 12 13 30 61
2 0.03 48 84 94 99
3 0.03 61 91 93 96
4 0.05 91 99 97 99
5 0.08 100 100 100 100
6 0.01 9 23 46 77
7 0.05 71 98 98 99
8 0.05 87 98 98 98

Average power (%) 59.88 75.75 82.00 91.13
Running time (Hour) 0.3142 1.1244 3.9969 39.5439

* In the third simulation study, there are four datasets consisting of 500, 1000, 2000, and 4000 individuals, respectively,
and 10,000 SNP markers, with 100 replicates. Eight true QTNs are set in each replicate. Then, each dataset can be
regarded as having 1,000,000 SNPs and 800 true QTN in total.
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Statistical power (%)

Figure 3. Effect of the sample size on the statistical power using HRePML in the third simulation study.

3.2. Running Time

All above four methods were carried out on the same machine (Intel® Core™ i5-7300HQ CPU
2.50 GHz, Memory 8.00 GB, Houston, TX, USA). In the first simulation consisting of 1000 repetitions,
the total running time of HRePML, MLMM, FarmCPU, and GEMMA were 3.1419, 22.7274, 4.6653,
and 2.4186 h, respectively. Compared with the other two multi-locus MLMM and FarmCPU methods,
HRePML was the most computationally efficient, which was only slightly slower than the single-locus
GEMMA method. In particular, HRePML achieved about seven times faster than the popular
multi-locus method MLMM (Table 2 and Figure 4A). The second simulation also conducted with
1000 repetitions, and the same trend in total running time was observed, which was 3.2273, 27.4473,
4.9198, and 2.3855 h for the four methods, respectively. GEMMA was the fastest method, followed
by HRePML, FarmCPU, and MLMM (Table S2 and Figure 4B). In the third and fourth simulations of
100 repeated experiments on the HRePML, the sample sizes and number of markers were investigated
on the influence of running time. With sample sizes 500, 1000, 2000, and 4000, the running times were
0.3142, 1.1244, 3.9969, and 39.5439 h, respectively. The results showed that, as the sample size increased,
the running time increased nonlinearly (Table 3 and Figure 5A). In the fourth simulation study;,
there were four datasets consisting of 10,000, 50,000, 100,000, and 200,000 SNP markers, respectively,
and 500 individuals. With the number of markers 10,000, 50,000, 100,000, and 200,000, the running
time was 0.3142, 1.5460, 3.2735, and 6.3574 h, respectively. Clearly, the running time increased almost
linearly with the markers increasing (Figure 5B).
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Figure 4. Comparison of total running time using four GWAS methods (HRePML, MLMM, FarmCPU,
and GEMMA). The descriptions in (A,B) are the same as those in Figure 1.
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Figure 5. (A). Effect of the sample size on running time in the third simulation. (B) Effect of markers on
the running time in the fourth simulation.

3.3. Association Analysis of Real Data in Arabidopsis

We performed GWAS on four development traits of Arabidopsis using HRePML, MLMM, FarmCPU,
and GEMMA. The four methods identified 77, 43, 32, and 17 SNPs significantly associated with four
traits. HRePML had the highest number of detected SNPs, which was more than four times than that
of GEMMA detected (Table S4). Then, we performed gene ontology (GO) functional annotations on
detected SNPs within their physical position 10 KB. As a result, the number of candidate genes detected
by four methods were 41, 19, 25, and 5, which demonstrated that HRePML had the strongest ability to
mine candidate genes, followed by FarmCPU, MLMM, and GEMMA (Tables 54 and S5). A total of
eight genes were detected simultaneously by at least two methods. Interestingly, most of these eight
genes were located on chromosome 5, while there was none located on chromosome 1. We found good
agreement between the new methods HRePML and FarmCPU. It was worth noting that AT5G45900
and AT5G45940 could be identified by at least two methods on traits LC duration GH and LFS GH
(Table 4). AT5G45900 is a component of the autophagy conjugation pathway and contributes to plant
basal immunity towards fungal infection. AT5G45940 encodes a CoA pyrophosphatase and also has
ppGpp pyrophosphohydrolase and exhibits minor activity of NADH pyrophosphatase and was most
strongly expressed in embryo cotyledon and the hypocotyl, flower, and phloem of vascular tissues [45].
In summary, HRePML identified the most numbers of significantly associated SNPs and genes in the
real data analysis (Table S5).

3.4. An Example for the Use of HRePML

To run HRePML requires four input files. The first input file is a genotype file, where each row
represents the SNP marker, and each column represents an individual. The first two columns of
the genotype file provide the chromosome and physical position information about the SNP marker.
The genotype is coded as 0, 1, and 2, representing aa, Aa, and AA, where “A” is a dominant allele and
“a” is a recessive allele. The second input file is the phenotype file, which is a column vector. The third
input file is the genetic relatedness matrix or kinship file, which is a N X N matrix, and N is the number
of individuals. The fourth input file is the covariates file, where the first column is the unit column
vector, followed by the population structure or principal component matrix. The example data can be
found at https://github.com/wenlongren/HRePML/tree/master/Example%20Data.

In a Linux system (Ubuntu), the compiling command is: g++ -I/path/liblbfgs-1.10/include
HRePML-Linux.cpp -llapack -lblas -llbfgs -o output, where it needs to include the C++ library
of limited-memory BFGS. If Math Kernel Library (MKL) has been installed for Intel CPU
users, the following compiling command is recommended: g++ -I/path/liblbfgs-1.10/include
HRePML-Linux.cpp -lmkl_gf_lp64 -Imkl_sequential -Imkl_core -llbfgs -0 output. In order to save the
results, the HRePML program requires two output files, which are the results file and the computational
time file. After compilation, the execution command is: .Joutput Genotype.csv Phenotype.csv
Kinship.csv Fixed.csv Results.csv Time.csv. Then, the results and running time are output into
Results.csv and Time.csv files, respectively.


https://github.com/wenlongren/HRePML/tree/master/Example%20Data
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Table 4. Previously reported genes that were identified at least by two methods simultaneously with HRePML, MLMM, FarmCPU, and GEMMA.

Detected Genes  Associated Trait Chr. Position Effect Estimate LOD/p-Value Methods
AT2G16440 LFS GH 2 7140030 —7.461,-9.107, -5.16  3.90x 10711, 1.28 x10717, 956 x 108  FarmCPU, MLMM, GEMMA
AT3G07160 LFS GH 3 2280271 —-5.934, —8.845 116 %1077, 9.37x 10715 FarmCPU, MLMM
AT3G54280 MT GH 3 20090780 1.002, 1.762 9.90x 10713, 5.65x 1078 FarmCPU, MLMM
AT4G09960 FT Duration GH 4 6228754 0.822,1.136 3.74,3.69 x 1078 HRePML, FarmCPU
AT4G33620 LC Duration GH 4 16140068 2.996, 2.540 478,429 x 1072 HRePML, MLMM
AT5G45900, , 18625634, 28
AT5C45940 LC Duration GH 5 18625726 -3.707, —6.051 4.78,2.51 x 10 HRePML, FarmCPU
AT5G45900 18625634,

’ LFS GH 5 18625726, —4.318, =5.147, -5.616 5.23,1.83x 1078, 1.05 x 1077 HRePML, FarmCPU, GEMMA
AT5G45940
18625726
AT5G53360 MT GH 5 21646741 0.236, 0.267 3.05x 10714, 1.55x 1077 FarmCPU, GEMMA
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4. Discussion

In this paper, we proposed a new fast multi-locus method HRePML for GWAS, which is based on
a restricted and penalized maximum likelihood function. HRePML can take genetic relatedness and
population stratification into account under the linear mixed model. In addition, we implemented
the algorithm in pure C++ language and provide Windows and Linux platform versions for the
researcher’s choice.

The new method adopts a two-stage approach to conduct multi-locus GWAS, which is widely used
to improve the computational efficiency when hundreds of thousands of SNPs appear. The coreidea is to
conduct an initial screening of the marginal effects of all SNPs and select the ones with reasonably large
effects for the next phase of the multi-locus test. Recently, multi-locus GWAS methods have become
more and more popular, such as, MLMM [26], FarmCPU [27], mrMLM [32], pPKWmEB (integration of
Kruskal-Wallis test with empirical Bayes with polygenic background control) [43], and ISIS EM-BLASSO
(iterative modified-sure independence screening and expectation-maximization bayesian least absolute
shrinkage and selection operator) [44]. We drew on their successful experience and used the LOD
value instead of the p value to determine the final identified SNPs. Using LOD equal to 3.0 as the
threshold, many real data analyses show that it is feasible to improve the statistical power [32,43,44].
However, these multi-locus methods mentioned above are all programmed in R language, which are
limited in analyzing large samples and massive SNP data. We implemented a new method HRePML
in pure C++ language with the aid of the lapack, blas, libfgs, and boost C++ library. More importantly,
the HRePML program can be further sped up with math kernel library (MKL) for Intel CPU users.
Our first and second simulation experiments indicated that HRePML is about seven times faster than
MLMM (Table 2 and Table S2 and Figure 4).

HRePML can be flexibly applied to animal and human GWAS, not limited to plant research.
Genetic architecture is more complex, and the genome is much larger in animals and human beings
than that in plants. One important issue is allelic heterogeneity, which cannot be effectively handled by
traditional single-locus methods. More importantly, genetic heterogeneity can lead to a noncausative
marker being a better descriptor of the phenotype than a causative one [46]. Another common issue is
rare variant architecture, which may not always be resolved by increasing the sample size. HRePML,
as one multi-locus method, can consider the complex genetic architecture and deal with these two
issues well. Although the current version HRePML can analyze large samples with quantitative
traits in humans, animals, or plants (Figure 5), it is not available to the UK BioBank scale data [47].
We recommend BOLT-LMM [10] for analyzing biobank scale samples.

The current study in Arabidopsis real data analysis showed that the results have relatively low
consistency among HRePML, MLMM, FarmCPU, and GEMMA (Table 4 and Table S5). There are
several possible reasons for this phenomenon. Firstly, the genetic structure of real data is more complex
compared with simulated data, and large errors exist in phenotypic measurements. This can lead to
reduce statistical power. Secondly, different methods are based on different assumptions and different
models. The first three methods adopted a multi-locus model, while GEMMA used a single-locus
model. Besides that, HRePML and MLMM were based on infinitesimal genetic architectures under
a linear mixed model, while FarmCPU iterated on a fixed model and a random model. Thirdly,
different methods respond differently to the effects of sample size, marker numbers, allele frequency,
and heritability. In our opinion, there is complementarity between the various methods, and real data
analysis requires considering the results of several methods together.

5. Conclusions

We proposed an alternative for fast multi-locus GWAS, based on the integration of the restricted
and penalized maximum likelihood. Both the simulated and real data analyses demonstrated that
our method HRePML improved the statistical power significantly compared with MLMM, FarmCPU,
and GEMMA. In addition, HRePML can provide a higher accuracy estimation of the marker effects.
More importantly, we developed an efficient tool in pure C++ for the Windows and Linux platform.
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With the aid of the optimized math kernel library (MKL), HRePML can compute more efficiently when
handling large individuals and millions of markers.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/11/1286/s1,
Table S1: Comparison of statistical power and mean squared errors (MSE) for each QTN among HRePML, MLMM,
FarmCPU and GEMMA methods in the second simulation study, Table S2: Comparison of average statistical
power, average mean squared errors (MSE) and running time among HRePML, MLMM, FarmCPU and GEMMA
methods in the second simulation study, Table S3: Parameters settings including true effect for each QTN with
different sample size in the third simulation study and true effect for each QTN with different number of markers
in the fourth simulation study, Table S4: The numbers of SNPs significantly associated with four development
related traits in Arabidopsis thaliana and the number of genes around these SNPs identified by HRePML, MLMM,
FarmCPU and GEMMA methods, Table S5: GWAS for four development related traits in Arabidopsis thaliana using
HRePML, MLMM, FarmCPU and GEMMA methods.
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