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Abstract: A cursory look at any textbook image of DNA replication might suggest that the complex
machine that is the replisome runs smoothly along the chromosomal DNA. However, many DNA
sequences can adopt non-B form secondary structures and these have the potential to impede
progression of the replisome. A picture is emerging in which the maintenance of processive DNA
replication requires the action of a significant number of additional proteins beyond the core replisome
to resolve secondary structures in the DNA template. By ensuring that DNA synthesis remains closely
coupled to DNA unwinding by the replicative helicase, these factors prevent impediments to the
replisome from causing genetic and epigenetic instability. This review considers the circumstances in
which DNA forms secondary structures, the potential responses of the eukaryotic replisome to these
impediments in the light of recent advances in our understanding of its structure and operation and
the mechanisms cells deploy to remove secondary structure from the DNA. To illustrate the principles
involved, we focus on one of the best understood DNA secondary structures, G quadruplexes (G4s),
and on the helicases that promote their resolution.
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1. The Nature of DNA Secondary Structures

Although the majority of DNA within a cell exists in the canonical double-stranded B-form,
transactions on DNA such as transcription and replication require the duplex to be unwound.
When single stranded, DNA has the opportunity to fold into a variety of non-B conformations,
some of which can be more stable than double-stranded DNA itself. In this review, we will refer
generically to these non-B conformations as secondary structures. The primary determinant of the
form of the structure is the DNA sequence. Secondary structure formation is generally a feature of
a low-complexity or repetitive sequence, but is influenced by factors such as symmetry and the
availability of additional nucleic acid strands, for instance RNA. The simplest DNA secondary
structures formed are hairpins and cruciforms, which tend to arise in inverted and mirror repeat
sequences. Many tandem repeats can also adopt secondary structures: for instance, polypurine tracts
can form triplex or hinged-DNA (H-DNA) while repetitive G-rich sequences may form G quadruplexes
(G4s) [1,2]. In this review we will focus on G4s. However, in the context of DNA replication, many of
the general principles discussed can be applied to the broad range of structural impediments.

G4 DNA secondary structures arise because of the ability of guanine to Hoogsteen base pair with
itself to create ring-like formations known as G quartets (Figure 1) [3]. G quartets can stack through
π–π interactions to form G4s (Figure 1) [4–6]. G4s can form from four strands of DNA (a tetramolecular
G4, a form frequently studied in vitro but with questionable in vivo significance), two strands
(a bimolecular G4, which can link two DNA strands together) and, most relevant in the context
of DNA replication, a unimolecular G4 formed by folding of a single strand of DNA (Figure 1). Initial
biophysical studies led to the definition of a consensus G4 motif of G3–5N1–7G3–5N1–7G3–5N1–7G3–5,
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in which N can be any nucleotide [7,8]. However, more recent work has demonstrated that
a considerably wider range of sequences, for instance with G runs of 2 or with N being significantly
greater than 7, can form G4s and exert biological effects [9,10]. Consistent with this, a genome-wide
sequencing-based assay suggests that there are more than 700,000 sites with G4-forming potential in
the human genome [11]. Intramolecular G4 structures exhibit considerable topological diversity, a few
common examples of which are shown in Figure 1D. This diversity is largely dependent upon the
precise sequence of the G4 motif, which determines the maximum height of the G quartet stack and
length of the loops formed by bases not participating in the quartets [12].
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Figure 1. G quartets and G quadruplexes. (A) A G quartet. Four G bases form a planar tetrad stabilised
by Hoogsteen bonding and a central monovalent metal ion. (B–D) Basic forms of the G quadruplex.
(B) A tetramolecular G4. (C) A bimolecular G4. (D) Three conformations of unimolecular G4 with
different backbone arrangements, parallel, anti-parallel and mixed.

While G4 formation has been studied in vitro for many years, it is only recently that converging
lines of evidence have led to widespread acceptance of their existence and impact in vivo [13–16].
While not the focus of this review, it is worth noting that the physiological functions of G4s remain
a topic of debate. They have been linked to transcriptional regulation [17], telomere maintenance [18,19]
and replication origin specification [20–22], to give just a few examples, but in general, their biological
role remains poorly understood. Indeed, it is perfectly possible that many of the sequences that are
capable of forming G4s do not have a specific function. Nonetheless, since G4s can act as potent blocks
to DNA synthesis in vitro [23] and in vivo [24], all of these sites pose a potential challenge to DNA
replication. Indeed, G4s are associated with an increased risk of potentially deleterious genetic and
epigenetic events linked to replication [24–27].
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2. A Technical Aside: Monitoring the Response of the Replisome to Sites of Secondary Structure
Formation In Vivo

Critical to understanding the interaction between the formation of DNA secondary structure
and replication are sensitive assays that monitor the response of forks to impediments. A number of
approaches have been adopted to this problem over the years. Physical monitoring of replication forks
encountering genomic secondary structures is challenging because fork stalling at these sites is often
transient. In bacteria and yeast, the use of 2-dimensional gel electrophoresis to monitor replication
of a specific restriction fragment containing a secondary structure has been very informative, but is
relatively insensitive as it requires a substantial number of forks to stall in order for a signal to be
detected [28,29]. In vertebrate cells this technique is even more challenging when applied to genomic
sequences. However, it has been used very effectively in replicating plasmids [30] and the approach
can be further enhanced by combining this with electron microscopy of the replication intermediates,
an approach that has been used to demonstrate fork-reversal at (GAA)n repeats [31]. However, SV40
plasmid replication is unlikely to perfectly recapitulate the supercoiling, chromatin structure and
replication of chromosomal DNA. Direct monitoring of fork progression using DNA combing requires
knowledge of the location of potential structure-forming sequences, which means using fluorescent
in situ hybridisation (FISH) on single DNA fibres. This has been achieved at telomeres [32] and at
the FXN and FMR1 loci in human cells [33,34], but is enormously time-consuming and of limited
sensitivity. Recently, an elegant in vivo method that determines fork progression between two points
in the yeast genome by monitoring the doubling of intensity of adjacent lacI and tetR arrays bound
with fluorescent proteins has yielded promising results [35].

Monitoring genetic instability of loci containing structure-forming sequences, either by use of
a reporter assay [36–38] or directly using methods like Southern blotting [39] has also been very
informative. Since the genetic changes are propagated through the population, their frequency
can be estimated using a classical fluctuation analysis [40]. More recently, genome-wide deep
sequencing approaches have identified sequences that are intrinsically prone to drive replication
fork stress and breakage [41,42]. While genetic changes at structure-forming DNA are relatively easy
to monitor in an expanding cell population, it is likely that such events significantly underestimate the
frequency of fork pausing. We have shown in chicken DT40 cells that replication fork pausing at DNA
secondary structures can produce local and heritable epigenetic changes that are propagated through
an expanding population and can thus be used to indirectly derive a rate of fork pausing by fluctuation
analysis [9,24]. We have proposed that this phenomenon results from local uncoupling of the DNA
helicase from the replicative polymerase, which in turn uncouples DNA synthesis from the usually
tight coupling of histone recycling and fork progression [43]. This results in localised loss of epigenetic
information in the vicinity of the secondary structure which, crucially, in this system, leads to a stable
and heritable change in gene expression that is propagated through the cell population. The BU-1
locus of DT40, which encodes a surface glycoprotein, provides a tractable physical manifestation of
this phenomenon [9]. Stochastic G4-dependent instability of BU-1 expression is readily monitored and,
uniquely, provides a cumulative and sensitive record of replisome stalling at a specific G4 in vivo [9,44].

G4s provide a convenient paradigm for thinking about the response of the replisome to secondary
structures. Although it is not currently possible to be absolutely certain of the precise conformation
adopted by a given G4 in vivo, the ability to control the potential for secondary structure formation
with defined point mutations allows strong correlations to be drawn between in vitro behaviour and
in vivo effects.

3. G Quadruplex (G4)-Forming Potential in the Genome Is Associated with Genetic and
Epigenetic Instability

Extensive evidence from a wide range of organisms has correlated sites of potential DNA
secondary structure formation with mutagenesis. Mechanistically, it is thought that structures can
induce mutagenesis both as a result of their intrinsic capacity to impede DNA replication [45] and
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from their ability to modulate the mutability of DNA by exogenous agents [46,47]. There is a clear link
between DNA secondary structure formation and many of the hallmark features of cancer genomes,
including translocation breakpoints, indels, copy number variation and point mutagenesis [48–50].
Again, the ability of structures to impede DNA replication is central to the generation of this genetic
instability [26]. More recently, sites of potential secondary structure formation have been linked
to epigenetic changes [24,25], which are also a potentially fertile source of diversity upon which
selection could act during the evolution of cancer [51]. Therefore, it is crucial to establish a detailed
understanding of how DNA replication forks interact with DNA secondary structures.

4. Evidence That G4s Can Interfere with Both Lagging and Leading Strand Replication

A persistent question has been whether secondary structures are more likely to form on the
leading or lagging strand during DNA replication. The two possibilities are not mutually exclusive
but, given the intrinsic asymmetry of DNA replication, there are specific considerations in each case.

4.1. Lagging Strand G4s

The discontinuous nature of lagging strand replication means that the lagging strand template
will remain single-stranded for longer than the leading strand. This led many early models for
replication-associated G4 formation to suggest the lagging strand template will be intrinsically more
prone to G4 formation [52,53]. However, the unwound lagging strand is thought to become coated with
the single strand binding protein RPA, which is effective at countering G4s [54]. A prominent lagging
strand G4-forming sequence is seen in telomeres, which in vertebrates comprise the repeated sequence
TTAGGG, and fork progression through the telomeric repeats is slow and prone to instability [32].
Furthermore, very recent work has shown how replication in yeast is delayed by lagging strand G4s in
the absence of the PIF1 helicase [55]. These data are consistent with the formation of lagging strand G4s,
but the reason for replication delay given the continuous ability to reprime this strand remains unclear.

4.2. Leading Strand G4s

There is now strong in vivo evidence that G4s can also cause problems on the leading strand
template, particularly in the absence of specialised helicases and other factors that promote G4
unwinding. In budding yeast, the G4-forming human minisatellite CEB1 is well tolerated on a leading
strand template but exhibits significant genetic instability when cells are treated with a G4-stabilising
ligand or when the helicase PIF1 is disrupted [56]. Using our approach of monitoring epigenetic
instability in DT40 cells, we have shown that G4s can interrupt leading strand DNA synthesis when
cells lack a number of factors e.g. the specialised polymerase REV1, specialised helicases FANCJ, BLM
and WRN [9,24,57], and when G4s are stabilised with ligands in wild-type cells [44,58]. Importantly,
we have also shown that the effects of a leading strand template G4 on epigenetic stability can be
mitigated by repriming by the primase/polymerase PrimPol [9]. Strikingly, the absence of PrimPol,
which does not itself directly contribute to the replication of G4s in vitro [59], results in an extremely
high per division probability of BU-1 expression instability, approaching 0.1. This suggests strongly
that G4 formation does indeed frequently impede the leading strand polymerases even though there is
no mutagenic outcome [59].

Having established that G4s can impact replication with knock-on effects on genetic and epigenetic
stability, in the next section we consider the factors that might influence the transition from duplex to
quadruplex DNA in vivo.

5. When Do G4s Form and How Do They Interact with the Replisome?

What conditions favour transition of B-form DNA to a secondary structure? Clearly, DNA
sequence is an important determinant with GC-rich regions naturally containing more potential G4
motifs. However, in addition, GC-rich domains disfavour nucleosomes [60] and nucleosome depletion
could favour G4 formation [61]. If nucleosomes do indeed counter G4s, ensuring full nucleosome
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occupancy may be important in preventing genetic instability in G4-prone sequences. A potential
example of this is seen in the action of the chromatin remodeller ATRX at telomeres. ATRX is able to
bind to G4s [62] and through interaction with the histone chaperone DAXX is able to introduce the
variant histone H3.3 into telomeres [63], a reaction that helps restrict inter-telomeric recombination,
possibly as a consequence of reducing G4 formation [64].

Within sequences with structure-forming potential, superhelical stress per se may able to drive
structural transitions, for instance the formation of H-DNA in homopurine:homopyrimidine mirror
repeats [65]. However, this may not apply to all secondary structures, including G4s [66]. A more
potent and reliable promoter of G4 formation is duplex unwinding during replication and transcription,
which generates single-stranded DNA, which in turn favours G4 formation [67]. What is the minimum
length of single-stranded DNA that needs to be exposed to allow G4 formation? Biophysically, this is
reasonably straightforward to answer: a thermodynamically stable G4 can be formed in an appropriate
sequence, e.g., (G3N1)3G3 [68], which is just 15 bp. However, in vivo, other factors need to be
considered, not least of which is the state of the adjacent DNA, the torsional and longitudinal forces
locally acting on the DNA and the presence of DNA-binding proteins and nucleosomes.

5.1. How Could Transcription Promote G4 Formation?

Transcription by RNA polymerase requires exposure of single-stranded DNA. However,
the single-stranded bubble generated by RNAPII is likely to be quite short, in the order of eight
nucleotides [69]. It is also well protected by the RNAPII complex and thus not amenable to G4
formation. However, the transcription bubble can become extended when RNAPII pauses [70]
and this could potentially lead to the exposure of sufficient single-stranded DNA to allow the
formation of G4s. Indeed, under these circumstances, the separation of the DNA strands allows
the nascent RNA to hybridise to the template DNA preventing the coding strand of DNA reannealing.
This three-stranded structure is called an R-loop [71] and in DNA sequences with structure-forming
potential R-loop formation can facilitate or stabilise secondary structure formation in the exposed
single DNA strand [72–74].

In addition to the single-stranded DNA exposed around the RNA polymerase, transcription
also generates negatively supercoiled DNA in the wake of the elongating polymerase. In highly
transcribed genes, the rate of supercoiling can exceed the ability of topoisomerases to counteract it
resulting in a region of constitutive net negative helicity [75]. In turn, this negative supercoiling
leads to transient denaturation of the DNA to form transient single-stranded ‘bubbles’ [76].
These transcription-associated single-stranded bubbles have been proposed to promote mutagenesis
by activation-induced deaminase (AID) and they promote R-loop formation [77,78]. Therefore, it is
conceivable that they also drive secondary structure formation within the DNA. While this idea
has been confirmed biophysically for a number of secondary structures, including hairpins and
cruciforms [79–81] and triplex DNA [82–84], G4s do not seem to form spontaneously in negatively
supercoiled plasmids [66]. Nonetheless, G4 formation has been proposed as a possible sink for negative
torsional stress generated during transcription in the absence of topoisomerase I [85].

5.2. G4 Formation and the Replisome.

Although there is clear evidence that G4s are able to impede the progression of the replisome,
there remain many unanswered questions. When do G4s that interfere with the replisome form?
Is formation more likely on the leading or lagging strand and, given the intrinsic asymmetry of
the replication fork, are they handled differently on the two strands? What are the mechanisms by
which replication-blocking G4s are resolved? In the next sections, we will attempt to address some
of these issues in the context of our current understanding of the structure and mechanism of the
eukaryotic replisome.
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5.3. Pre-Formed G4s Encountered by the Replisome

Antibodies raised against G4s detect signals in non-S phase cells [86] suggesting that preformed
G4s could be encountered by the replisome. In such encounters the structure will first meet the
replicative CMG helicase, which unwinds the DNA duplex to create the single-stranded template
for leading and lagging strand synthesis. To understand how preformed G4s might be dealt with
by replisome, it is informative to consider some recent advances in the structure and function of
CMG helicase.

The CMG helicase is composed of the heterohexamer MCM2–7, which is the core motor of the
helicase, along with Cdc45 and the GINS complex [87]. The MCM monomers each have a dumbbell
shape which give the hexamer distinct N-terminal head and C-terminal tail domains, or tiers. The C-tier
contains the AAA+ ATPase motors. The MCM2-7 complex is first assembled on double-stranded DNA
as a head-to-head dimer. However, the active form of the helicase translocates in a 3′–5′ direction on the
single-stranded leading strand template, N-tier first [88]. Thus, during origin activation, the lagging
strand is extruded from the central channel [89] and the two active helicases pass each other on their
respective leading strands [90]. The current structures of CMG support a modified steric exclusion
model for DNA strand separation in which the parental duplex actually enters the central channel
of the MCM hexamer [88] with the lagging strand exiting though a cleft in the top of the N-tier of
CMG [91]. In the CMG complex, Cdc45 and GINS bind to the side of the MCM hexamer, contacting
MCM2 and MCM5 where they have been proposed to act as a ‘lock’ to the ‘gate’ between these
subunits. Opening of the interface between MCM2 and MCM5 may play an important role in the
extrusion of the lagging strand [89].

Given that a pre-formed G4 will induce local strand separation, it seems likely that a lagging
strand G4 may not actually enter the central channel but simply pass round the helicase. This can
be considered analogous to the behaviour of the replisome when it encounters a bulky lesion
(e.g., a tethered streptavidin molecule) on the lagging strand [92]. However, this ability of CMG
to traverse lagging strand blocks is not simply a passive feature of the complex as, in the absence of
the accessory protein MCM10, lagging strand blocks do stall the helicase leading to the proposal that
MCM10 is required to drive a conformational change in CMG to make it permissive to a lagging strand
impediment [93]. It will be thus be interesting to determine whether MCM10 is also required for CMG
to traverse lagging strand G quadruplex structures. Once past the helicase, the G4 is likely to encounter
the single-stranded binding protein RPA. Importantly, RPA has the capacity to destabilise and unfold
G4s [54,94] meaning that the structure may be dissolved before it encounters DNA polymerase δ,
the lagging strand polymerase.

What happens to a leading strand G4? There is no current evidence that the translocation of the
CMG will unwind a G4 on its tracking strand, although it is plausible that the advancing helicase
could disrupt some structures. If CMG does not disrupt the G4, is it feasible that the structure
could pass through the channel of the MCM hexamer? When first assembled on DNA, before origin
activation, the channel of the MCM double hexamer admits double-stranded DNA [95,96], which is
approximately 2 nm (20 Å) in diameter. However, during origin activation the head-to-head MCM
hexamers extrude the lagging strand as they are converted to the active CMG complex tracking
on the leading strand template [89]. A high-resolution cryoEM structure of the S. cerevisiae CMG
complex reveals that while the opening of channel into the N-tier of MCM remains about 2 nm,
deeper into the channel constrictions are observed. The first are within the N-tier and are formed
by intrusions from the OB domains of MCM2 and MCM7 [91]. In the C-tier, the constriction of the
channel is more pronounced as the winged helix domain of MCM5 narrows it to c. 1 nm, which should
be too small to accommodate dsDNA [91]. Nonetheless, CMG can translocate on a flush duplex
suggesting that the internal channel can accommodate duplex DNA [97]. However, the diameter of
G quadruplex structures is generally greater than duplex DNA at between 2.4 and 2.8 nm [98–101].
Thus, it would seem unlikely that most G4s would be able to pass through the channel of the active
helicase, at least without some assistance. However, an intriguing genetic observation made in Marcel
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Tijsterman’s lab in the nematode worm C. elegans raises the possibility that preformed G4 may be
able to survive the passage of CMG. In worms lacking Dog-1, the major G4 helicase in this species
and orthologue of the human helicase FANCJ/BRIP1 [52], discussed further below, lineage tracing
experiments reveal that deletions can be observed at the same G4 motif over multiple generations
consistent with a G4 structure persisting through multiple cell cycles and generating deletions at
each round of replication [26]. One explanation for this observation is that a G4 structure can persist
through multiple rounds of cell division in the absence of Dog-1 without being unwound. How this
might happen remains unclear. As noted above, direct passage of a leading strand G4 through the
helicase seems unlikely. However, it is possible that structural rearrangements in the CMG helicase
could allow it to tolerate tracking strand impediments. Such tolerance has been directly demonstrated
for the SV40 replicative helicase, the large T antigen [102]: bulky translocation strand obstacles are
traversed by large T, suggesting that the hexamer can transiently open. An analogous ability may exist
in CMG, potentially through opening of the same interface, between MCM2 and MCM5, which allows
lagging strand extrusion during origin firing [89]. Indeed, very recent work from Johannes Walter’s
lab has demonstrated that the vertebrate CMG helicase is able to bypass a DNA-protein cross-link in
the leading strand without dissociation [103].

5.4. Formation of G4s within the Replisome

As noted above, DNA unwinding significantly enhances the opportunity for secondary structure
formation. Thus, the action of the CMG helicase could, per se, promote secondary structure formation
in its wake. While RPA deposition on the lagging strand should counter the probability of secondary
structure formation, there is currently no evidence that RPA binds to the leading strand template during
otherwise unperturbed replication. Furthermore, despite the major recent advances in the structure
of the budding yeast replisome, neither the precise path or extent of the leading strand between the
helicase and polymerase is known [104]. However, it is likely that the length of the single-stranded
DNA (ssDNA) tract between the helicase and polymerase varies as factors affecting progression of the
DNA polymerase differ from those that affect the replicative helicase. In the extreme case of the leading
strand polymerase being arrested, the helicase can continue to unwind the parental duplex for some
considerable distance, a situation termed helicase-polymerase uncoupling. This leads to extensive
RPA deposition [105,106]. Thus, it is reasonable to assume that continuous variations in the rate of
DNA synthesis, caused by the nature of the sequence, nucleotide supply etc. will, in turn, lead to
transient variations in the exposure of leading strand DNA. This could be sufficient to allow secondary
structure formation within the replisome. Support for this idea comes again from experiments with the
DT40 BU-1 locus. Treating cells with chronic, low-dose hydroxyurea (HU), which depletes nucleotide
pools, reducing the rate of DNA synthesis and promoting helicase-polymerase uncoupling, results in
instability of BU-1 expression. This is consistent with a model in which promoting the exposure of
ssDNA between the helicase and polymerase promotes G4 structure formation and a more profound
block to DNA synthesis than is induced by HU alone [58].

6. Countering G4 Formation during Replication

Factors that counter secondary structure formation can be considered in two groups, those that
act indirectly to minimise structure formation by favouring B-form DNA and those that act directly
to disassemble structures, pushing the DNA back to B-form. As discussed above, the formation of
secondary structure is favoured by single-stranded regions of DNA. Therefore, factors that reduce the
exposure of single-stranded DNA will be expected indirectly to reduce the probability that G4s will
form, for example PrimPol-mediated repriming of DNA synthesis after a leading strand polymerase
block [74]. In addition, proteins binding to ssDNA will reduce its ability to form secondary structures
and further can drive folded G4s to unwind, as exemplified by RPA [54,94,107], REV1 [108] and,
as discussed below, several of the ATP-dependent helicases proposed to possess ATP-independent
modes of G4 unwinding, including BLM and DHX36 [109–112]. Working in parallel with these
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indirect or ATP-independent measures, a range of enzymatic activities have been implicated in actively
disrupting G quadruplex structures. This includes specialised DNA polymerases, the role of which in
DNA secondary structure metabolism we have reviewed recently [2], and specialised DNA helicases,
which we consider next.

7. Helicases Involved in G4 Processing

Helicases are molecular motors that use ATP to alter nucleic acid structure. Unwinding of
DNA and RNA double helices by helicases is necessary for virtually all cellular processes including
replication, transcription, repair, recombination and chromosome segregation. Mutations in genes
that code for helicases are linked to several human diseases, some with common characteristics
like neurological problems, accelerated ageing and increased risk of cancer development [113,114].
We next summarise what is known about the key helicases that have been shown to play roles in G
quadruplex metabolism. Importantly, all of these enzymes have significant roles in other pathways
and, to date, no helicase solely dedicated to G4 unwinding has been identified (Table 1). However,
we will highlight their additional roles in DNA repair and replication when a broader consideration of
their functions helps illuminate the relevance of their contribution to unwinding secondary structures.
In the absence of any clearly justifiable logic for grouping the helicases thus far implicated in G4
replication, we will order the discussion based on their structural features and organisation within the
helicase superfamilies [115].

7.1. Superfamily 1: DNA2 and PIF1

7.1.1. DNA2

DNA2 possesses ssDNA endonuclease activity on both 5′ and 3′ single-stranded overhangs [116]
and a 5′-3′ helicase activity [117]. Human and yeast DNA2 can bind and unwind telomeric G4s
in vitro, and can cleave such structures in the presence of RPA [118], to which the enzyme binds [119].
In vivo, reduction of DNA2 protein levels causes defects in telomere replication and increased levels
of telomere aberrations in mouse cells [120]. However, the relative importance of the two catalytic
activities for G4 resolution in vivo remains unclear.

7.1.2. PIF1

The PIF1 family of 5′-3′ helicases are conserved from bacteria to humans [121] and all those
studied so far are able to unwind G4 structures in vitro [122–128]. Although it is not a processive
helicase [129], it is able to ‘trap’ a melted G4 in the unfolded state through binding single-stranded
DNA [130]. In vivo, yeast and human PIF1 participate in G4 metabolism both of the nuclear
(mainly telomeric) and mitochondrial genomes [131–133], with the latter predominating in the
form of mitochondrial dysfunction in mutants of PIF1 [134]. In budding and fission yeast G4
processing by Pif1 is important to preserve replication fork progression and supress chromosome
breakage [39,55,56,124,135]. Pif1 associates with components of the replication fork [135] and its
interaction with PCNA is needed for efficient replication through G4s [55]. There remains some
uncertainty as to whether Pif1 operates predominantly on the leading or lagging strand as different
systems and assays have produced conflicting results. The Nicolas group has clearly demonstrated
that loss of Pif1 exacerbates genetic instability caused by leading strand template G4s [56]. Recently,
an in vivo method to monitor fork progression between two points in the yeast genome [35] has
revealed that overall fork delay at a G4 is increased in the absence of Pif1 when the G4 is on the lagging
strand [55]. The immediate explanation for this discrepancy is unclear, and the two possibilities
are naturally not mutually exclusive. However, these observations underscore potential differences
between experimental approaches that monitor fork progression and those that record genetic changes,
providing support for the idea that there is not necessarily a simple relationship between fork delay
and the induction of genetic instability.
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Table 1. Summary of the G4 processing helicases discussed in this review.

Superfamily Subfamily Name Substrate * Polarity Other Functions ¶ Interactions # Human Syndrome

SF1 PIF1 DNA (parallel and 5′–3′ Maintenance of PCNA L319P mutation linked to
antiparallel, intramolecular ¶ and

tetramolecular G4)
mitochondrial genome, DSB ¶

repair familial breast cancer

DNA2 DNA (telomeric G4) 5′–3′ Okazaki fragment RPA
maturation, ICL repair

SF2 Fe-S FANCJ DNA (parallel, intramolecular and
tetramolecular G4, D- 5′–3′ ICL repair, checkpoint control,

replication stress
RPA, WRN, BLM,

REV1
Fanconi Anaemia (FA), breast

cancer
loops) response

DDX11 DNA (antiparallel, 5′–3′ Sister chromatid cohesion, PCNA, RPA,
FEN1,

Warsaw Breakage Syndrome
(WABS)

intramolecular G4, triplex, 5′ post-replicative repair Ctf18-RFC,
flap, D-loop) Timeless-Tipin

RTEL1 DNA (telomeric G4) 5′–3′ ICL repair, replication stress POT1, PCNA Dyskeratosis congenita
response

XPD DNA (parallel tetramolecular 5′–3′ NER, basal transcription Xeroderma Pigmentosum,

G4)

Cockayne syndrome,
Trichothiodystrophy (TTD), ¶
Cerebro-oculo-facio-skeletal

syndrome (COFS)

RecQ WRN DNA (intermolecular parallel 3′–5′ Fork protection and RPA, pol δ,
FANCJ, Werner syndrome

G4, triplex, Holliday Junction) remodelling, replication POT1, BLM
stress response, checkpoint
control, DSB and ICL repair

BLM DNA (intermolecular and 3′–5′ Fork protection and RPA, pol δ,
FANCJ, Bloom syndrome

tetramolecular parallel G4, remodelling, DSB and ICL POT1, WRN
triplex, Holliday Junction) repair

DEAH DHX9 RNA and DNA (intramolecular and
tetramolecular parallel 3′–5′ Replication stress response,

transcription regulation
PCNA, TOP2α,

WRN
G4, R-loop)

RHAU/DHX36 RNA and DNA (intramolecular 3′–5′ Translation regulation, RNA
and tetramolecular parallel ζ G4, R-loop) decay, telomere length ζ regulation

* substrates other than B-DNA; # interactions linked to activity on structured DNA; ¶ functions other than secondary structure processing.
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7.2. The Superfamily 2 RecQ-Like Helicases: BLM and WRN

RecQ helicases are a large protein family found in both prokaryotes and eukaryotes, all of which
contain a core domain of approximately 450 amino acids that includes the conserved DExH box
and that unwind with a 3′-5′ polarity. Human cells have five RecQ helicases, two of which have
prominent roles in G4 metabolism, BLM, mutated in Bloom’s syndrome [136] and WRN, mutated in
Werner’s syndrome [137]. Mechanistically, ATP-dependent G4 unwinding by RecQ helicases is well
characterised and involves DNA binding to the RecQ C-terminal domain (RQC), which is responsible
for recognition of several DNA structures [138]. Recently, a structure of a bacterial RecQ bound to
a resolved G4 provides an important clue to the mechanism of this enzyme that may be more generally
applicable to the entire RecQ family. A guanine specific pocket (GSP) sequesters dG from the end of
the G4 in a manner that would not be compatible with its participation in a folded G4. This suggests
that the enzyme binds to a folded G4 and flips out a guanine at the base of the structure. If performed
sequentially, this action would destabilise the structure [139].

7.2.1. BLM

BLM was one of the first human helicases reported to resolve G4s [140]. In vitro, BLM preferentially
binds to and unwinds multi-stranded intermolecular G4s over duplex DNA and branched substrates
like double Holliday junctions [138,141,142]. BLM requires a short 3′ single-stranded overhang in
order to load onto DNA for G4 unwinding [140] and the presence of a G4 within 6 nt of the end of
this tail inhibits its unwinding activity [143]. BLM is less active on more physiologically relevant
intramolecular G4s [144] and its activity is inhibited by G4 binding ligands [145], which trap the
enzyme in a state in which it hydrolyses ATP but is unable to continue unwinding or dissociate [141].
More recent single-molecule experiments have provided further insight into the mechanism by which
BLM destabilises G4s. The ATP-dependent unwinding of intramolecular G4s arises by the enzyme
reeling in single-stranded DNA adjacent to the structure [146,147]. However, when this mechanism is
unsuccessful, BLM dissociates from the DNA, in contrast to PIF1, which remains bound and makes
repeated attempts at unwinding [147]. Somewhat surprisingly, the binding of BLM to ssDNA adjacent
to a G4 can per se destabilise the G4 in the absence of ATP [109]. This passive G4 resolution effect
is dependent on the underlying stability of the G4 and is observed with WRN (see below) but not
other RecQ helicases [109], and is reminiscent of G4 destabilisation by other proteins that bind ssDNA
such as RPA [54] and REV1 [108]. Interestingly, RPA also directly facilitates the helicase activity of
BLM [148] and, recently, the interaction between both BLM and WRN and RPA has been shown to
be promoted by the E3 ubiquitin ligase HERC2 [149], showing that additional factors are likely to be
necessary to promote efficient deployment of these helicases at G4s in vivo.

In vivo experiments also support BLM playing an important role in G4 processing. The C. elegans
BLM homolog HIM-6 limits deletions of G-tracts in the absence of the FANCJ homolog dog-1 [150].
A second line of in vivo evidence for BLM playing a role in countering G4 formation comes from
a curiously consistent feature of cells lacking BLM and WRN helicases: dysregulated expression
of genes harbouring G4s motifs in the vicinity of their transcription start sites (TSS) [57,151–154].
The explanation for this phenomenon is likely to be multifactorial. For those genes with G4s in the
promoter regions, the altered gene expression may relate to a direct effect of persistent G4 formation
on transcription factor binding or nucleosome positioning. However, putative G4s are also enriched
downstream of the TSS in dysregulated genes and may alter expression through replication-dependent
epigenetic instability [57].

Telomeres contain the highest density of potential G4-forming sequence in the genome due
the nature of the telomeric repeat TTAGGG, which forms the template for lagging strand synthesis.
It is not surprising, therefore, that helicases with potential to unwind G4s play an important role in
telomere maintenance, BLM included. BLM interacts with POT1, an OB fold-containing telomeric
single-stranded binding protein [155], and mouse cells deficient for BLM are impaired in correct
replication of G4-forming telomeric sequences, resulting in increased telomeric instability [32,156].
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7.2.2. WRN

In addition to 3′-5′ helicase activity, WRN possesses exonuclease activities and single-strand
annealing activities [157,158]. WRN can resolve a variety of secondary structures including G4s
and triplexes in vitro [142,159,160] and, like BLM, it has ATP-dependent and independent modes of
unwinding, requiring a short 3′ ssDNA tail and is stimulated by RPA [158,161,162]. WRN and BLM also
physically interact and it has been suggested that the two helicases cooperate in vivo [163]. However,
WRN and BLM also exhibit considerable functional redundancy in maintaining G4-dependent
epigenetic and transcriptional stability in DT40 cells [57].

Like BLM, WRN plays an important role at telomeres. In vitro, WRN interacts with pol δ and
this interaction enables pol δ to replicate through G4s, suggesting that WRN could play a role in
telomeric lagging strand replication [164]. Supporting this, in shuttle vector experiments, WRN is
essential for the replication of a (TTAGGG)6 telomeric repeat, its absence increasing the frequency
of large deletions and rearrangements [165], which may explain why WRN-deficient cells exhibit
loss of the G-rich telomere lagging strand [166]. Further control of WRN at telomeres is likely to
come from specific interactions with telomeric proteins including POT1 [32,155] and the shelterin
complex proteins, which regulate WRN’s catalytic functions on telomeric D-loops [167]. The role of
WRN at the telomeres and its link to preventing premature ageing is underscored by the observation
that telomerase-deficient mice with short telomeres that also lack WRN (Terc−/− Wrn−/−) exhibit
dysfunctional telomeres and chromosome instability [168–170].

7.3. The Superfamily 2 Fe-S Helicases: RTEL1, DDX11, FANCJ and XPD

Fe-S helicases are so named because they contain iron-sulphur clusters, ancient protein co-factors
which play an essential role in protein folding and domain stabilisation [171] and found in many DNA
replication and repair proteins [172]. All four of these helicases have the ability to unwind G4s in vitro
but, as discussed below, the link between G4 processing and the human syndromes associated with
the mutation of XPD remain unclear.

7.3.1. FANCJ (Also Known as BRIP1 and BACH1)

FANCJ is an ATP-dependent 5′-3′ helicase mutated in a rare subtype of Fanconi Anaemia [173,174].
It is able to unwind duplex DNA, branched DNA structures and D-loops [175], as well as several
forms of G4 on which it exhibits greater activity than it does on duplex DNA [27,176]. In addition
to its helicase core that binds and translocates along ssDNA, FANCJ also possesses a G4 recognition
site [177]. As with other G4 disrupting helicases, it requires the presence of a short ssDNA tail (in this
case 5′ of the structure) for optimal G4 unwinding activity and is stimulated by RPA [175,176].

FANCJ has been detected associating with the elongating replication fork [178,179] and with
telomeres [180]. As for PIF1, there is evidence for FANCJ operating on both leading and lagging
strands. Worms deficient in the FANCJ orthologue dog-1 exhibit deletions in G4 motifs that have the
potential to form G4 structures during lagging strand replication [38,52,150]. However, in chicken DT40
cells, FANCJ can clearly suppress the formation of G4 structures on the leading strand template [57].
This ability of FANCJ to manage G4s at the fork plays an important role in the ability of cells to
maintain chromatin states through replication [57,181].

Interestingly, the function of FANCJ in resolving G4s appears to be independent of much of the
canonical FA pathway. Deficiency of FANCA or FANCD2 in human cells does not lead to sensitivity to
the G4 ligand telomestatin [27] and the G4-dependent instability of expression of the BU-1 locus of
DT40 seen in FANCJ-deficient cells is not observed in a FANCC mutant [57]. Likewise, the persistent
fork stalling that occurs during replication of a G4-containing plasmid in a FANCJ-depleted Xenopus
egg extract is not seen following depletion of FANCD2 [182]. Nonetheless, the double mutant of
FANCJ and FANCD2 in C. elegans shows a higher mutation rate at G4 motifs compared to the single
FANCJ mutant, suggesting these proteins may play distinct roles in promoting G4 resolution [183].
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7.3.2. DDX11 (Also Known as CHLR1)

DDX11 is an essential gene in mice [184]. In humans, mutations in DDX11 cause Warsaw
Breakage Syndrome, an extremely rare inherited disorder characterised by microcephaly, growth
retardation, cochlear abnormalities and abnormal skin pigmentation [185]. DDX11 is capable of
ATP-dependent unwinding of G4s [186,187], as well as other DNA structures such as triplex DNA [188]
and D-loops [187]. Interestingly, and despite the homology between the helicase core of DDX11 and
FANCJ, the two enzymes exhibit distinct preferences in terms of the types of G4 they are capable of
unwinding in vitro. FANCJ proficiently unwinds a unimolecular G4, while the same structure defeats
DDX11 [186]. However, DDX11 is capable of unwinding intermolecular G4s formed between two DNA
strands [186,187], which is of potential, but unproven relevance in the origin of the most prominent
phenotype resulting from its inactivation, defects in sister chromatid cohesion [184,189–192]. DDX11
interacts with Timeless [193,194], a core component of the eukaryotic replisome, potentially placing it
in an ideal position to ‘sweep’ G4s that inhibit progression of the replicative polymerases.

7.3.3. RTEL1

Regulator of telomere elongation helicase 1 (RTEL1), as its name suggests, plays a prominent
role in telomere maintenance. Purified RTEL1 is a 5′-3′ helicase able to catalyse ATP-dependent
unwinding of an intramolecular G4 formed by the human telomeric repeat, in and ATP-dependent
manner, in vitro. In the absence of RTEL1, telomeric D-loops (T-loops) are not correctly resolved
during replication, resulting in loss of telomeric sequence [156]. Furthermore, RTEL1 also suppresses
telomeric instability due to G4s as telomere fragility in the absence of RTEL1 is vastly increased if
BLM is also removed or G4s are stabilised [156]. Since T-loops are suggested to protect telomeres
from de-stabilizing events [195], the biochemical activity of RTEL1 is consistent with a predicted
function of this helicase to facilitate the replication of the 3′ G-rich overhang [196]. RTEL1 deficiency is
embryonically lethal in mice [53], caused by compromised telomere elongation in ES cells [197].

RTEL1 also plays a role in replication of non-telomeric DNA. It binds to the replisome via its
interaction with PCNA. Loss of this interaction leads to reduced replication fork velocity and increased
fork instability [198].

7.3.4. XPD/ERCC2

XPD is one of the helicases of the TFIIH complex, implicated in basal transcription and nucleotide
excision repair (NER) [199]. XPD binds and unwinds G4 structures in vitro, while XPB (the other
TFIIH helicase) only binds G4 DNA [200]. The same study also found that XPD and XPB binding sites
overlap with G4 motifs, which suggests that TFIIH is recruited to G4 structures; moreover, XPD and
XPB binding sites are enriched in the vicinity of TSS of highly transcribed genes. However, the in vivo
significance of XPD in replicating G4 sequences and its relationship to the other crucial functions of
this helicase remains to be dissected.

7.4. The Superfamily 2 DEAD-Box Helicases: DHX36 (Also Known as RHAU/G4-Resolvase 1) and DHX9

7.4.1. DHX36

DHX36 was first identified as an RNA helicase recruited to an AU-rich element in the urokinase
plasminogen activator messenger RNA (mRNA), hence its name RHAU. In this context, it acts to
facilitate mRNA deadenylation and mRNA decay by the exosome [201]. It was subsequently identified
as responsible for the dominant G4 unwinding activity in HeLa cell lysate [202,203]. It is an essential
gene being necessary for normal embryogenesis [204,205].

DHX36 has an extremely high affinity for DNA and RNA G4s [206,207]. This is mediated in part by
a 13 amino acid N-terminal motif, the DHX36 specific motif (DSM) [208], and in part by contacts made
by the C-terminal OB fold domain [110]. The enzyme exhibits robust ATP-dependent resolving activity
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on both RNA and DNA G4s, including tetramolecular and unimolecular structures [202,207,209,210],
but is specific for parallel G4s [211–213].

Recent structural, biochemical and biophysical studies have shed light into an ATP-independent
mode of G4 unwinding by DHX36 [110,112,211,213]. A crystal structure of Bos taurus DHX36 bound to
the MYC promoter G4 confirms a mode of binding similar to many G4 ligands in which the core of the
DSM creates a flat, non-polar surface which interacts with the top quartet of the G4 [110]. The energy
that comes from binding of the nucleic acid is transduced by the enzyme into a directed pulling
force arising from rotation of the C-terminal domain and opening of the helicase core. This results
in the parallel G4 substrate being unwound sequentially by one nucleotide at a time without the
need for ATP hydrolysis, providing further evidence for the importance of ATP-independent modes
of G4 destabilisation. Interestingly, ATP hydrolysis is needed for release of the substrate and when
the enzyme is bound to ADP or the non-hydrolysable analogue AMP-PNP it actually stabilises G4
structures against mechanical unfolding [214]. This demonstrates the principle that a helicase can
exhibit opposing actions in terms of G4 unwinding and stabilisation, a point discussed further below.

Similarly, the crystal structure of Drosophila melanogaster DHX36 bound to the MYC G4 showed
that DmDHX36 has a positively charged pocket that destabilizes the G4, and also displays a passive,
ATP-independent manner of G4 destabilisation upon binding to the DmDHX36 pocket [111]. However,
to complete unfolding of the G4 DNA, an ATP hydrolysis translocation step is needed. The authors
propose a ‘passive-active’ G4 unwinding mechanism, combining ATP-independent partial G4
destabilisation with ATP-hydrolysis driven unfolding [111].

7.4.2. DHX9 (Also Known as Nuclear DNA helicase II/RNA Helicase A)

DHX9 is emerging as a potentially important DNA G4 processing factor. It is able to unwind
G4s in vitro [215] and interacts with PCNA [216], topoisomerase IIα [217] and WRN [218]. Consistent
with it playing a role in DNA replication, human fibroblasts depleted of DHX9 exhibit significant
replication defects and p53-dependent senescence [219].

8. Coda: Principles Governing the Recruitment of G4 Helicases

The prevalence of potential structure-forming sequences suggests that DNA itself could pose one
of the most significant barriers to replication with structural impediments being at least as frequent as
those created by spontaneous DNA damage. This is supported by recent experimental data, which also
suggest that secondary structure formation must be actively managed to ensure timely replication
with the preservation of genetic and epigenetic stability. In this final section, we consider how the
mechanisms and enzymes we have discussed above are selected and coordinated to ensure secondary
structures are eliminated in order to allow the completion of DNA synthesis.

8.1. Selection

By analogy with the mechanisms that ensure timely replication of DNA damage [220], it is likely
that a combination of context and the nature of the impediment contribute to determining which
mechanism is selected. In terms of how specialised helicases are recruited to a G4, this problem can
be distilled to three factors: G4 conformation, the availability of 5′ and/or 3′ ssDNA and specific
protein–protein interactions.

G4s can adopt a wide range of conformations, with many complex G4 sequences exhibiting
significant conformational polymorphism. The idea that G4 helicases may exhibit some selectivity
for specific G4 arrangements emerges from the comparison of the in vitro behaviour of DHX36,
BLM and FANCJ. DHX36 exhibits a significant preference for unwinding parallel G4s, while BLM is
non-selective [213]. Likewise, although DDX11 and FANCJ belong to the same family they exhibit
different abilities to unwind a unimolecular parallel G4 [186]. However, an important unresolved issue
is the extent to which this apparent selectivity for specific structures occurs in vivo.
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It will also be evident from the preceding discussion that G4 helicases generally require a ssDNA
‘landing pad’ at either the 5′ or 3′ end of the G4. This, too, will contribute to the selection of helicases
with appropriate polarity. The circumstances under which such ssDNA tracts are generated around
G4s are poorly understood. For example, during replication, repriming after a leading strand stall will
leave a 5′ ssDNA adjacent to the G4, which would provide a platform for the recruitment of a helicase
such as FANCJ [57]. Other situations, e.g., a lagging strand stall may favour the recruitment of helicases
with 3′ polarity, which may to some extent explain the important roles played by BLM and WRN at
telomeres, but it is clear that such any leading and lagging strand specialisation is not likely to be
determined by where ssDNA is formed round a G4. Whether a specific helicase recruited to the ssDNA
near a G4 is then able to unwind the structure is then also likely to be determined by a combination of
the nature of the G4, the ability of the helicase to unwind that structure and its processivity. This can
be illustrated by the in vitro behaviour of BLM and PIF1, both of which can unwind a broad range
of G4s but exhibit different abilities to remain bound in the event of a failed attempt [147]. We have
noted numerous specific protein–protein interactions in the above discussion and these are also likely
to play an important role determining which helicases are recruited to the vicinity of a G4 in different
contexts e.g., to the leading or lagging strand or to telomeres. Similar to the recruitment of translesion
polymerases to sites of lesion bypass [221], there may be a ‘two-step’ process in which the helicases are
concentrated near where they are likely to be needed and then separate interactions, including those
with the G4 and ssDNA nucleic acid structures promoting the actual unwinding step.

All that said, the idea that helicases simply act to remove secondary structures is likely to be
an oversimplification. Drawing parallels with RNA metabolism, in which helicases often simply
remodel or chaperone secondary structure during, for instance, splicing or translation [222], it is
possible that similar transitions are promoted in DNA secondary structures, for instance to render them
more or less amenable to unwinding, as illustrated by the behaviour of DHX36 [214]. Thus, in some
cases, a helicase may actually promote, rather than alleviate the potential replication impediment
caused by a secondary structure.

8.2. Collaboration

It is likely that the multiple available mechanisms for G4 unwinding in vertebrates exhibit
significant redundancy to ensure the cell mounts a robust response to the challenges imposed by
secondary structure during replication of large and complex genomes. Some preliminary evidence for
this comes from our studies of the stability gene expression in the BU-1 locus and across the genome
in DT40 cells, which suggested that BLM and WRN exhibit considerable functional redundancy in
terms of G4 processing [57]. The same study also provided evidence that helicases can collaborate
and speculated that 5′-3′ and 3′-5′ helicases could operate together to unwind a G4 from both ends,
or that a 5′-3′ helicase could collaborate with specialised DNA polymerases, like REV1, acting from the
stalled 3′ primer terminus [57]. In additional to this simultaneous cooperation, it is also possible that
helicases may act sequentially with a first enzyme remodelling a G4 into a form that is more amenable
to unwinding by a second enzyme.

Now that the formation of G4s in vivo is more widely accepted and we have a catalogue of factors
that counter G4 formation, albeit an incomplete one, a significant challenge for the coming years is
to understand how the extensive roster of mechanisms discussed above are recruited, coordinated
and regulated.
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Acknowledgments: We would like to thank Saša Šviković, Guillaume Guilbaud, Benedicte Recolin, Cara Eldridge,
Pierre Murat and Joe Yeeles for stimulating discussions and critical comments on the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Genes 2019, 10, 95 15 of 25

References

1. Mirkin, S.M. DNA structures, repeat expansions and human hereditary disorders. Curr. Opin. Struct. Biol.
2006, 16, 351–358. [CrossRef] [PubMed]

2. Wickramasinghe, C.M.; Arzouk, H.; Frey, A.; Maiter, A.; Sale, J.E. Contributions of the specialised DNA
polymerases to replication of structured DNA. DNA Repair (Amst.) 2015, 29, 83–90. [CrossRef] [PubMed]

3. Gellert, M.; Lipsett, M.N.; Davies, D.R. Helix formation by guanylic acid. Proc. Natl. Acad. Sci. USA 1962,
48, 2013–2018. [CrossRef] [PubMed]

4. Sen, D.; Gilbert, W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its
implications for meiosis. Nature 1988, 334, 364–366. [CrossRef] [PubMed]

5. Sundquist, W.I.; Klug, A. Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops.
Nature 1989, 342, 825–829. [CrossRef] [PubMed]

6. Williamson, J.R.; Raghuraman, M.K.; Cech, T.R. Monovalent cation-induced structure of telomeric DNA:
The G-quartet model. Cell 1989, 59, 871–880. [CrossRef]

7. Huppert, J.L.; Balasubramanian, S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res.
2005, 33, 2908–2916. [CrossRef] [PubMed]

8. Todd, A.K.; Johnston, M.; Neidle, S. Highly prevalent putative quadruplex sequence motifs in human DNA.
Nucleic Acids Res. 2005, 33, 2901–2907. [CrossRef]

9. Schiavone, D.; Guilbaud, G.; Murat, P.; Papadopoulou, C.; Sarkies, P.; Prioleau, M.-N.; Balasubramanian, S.;
Sale, J.E. Determinants of G quadruplex-induced epigenetic instability in REV1-deficient cells. The EMBO J.
2014, 33, 2507–2520. [CrossRef]

10. Wang, L.; Wang, Q.-M.; Wang, Y.-R.; Xi, X.-G.; Hou, X.-M. DNA-unwinding activity of Saccharomyces
cerevisiae Pif1 is modulated by thermal stability, folding conformation, and loop lengths of G-quadruplex
DNA. J. Biol. Chem. 2018, 293, 18504–18513. [CrossRef]

11. Chambers, V.S.; Marsico, G.; Boutell, J.M.; Di Antonio, M.; Smith, G.P.; Balasubramanian, S. High-throughput
sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol. 2015, 33, 877–881.
[CrossRef] [PubMed]

12. Burge, S.; Parkinson, G.N.; Hazel, P.; Todd, A.K.; Neidle, S. Quadruplex DNA: Sequence, topology and
structure. Nucleic Acids Res. 2006, 34, 5402–5415. [CrossRef] [PubMed]

13. Maizels, N.; Gray, L.T. The G4 genome. PLoS Genet. 2013, 9, e1003468. [CrossRef] [PubMed]
14. Murat, P.; Balasubramanian, S. Existence and consequences of G-quadruplex structures in DNA. Curr. Opin.

Genet. Dev. 2014, 25, 22–29. [CrossRef] [PubMed]
15. Rhodes, D.; Lipps, H.J. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res. 2015,

43, 8627–8637. [CrossRef] [PubMed]
16. Tarsounas, M.; Tijsterman, M. Genomes and G-quadruplexes: For better or for worse. J. Mol. Biol. 2013,

425, 4782–4789. [CrossRef] [PubMed]
17. Siddiqui-Jain, A.; Grand, C.L.; Bearss, D.J.; Hurley, L.H. Direct evidence for a G-quadruplex in a promoter

region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl. Acad. Sci. USA
2002, 99, 11593–11598. [CrossRef] [PubMed]

18. Paeschke, K.; Simonsson, T.; Postberg, J.; Rhodes, D.; Lipps, H.J. Telomere end-binding proteins control the
formation of G-quadruplex DNA structures in vivo. Nat. Struct. Mol. Biol. 2005, 12, 847–854. [CrossRef]

19. Smith, J.S.; Chen, Q.; Yatsunyk, L.A.; Nicoludis, J.M.; Garcia, M.S.; Kranaster, R.; Balasubramanian, S.;
Monchaud, D.; Teulade-Fichou, M.P.; Abramowitz, L.; et al. Rudimentary G-quadruplex-based telomere
capping in Saccharomyces cerevisiae. Nat. Struct. Mol. Biol. 2011, 18, 478–485. [CrossRef]

20. Besnard, E.; Babled, A.; Lapasset, L.; Milhavet, O.; Parrinello, H.; Dantec, C.; Marin, J.M.; Lemaitre, J.M.
Unraveling cell type-specific and reprogrammable human replication origin signatures associated with
G-quadruplex consensus motifs. Nat. Struct. Mol. Biol. 2012, 19, 837–844. [CrossRef]

21. Cayrou, C.; Coulombe, P.; Vigneron, A.; Stanojcic, S.; Ganier, O.; Peiffer, I.; Rivals, E.; Puy, A.;
Laurent-Chabalier, S.; Desprat, R.; et al. Genome-scale analysis of metazoan replication origins reveals their
organization in specific but flexible sites defined by conserved features. Genome Res. 2011, 21, 1438–1449.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.sbi.2006.05.004
http://www.ncbi.nlm.nih.gov/pubmed/16713248
http://dx.doi.org/10.1016/j.dnarep.2015.01.004
http://www.ncbi.nlm.nih.gov/pubmed/25704659
http://dx.doi.org/10.1073/pnas.48.12.2013
http://www.ncbi.nlm.nih.gov/pubmed/13947099
http://dx.doi.org/10.1038/334364a0
http://www.ncbi.nlm.nih.gov/pubmed/3393228
http://dx.doi.org/10.1038/342825a0
http://www.ncbi.nlm.nih.gov/pubmed/2601741
http://dx.doi.org/10.1016/0092-8674(89)90610-7
http://dx.doi.org/10.1093/nar/gki609
http://www.ncbi.nlm.nih.gov/pubmed/15914667
http://dx.doi.org/10.1093/nar/gki553
http://dx.doi.org/10.15252/embj.201488398
http://dx.doi.org/10.1074/jbc.RA118.005071
http://dx.doi.org/10.1038/nbt.3295
http://www.ncbi.nlm.nih.gov/pubmed/26192317
http://dx.doi.org/10.1093/nar/gkl655
http://www.ncbi.nlm.nih.gov/pubmed/17012276
http://dx.doi.org/10.1371/journal.pgen.1003468
http://www.ncbi.nlm.nih.gov/pubmed/23637633
http://dx.doi.org/10.1016/j.gde.2013.10.012
http://www.ncbi.nlm.nih.gov/pubmed/24584093
http://dx.doi.org/10.1093/nar/gkv862
http://www.ncbi.nlm.nih.gov/pubmed/26350216
http://dx.doi.org/10.1016/j.jmb.2013.09.026
http://www.ncbi.nlm.nih.gov/pubmed/24076189
http://dx.doi.org/10.1073/pnas.182256799
http://www.ncbi.nlm.nih.gov/pubmed/12195017
http://dx.doi.org/10.1038/nsmb982
http://dx.doi.org/10.1038/nsmb.2033
http://dx.doi.org/10.1038/nsmb.2339
http://dx.doi.org/10.1101/gr.121830.111
http://www.ncbi.nlm.nih.gov/pubmed/21750104


Genes 2019, 10, 95 16 of 25

22. Valton, A.L.; Hassan-Zadeh, V.; Lema, I.; Boggetto, N.; Alberti, P.; Saintomé, C.; Riou, J.F.; Prioleau, M.N.
G4 motifs affect origin positioning and efficiency in two vertebrate replicators. EMBO J. 2014, 33, 732–746.
[CrossRef] [PubMed]

23. Woodford, K.J.; Usdin, K.; Weitzmann, M.N. DNA Secondary structures and the evolution of hypervariable
tandem arrays. J. Biol. Chem. 1997, 272, 9517–9523. [CrossRef]

24. Sarkies, P.; Reams, C.; Simpson, L.J.; Sale, J.E. Epigenetic instability due to defective replication of structured
DNA. Mol. Cell 2010, 40, 703–713. [CrossRef] [PubMed]

25. De, S.; Michor, F. DNA secondary structures and epigenetic determinants of cancer genome evolution.
Nat. Struct. Mol. Biol. 2011, 18, 950–955. [CrossRef] [PubMed]

26. Lemmens, B.; van Schendel, R.; Tijsterman, M. Mutagenic consequences of a single G-quadruplex
demonstrate mitotic inheritance of DNA replication fork barriers. Nat. Commun. 2015, 6, 8909. [CrossRef]
[PubMed]

27. London, T.B.; Barber, L.J.; Mosedale, G.; Kelly, G.P.; Balasubramanian, S.; Hickson, I.D.; Boulton, S.J.;
Hiom, K. FANCJ is a structure-specific DNA helicase associated with the maintenance of genomic G/C
tracts. J. Biol. Chem. 2008, 283, 36132–36139. [CrossRef]

28. Krasilnikova, M.M.; Samadashwily, G.M.; Krasilnikov, A.S.; Mirkin, S.M. Transcription through a simple
DNA repeat blocks replication elongation. EMBO J. 1998, 17, 5095–5102. [CrossRef]

29. Krasilnikova, M.M.; Mirkin, S.M. Replication stalling at Friedreich’s ataxia (GAA)n repeats in vivo.
Mol. Cell. Biol. 2004, 24, 2286–2295. [CrossRef]

30. Chandok, G.S.; Patel, M.P.; Mirkin, S.M.; Krasilnikova, M.M. Effects of Friedreich’s ataxia GAA repeats on
DNA replication in mammalian cells. Nucleic Acids Res. 2012, 40, 3964–3974. [CrossRef]

31. Follonier, C.; Oehler, J.; Herrador, R.; Lopes, M. Friedreich’s ataxia-associated GAA repeats induce replication-fork
reversal and unusual molecular junctions. Nat. Struct. Mol. Biol. 2013, 20, 486–494. [CrossRef] [PubMed]

32. Sfeir, A.; Kosiyatrakul, S.T.; Hockemeyer, D.; MacRae, S.L.; Karlseder, J.; Schildkraut, C.L.; de Lange, T.
Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 2009, 138, 90–103.
[CrossRef] [PubMed]

33. Gerhardt, J.; Tomishima, M.J.; Zaninovic, N.; Colak, D.; Yan, Z.; Zhan, Q.; Rosenwaks, Z.; Jaffrey, S.R.;
Schildkraut, C.L. The DNA replication program is altered at the FMR1 locus in fragile X embryonic stem
cells. Mol. Cell 2014, 53, 19–31. [CrossRef] [PubMed]

34. Gerhardt, J.; Bhalla, A.D.; Butler, J.S.; Puckett, J.W.; Dervan, P.B.; Rosenwaks, Z.; Napierala, M. Stalled DNA
replication forks at the endogenous GAA repeats drive repeat expansion in Friedreich’s ataxia cells. Cell Rep.
2016, 16, 1218–1227. [CrossRef] [PubMed]

35. Dovrat, D.; Dahan, D.; Sherman, S.; Tsirkas, I.; Elia, N.; Aharoni, A. A live-cell imaging approach for
measuring DNA replication rates. Cell Rep. 2018, 24, 252–258. [CrossRef]

36. Shishkin, A.A.; Voineagu, I.; Matera, R.; Cherng, N.; Chernet, B.T.; Krasilnikova, M.M.; Narayanan, V.;
Lobachev, K.S.; Mirkin, S.M. Large-scale expansions of Friedreich’s ataxia GAA repeats in yeast. Mol. Cell
2009, 35, 82–92. [CrossRef] [PubMed]

37. Kononenko, A.V.; Ebersole, T.; Vasquez, K.M.; Mirkin, S.M. Mechanisms of genetic instability caused by
(CGG)n repeats in an experimental mammalian system. Nat. Struct. Mol. Biol. 2018, 25, 669–676. [CrossRef]

38. Kruisselbrink, E.; Guryev, V.; Brouwer, K.; Pontier, D.B.; Cuppen, E.; Tijsterman, M. Mutagenic capacity
of endogenous G4 DNA underlies genome instability in FANCJ-defective C. elegans. Curr. Biol. 2008,
18, 900–905. [CrossRef]

39. Ribeyre, C.; Lopes, J.; Boulé, J.B.; Piazza, A.; Guédin, A.; Zakian, V.A.; Mergny, J.L.; Nicolas, A. The yeast Pif1
helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet.
2009, 5, e1000475. [CrossRef]

40. Luria, S.E.; Delbrück, M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 1943,
28, 491–511.

41. Shastri, N.; Tsai, Y.C.; Hile, S.; Jordan, D.; Powell, B.; Chen, J.; Maloney, D.; Dose, M.; Lo, Y.;
Anastassiadis, T.; et al. Genome-wide identification of structure-forming repeats as principal sites of
fork collapse upon ATR inhibition. Mol. Cell 2018, 72, 222–238. [CrossRef] [PubMed]

42. Tubbs, A.; Sridharan, S.; van Wietmarschen, N.; Maman, Y.; Callen, E.; Stanlie, A.; Wu, W.; Wu, X.; Day, A.;
Wong, N.; et al. Dual roles of poly(dA:dT) tracts in replication initiation and fork collapse. Cell. 2018,
174, 1127.e19–1142.e19. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/embj.201387506
http://www.ncbi.nlm.nih.gov/pubmed/24521668
http://dx.doi.org/10.1074/jbc.272.14.9517
http://dx.doi.org/10.1016/j.molcel.2010.11.009
http://www.ncbi.nlm.nih.gov/pubmed/21145480
http://dx.doi.org/10.1038/nsmb.2089
http://www.ncbi.nlm.nih.gov/pubmed/21725294
http://dx.doi.org/10.1038/ncomms9909
http://www.ncbi.nlm.nih.gov/pubmed/26563448
http://dx.doi.org/10.1074/jbc.M808152200
http://dx.doi.org/10.1093/emboj/17.17.5095
http://dx.doi.org/10.1128/MCB.24.6.2286-2295.2004
http://dx.doi.org/10.1093/nar/gks021
http://dx.doi.org/10.1038/nsmb.2520
http://www.ncbi.nlm.nih.gov/pubmed/23454978
http://dx.doi.org/10.1016/j.cell.2009.06.021
http://www.ncbi.nlm.nih.gov/pubmed/19596237
http://dx.doi.org/10.1016/j.molcel.2013.10.029
http://www.ncbi.nlm.nih.gov/pubmed/24289922
http://dx.doi.org/10.1016/j.celrep.2016.06.075
http://www.ncbi.nlm.nih.gov/pubmed/27425605
http://dx.doi.org/10.1016/j.celrep.2018.06.018
http://dx.doi.org/10.1016/j.molcel.2009.06.017
http://www.ncbi.nlm.nih.gov/pubmed/19595718
http://dx.doi.org/10.1038/s41594-018-0094-9
http://dx.doi.org/10.1016/j.cub.2008.05.013
http://dx.doi.org/10.1371/journal.pgen.1000475
http://dx.doi.org/10.1016/j.molcel.2018.08.047
http://www.ncbi.nlm.nih.gov/pubmed/30293786
http://dx.doi.org/10.1016/j.cell.2018.07.011
http://www.ncbi.nlm.nih.gov/pubmed/30078706


Genes 2019, 10, 95 17 of 25
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