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Abstract: Equine metabolic syndrome (EMS) is a complex trait for which few genetic studies have
been published. Our study objectives were to perform within breed genome-wide association
analyses (GWA) to identify associated loci in two high-risk breeds, coupled with meta-analysis to
identify shared and unique loci between breeds. GWA for 12 EMS traits identified 303 and 142
associated genomic regions in 264 Welsh ponies and 286 Morgan horses, respectively. Meta-analysis
demonstrated that 65 GWA regions were shared across breeds. Region boundaries were defined
based on a fixed-size or the breakdown of linkage disequilibrium, and prioritized if they were: shared
between breeds or across traits (high priority), identified in a single GWA cohort (medium priority),
or shared across traits with no SNPs reaching genome-wide significance (low priority), resulting in 56
high, 26 medium, and seven low priority regions including 1853 candidate genes in the Welsh ponies;
and 39 high, eight medium, and nine low priority regions including 1167 candidate genes in the
Morgans. The prioritized regions contained protein-coding genes which were functionally enriched
for pathways associated with inflammation, glucose metabolism, or lipid metabolism. These data
demonstrate that EMS is a polygenic trait with breed-specific risk alleles as well as those shared
across breeds.

Keywords: EMS; insulin dysregulation; fat metabolism; genetics; genetic risk factors; horses;
genome-wide association analysis

1. Introduction

Equine metabolic syndrome (EMS) is now best described as a clustering of risk factors often
leading to laminitis, which is the primary clinical concern due to the painful and often career ending
outcome of this disease [1]. Although laminitis itself is not fatal, in the best interest of the patient,
the severity and crippling pain often leads to a decision of euthanasia [2]. The key component of EMS
is insulin dysregulation, which are derangements in the balanced relationship between plasma insulin,
glucose and lipids, and manifests clinically as baseline hyperinsulinemia, an exaggerated or prolonged
insulin or glucose response post oral or intravenous carbohydrate challenge, tissue insulin resistance,
or hypertriglyceridemia [1].
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Although a dominant mode of inheritance for laminitis status was originally proposed for a
small group of ponies [3], breed differences in EMS susceptibility, metabolic profiles, and clinical
severity have led to the more widely applicable, alternative hypothesis that EMS is a complex disease,
with both environmental and genetic risk factors contributing to disease severity. As a complex
trait, it is likely that EMS is the result of a combination of genes with variable modes of inheritance,
penetrance and effect size [4]. Recently, our laboratory provided evidence for this hypothesis through
estimation of narrow sense heritability in a cohort of Morgan horses and Welsh ponies, where eight
metabolic measurements were estimated to have low, moderate or high heritability [5]. Further,
several heritability estimates varied across the two breeds, providing further evidence for breed related
differences and are consistent with heritability estimates across ethnic groups for metabolic syndrome
(MetS) in humans, a syndrome with shares distinct metabolic similarities to EMS.

Although heritability estimates provide valuable insight into the genetic contribution to a trait,
they do not provide information on the number of contributing genes, specific genes involved, or where
in the genome these genes are located. Identification of the coding and non-coding variants contributing
to a complex trait are important for understanding its complete pathophysiology and to gain a better
understanding of how genes interact or are influenced by the environment. Further, this information is
necessary for the development of genetic tests which would allow veterinarians to assess a patient’s
risk for developing EMS before they show clinical signs, identify horses that need frequent monitoring
or early environmental modifications, and provide responsible breeding recommendations.

Genome-wide association analyses (GWA) has been used and validated across multiple species for
both simple and complex traits to narrow down the genome to specific regions of interest harboring the
risk alleles and to provide valuable information about the genetic architecture of a trait. For example,
GWA for MetS have led to identification of quantitative trait loci harboring candidate genes in several
metabolic pathways, including alleles influencing lipoprotein particle size and glucose, insulin and
lipid homeostasis [6,7]. Further, these studies have identified different risk alleles amongst ethnic
groups [8].

We hypothesized that major genetic risk factors leading to EMS are shared across breeds, and that
differences in the severity and secondary features of the EMS phenotype between breeds, or between
individuals within a breed, are the result of modifying genetic risk alleles with variable frequencies
between breeds. The objectives of this study were to perform within breed GWA to identify significant
contributing loci in Welsh ponies and Morgan horses, two breeds known to be high risk for EMS, and to
use meta-analysis to identify shared and unique loci between both breeds. We further prioritized
regions identified on GWA and performed a functional enrichment analysis on protein-coding genes
within the prioritized regions.

2. Materials and Methods

2.1. Samples

Horses used in this study were a part of a large across-breeds study evaluating the EMS
phenotype [9]. From this dataset, 264 Welsh ponies (194 females and 70 males with a mean age
of 11.7 years) and 287 Morgan horses (184 females and 102 males with a mean age of 12.3 years)
were included in this analysis. The Welsh pony cohort represented 74 section As, 146 section Bs,
three section Cs, 15 section Ds, 19 section Hs, seven sections Ps, and 10 unknown/unregistered Welsh
ponies (Appendix A). Samples were collected from 31 and 28 farms for the Morgan horses and Welsh
ponies, respectively, throughout the United States and Canada.

Sample procedures and protocols have been described elsewhere [5,9,10]. Briefly, phenotype
data collected on all horses included signalment, medical history, laminitis status, environmental
management (feed, supplements, turnout and exercise regimen), and morphometric measurements
(body condition score (BCS), wither height, and neck and girth circumference). After an eight hour
fast, an oral sugar test (OST) was performed using 0.15 mg/kg Karo lite corn syrup as previously
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described [11]. Biochemical measurements at baseline included insulin (TKIN1 Insulin Coat-A-Count
Kit, Siemens Healthcare Diagnostics Inc., Los Angeles, CA, USA), glucose (YSI 2300 STAT Plus glucose
and lactate analyzer, YSI Inc., Yellow Springs, OH, USA), non-esterified fatty acids (NEFA; Wako HR
Series NEFA-HR kit, Wako Pure Chemical Industries, Ltd., Chuo-Ku Osaka, Japan), triglycerides (TG;
TR0100 Serum Triglyceride Determination kit, MilliporeSigma, Saint Louis, MO, USA), adiponectin
(EZHMWA-64K Human High Molecular Weight Adiponectin ELISA, MilliporeSigma, Saint Louis,
MO, USA), leptin (XL-85K Multi-Species Leptin RIA, MilliporeSigma, Saint Louis, MO, USA) and
ACTH (LKAC1 ACTH kits, Siemens Healthcare Diagnostics Inc., Los Angeles, CA, USA). Biochemical
measurements 75 minutes after the OST included insulin (INS-OST) and glucose (GLU-OST).

Horses with a history or phenotypic appearance of pars pituitary intermedia dysfunction (PPID)
were excluded from the study. A previously laminitic horse was defined as an individual who had been
diagnosed with pasture-associated or endocrinopathic laminitis by a veterinarian, had radiographic
evidence of laminitis, or had signs indicative of chronic laminitis observed by the researchers at the
time of sampling. Horses in which laminitis could have been caused by another inciting factor (history
of illness, grain-overload, corticosteroid administration or PPID), or who had clinically-evident, acute
laminitis at the time of sampling, were excluded from the study.

2.2. Genotype Data

DNA was isolated from whole blood or hair roots using the Puregene Blood Core Kit, (Qiagen,
Germantown, MD, USA) per the manufacturer’s instructions. Genome-wide single nucleotide
polymorphism (SNP) genotyping was performed on all horses. Horses were genotyped either on
the EquineSNP50 Genotyping BeadChip (Illumina, Inc., San Diego, CA, USA; 268 Morgan horses),
Axiom Equine MCEc670 array (Thermo Fisher Scientific, Coon Rapids, MN, USA; 220 Welsh ponies),
or Axiom Equine MCEc2M array (Thermo Fisher Scientific, Coon Rapids, MN, USA; 44 Welsh ponies
and 43 Morgan horses), containing 54,602 SNPs, 670,795 SNPs, and 2,011,826 SNPs across the equine
genome including the 31 autosomes and X chromosome, respectively.

Haplotype phasing and genotype imputation up to the ~two million SNPs present on the Axiom
Equine MCEc2M array were performed on horses genotyped on the two lower density arrays using
Beagle software [12]. Based on published recommendations [13], a cross breed population of 496
horses genotyped on the MCEc2M array, including the Welsh ponies and Morgan horses described
above, were used as the reference population. Imputation concordance was determined to be 99.2% in
the Morgan horses and 99.1% in the Welsh ponies. SNPs that did not have 100% concordance were
removed from the data, yielding a total of 1,931,327 SNPs in the Welsh ponies and 1,932,766 SNPs in
the Morgan horses.

Quality control on the imputed data was performed using the Plink software package [14].
All horses passed quality control, including evaluation for discordant sex information and SNP
genotyping rate (>95%). Individual SNPs that had a genotyping rate of <90%, a minor allele frequency
(MAF) of <1.0% or were outside of Hardy-Weinberg equilibrium (p-values < 1.0× 10−05), were removed.
After genotype pruning, 1,428,337 and 1,158,831 SNPs remained for subsequent analyses in the Welsh
ponies and Morgan horses, respectively. Of these, a total 688,471 SNPs were shared between both
breeds. Base pair positions for all SNPs were mapped to EquCab3 [15].

2.3. Genome-Wide Association Analyses (GWA)

Eleven traits significantly associated with EMS, including insulin, glucose, adiponectin, leptin,
NEFA, TG, ACTH, INS-OST, GLU-OST, and measures of obesity (neck circumference to withers
height ratio [NH] and girth circumference to withers height ratio [GH]), were treated as quantitative
response variables in the GWA analyses. Laminitis status was treated as a binary response variable.
All quantitative traits were tested for normality using a normal probability plot and Shapiro test and
adjusted for normality as appropriate. Adiponectin, leptin, and NEFA were square root adjusted and
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insulin, INS-OST and triglycerides and ACTH were log transformed. Glucose, GLU-OST, and NH and
GH ratios were normally distributed and did not need to be adjusted.

Trait measurements were adjusted to account for known confounding covariates using the
residuals from a linear mixed effects model in the R software program Linear and Nonlinear Mixed
Effects Models (nlme), with sex and age included as fixed effects and farm as a random effect [16].
For each trait, within breed GWA were performed from the imputed SNP genotype data using a
custom code for an improved mixed linear regression analysis [9]. This algorithm utilizes a three-step
process, which combines a Bayesian Sparse Linear Mixed Model (BSLMM) [17] available in the software
program Genome-wide Efficient Mixed Model Association (GEMMA) [18] and a linear mixed model
implemented in FaST-LMM [19] (see Appendix B for a full description of this model). The threshold
for genome-wide significance was based on the effective number of independent tests (SNPs not in
linkage disequilibrium [LD]) as calculated by the Genetic Type 1 Error Calculator [20]. In the Welsh
ponies, this value was 841,750 SNPs, resulting in a Bonferroni-corrected threshold for genome-wide
significance of 5.98 × 10−08. For the Morgan horses, the effective number of independent tests was
657,030 SNPs, resulting in a Bonferroni corrected threshold for genome-wide significance of 7.61 × 10−08.
The suggestive threshold for both breeds was set at 1.00 × 10−05 [21,22].

Principal components analysis (PCA) revealed population stratification in the Welsh pony cohort
based on clustering of the registered sections (Figure A1). To account for this population substructure,
and avoid over-fitting the model, three separate GWA were performed using the full cohort (n = 264),
sections A, B, C and D (n = 238) and sections A and B (n = 220). In order to maximize sensitivity,
the union of the GWA results from all three cohorts was used (Appendix A).

2.4. Meta-analysis

A GWA meta-analysis was performed with the software program METASOFT [23] using the
Morgan horse and Welsh pony GWA summary data from the 688,471 SNPs that were shared between
breeds. Briefly, the METASOFT algorithm uses a random effects model which adjusts for heterogeneity
between studies by allowing the effect size of the alternative allele to vary between populations.
Unlike other random effects models, where both the null and alternative models assume heterogeneity,
METASOFT uses a likelihood ratio test that assumes heterogeneity only under the alternative model [24].
The effective number of shared SNPs was 306,023 in the Morgan horses and 307,349 in the Welsh ponies
as calculated by GEC. For a more conservative p-value, the threshold for genome-wide significance
was determined using the effective number of SNPs for the Welsh ponies (0.05/307,349) and set at
1.63 × 10−07. The suggestive threshold was set at 1.00 × 10−05 [21,22]. To be considered a region of
interest identified on meta-analysis (MA-ROI), at least one SNP needed to exceed the threshold for
genome-wide significance.

2.5. Prioritization of GWA Regions and Identification of Positional Candidate Genes

All GWA regions where SNPs exceeded the suggestive threshold for significance were reviewed.
To be considered within a single region, consecutive SNPs on the same chromosome had to be within
500 kb of each other [24,25]. Regions of interest had to contain a minimum of five SNPs exceeding the
suggestive threshold, with at least one SNP exceeding the threshold for genome-wide significance.

2.5.1. Fixed-Size Regions

The boundaries of the fixed-size region were defined as 500 kb 5′ of the base pair position of the
minimum SNP within the region and 500 kb 3′ of the base pair position of the maximum SNP [24–29].
A region was identified as shared if it was within the boundaries of another region and prioritized as
described below.
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2.5.2. LD-Bound Regions

To define the boundaries of the LD-bound region, the software program Plink was utilized to
calculate the pairwise LD measures for all SNPs within the region [14]. Window size was set at 1 Mb
from the minimum and maximum SNP within the region; a pairwise calculation for LD with the test
SNP was performed for all SNPs within the window. The threshold for SNPs within LD was set at an
r2 of greater than 0.3 [27]. A custom code was used to identify regions where LD for all SNPs dropped
below 0.3 and spanned at least 100 kb both 5′ and 3′ to the widest peak of LD within the window,
which was used to define the boundaries of the region. If LD did not drop for at least 100 kb on either
side of the LD peak, window size was increased by 1 Mb until the region could be defined. An LD-
bound region was identified as shared if it was within the boundaries of another LD-bound region and
prioritized as described below.

2.5.3. Prioritization

Regions were prioritized if they were identified as shared between breeds on meta-analysis
(MA-ROI), shared across traits within a single GWA cohort (for example, a region shared between
insulin and adiponectin in the Morgan horses), or breed specific. The prioritized regions were
categorized as high, medium or low priority (Figure 1) as follows:

• High priority: Region was identified as an MA-ROI or it was shared across traits with at least one
region being considered an ROI.

• Medium priority: Region was identified as an ROI in at least one GWA cohort.
• Low priority: Region was shared across traits, but no regions met the criteria to be considered

an ROI.
• If a region met the criteria for more than one category (for example a region identified as a

MA-ROI and was also shared across traits but not an ROI) then the region was assigned the higher
priority level.
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Figure 1. Flow chart of the prioritization of the regions identified on GWA.

2.5.4. Identification of Positional Candidate Genes and Functional Enrichment Analysis

Positional candidate genes were identified using the Bioconductor/R software package biomaRt [30]
with EquCab3 as the reference genome [31]. Positional candidate genes were defined as all protein
coding genes, pseudogenes, and RNA genes within each GWA region as defined by the fixed-size
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region or the LD-bound regions as described above. Based on the comparison between the fixed-size
and LD-bound regions, protein-coding genes within all prioritized LD-bound regions were assessed
for functional enrichment analysis between traits using a multi-query approach available in the g:
Profiler toolset [32].

3. Results

3.1. GWA Results

The union of GWA results across all twelve traits for the Welsh ponies identified 303 regions
where at least one SNP exceeded the suggestive threshold. Of these regions, 64 were considered ROI
(i.e., five SNPs exceeding the suggestive threshold and one or more SNPs exceeded the threshold
for genome-wide significance) and included: seven ROI for baseline insulin, one ROI for INS-OST,
three ROI for baseline glucose, two ROI for GLU-OST, two ROI for NEFA, one ROI for triglycerides,
two ROI for adiponectin, three ROI for leptin, three ROI for ACTH, 14 ROI for NH, 16 ROI for GH,
and 10 ROI for laminitis status (Tables S1 and S2).

GWA across all twelve traits for the Morgan horses identified 142 regions where at least one
SNP exceeded the suggestive threshold. Of these regions, 37 ROI were identified and included one
ROI for baseline insulin, one ROI for INS-OST, two ROI for baseline glucose, three ROI for GLU-OST,
four ROI for NEFA, four ROI for adiponectin, three ROI for leptin, three ROI for ACTH, five ROI for
NH, four ROI for GH, and seven ROI for laminitis status (Table S1).

3.2. Shared Regions Across Welsh Ponies and Morgan Horses and Across Traits

Identification of the shared regions between the Morgan horses and the Welsh pony cohort
from the boundaries of the fixed region obtained from the GWA results identified one shared region
for laminitis status, one shared region for ACTH, and one shared region for insulin-OST (Figure 2).
The boundaries defined by LD identified the above shared regions as well as an additional shared
region for GH on ECA 22.

Meta-analysis across breeds identified the four shared regions above, as well as an additional 56
regions and five unique regions (regions not identified in either breed as significant on GWA), for a
total of 65 shared regions of interest (MA-ROI). MA-ROI included two for insulin and four for glucose
post oral sugar challenge, three for insulin, two for glucose, four for NEFA, seven for adiponectin,
five for leptin, 15 for NH, eight for GH, and 12 for laminitis status. Unique regions were found for
insulin (one MA-ROI) and glucose (one MA-ROI) post oral sugar test and NH (three MA-ROI). Across
the MA-ROI, three regions were also shared across traits. No MA-ROI were identified for plasma
triglyceride levels (Table 1).

Of the 56 regions identified on meta-analysis that were only significant in one breed-specific
GWA, 30 (22 ROI) were called in at least one Welsh pony cohort and 26 (20 ROI) were called in the
Morgan horses. Twenty-eight of the MA-ROI contained less than five SNPs of which 11 were single
SNP regions. Comparison of the results using a fixed effects model identified 32 of the 65 MA-ROI
(Table 1).
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Figure 2. Manhattan plots of the genome-wide association results for insulin concentration post oral
sugar test in (A) Morgan horses and (B) the section A and B Welsh ponies. The equine chromosomes
(ECA) are plotted on the x-axis and the −log of the p-value is plotted on the y-axis. The blue line
indicates the suggestive threshold (1.0 × 10−05) and the red line represents the genome-wide significant
threshold (7.61 × 10−08 in the Morgan horses and 5.98 × 10−08 the Welsh ponies). In the section A,
B, C and D Welsh ponies (not shown) and A and B Welsh ponies (B), the same region on ECA10
exceeds the suggestive threshold, which was also identified as an ROI in the Morgan horses (A). GWA
meta-analysis identified this region as shared across both breeds.

Table 1. Meta-analysis across breeds and across EMS metabolic traits.

Trait Chr Min_SNP Max_SNP Sugg_SNPs Sign_SNPs FE

Insulin 5 44104129 45081679 39 4 -

15 5887873 6225014 21 2 -

24 28804043 29076914 3 2 -

INS-OST 10 71620835 72425049 19 4 X

28 38307699 38344594 2 1 -

Glucose 4 18053357 18550035 20 1 -
8 9289661 9312611 2 1 -

GLU-OST 3 55982921 56558742 57 39 X

4 27802674 28514796 18 4 X

15 79697363 79717603 3 3 -

28 34861664 34868420 2 2 -

NEFA 1 183532379 184178932 21 15 X

17 13355958 14014858 23 1 X

24 20975408 NA 1 1 -

30 20148173 20205201 10 3 X
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Table 1. Cont.

Trait Chr Min_SNP Max_SNP Sugg_SNPs Sign_SNPs FE

Adiponectin 2 16725632 17531903 25 19 X

4 37105938 37523046 6 2 X

6 31582345 31708194 17 1 X

6 67097628 68036518 16 1 -

18 41399862 41533081 9 1 -

18 60138400 60241267 10 2 -

20 3447045 3609674 10 4 X

Leptin 7 65731012 65804974 6 3 X

10 871456 NA 1 1 -

19 48839140 49627683 44 22 X

24 28551544 28744981 17 6 -

ACTH 1 69730886 70257187 4 1 -

1 82755708 82879246 10 1 -

3 41684754 NA 1 1 -

3 101236287 101618645 42 24 X

5 28822515 29342972 12 3 X

10 78846710 NA 1 1 -

NH 1 88009187 NA 1 1 -

3 58464229 NA 1 1 -

4 51903203 53474757 64 40 -

6 63614756 63814984 20 10 -

9 22745020 NA 1 1 -

9 33549797 34165892 31 1 -
11 18987272 19176693 10 8 -
14 63778931 63876998 7 2 X

19 1134701 1139669 2 2 -

19 32230245 33643392 55 2 -

20 39797561 40162785 7 4 X

20 59659997 60403627 11 4 X

21 20193411 21256032 18 11 X

24 33852631 34812035 36 23 X

GH 1 121484057 121775873 47 19 -

1 131512239 131621826 3 3 X

4 84181768 85275183 29 11 X
11 18987272 19176693 10 9 X
17 32120145 32544617 23 4 X
19 28934939 NA 1 1 -
20 63560971 63691145 10 6 -

22 40135963 40167502 4 4 X
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Table 1. Cont.

Trait Chr Min_SNP Max_SNP Sugg_SNPs Sign_SNPs FE

LAM 1 49077969 NA 1 1 -

2 36104151 36108219 6 6 -

4 17765473 18991639 11 3 -

12 29378128 30296509 19 11 X

14 88430222 89591967 20 5 -

18 31679672 33134556 51 26 X

19 28057756 28417335 5 2 -

19 57605404 58429206 36 20 X

22 3565315 4307679 62 38 X

23 12226548 12763020 35 24 X

28 9446507 9643240 13 5 X

To be considered an MA-ROI, at least one SNP had to exceed the threshold for genome-wide significance (1.6 × 10−07)
on meta-analysis. Provided is the base pair position of the lowest (Min_SNP) and highest (Max_SNP) SNP, as well
as the number of SNPs per region which exceeded the suggestive (Sugg_SNPs) and genome-wide significance
(Sign_SNPs) threshold. Regions shared across two traits in the meta-analysis are represented by the corresponding
highlighted chromosomes (Chr). Regions which were statistically significant using a standard fixed effects models
(FE) are indicated by an X.

3.3. Prioritization of GWA Results and Identification of Positional Candidate Genes Based on Fixed-Size
Regions in Welsh Ponies

For the Welsh pony cohorts, 189 of the 303 regions were eliminated from further prioritization.
For the remaining 114 regions, 46 regions were considered high priority regions and contained 890
positional candidate genes, 34 regions were considered medium priority regions and contained 719
positional candidate genes, and 35 regions were considered low priority regions and contained 289
positional candidate genes. Accounting for the 19 shared regions resulted in 91 unique regions and
1511 positional candidate genes (Table S7).

3.4. Prioritization of GWA Results and Identification of Positional Candidate Genes Based on Fixed-Size
Regions in Morgan Horses

For the Morgan horses, 88 of the 142 regions were eliminated from further prioritization (Table S8).
This resulted in 54 regions being prioritized and 1104 positional candidate genes with 38 high priority
regions containing 801 positional candidate genes, eight medium priority regions containing 139
positional candidate genes, and eight low priority regions containing 164 positional candidate genes.
Accounting for the 10 shared regions resulted in 44 unique regions and 963 positional candidate genes
(Tables S8 and S9).

3.5. Prioritization of LD-Bound GWA Regions, Identification of Positional Candidate Genes, and Network
Analysis in Welsh Ponies

In the Welsh ponies, the LD-bound regions identified five additional regions shared across traits
(ECA1 for adiponectin and INS-OST, ECA5 for insulin and leptin, ECA6 for leptin and GH, ECA9 for
INS-OST and NEFA, and ECA18 for insulin and GH). However, the LD-bound regions did not identify
six regions as shared across traits that were identified with the fixed-size boundaries (ECA4 for leptin
and GH, ECA10 for NH and GH, ECA14 for leptin and laminitis status, ECA19 for ACTH and laminitis
status, ECA 28 for insulin and INS-OST, and ECA28 for adiponectin and leptin). This resulted in 214
regions being removed and 89 regions being prioritized with 56 high priority regions containing 1567
positional candidate genes (Table 2). Further, 26 regions were given medium priority and contained
620 positional candidate genes and seven regions were given low priority and contained 30 positional
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candidate genes for a total of 2217 positional candidate genes. Accounting for the 18 shared regions
resulted in 1853 positional candidate genes (Table S13).

Across nine EMS traits, functional enrichment analysis of the protein-coding genes within the
prioritized regions identified enrichment (adjusted p-value < 0.05) for Gene Ontology (GO) terms
associated with inflammation and fatty acid metabolism, including: interleukin-1 receptor binding
(GH), lipid antigen binding (insulin), RAGE receptor binding (insulin and leptin), toll-like receptor
binding (insulin and leptin), fatty-acyl-coA-synthase (INS-OST), cytokine activity (ACTH, NEFA,
GH and NH), and regulation of NK-kappa signaling (GH, glucose, insulin, laminitis status, leptin,
NEFA and NH). Enrichment for protein-coding genes associated with the GO terms thiosulfate
sulfurtransferase activity was identified for NEFA concentrations (p-value = 4.9 × 10−02).

Table 2. LD-bound high priority GWA regions for the Welsh pony cohorts.

Trait Chr Min Max Protein
Coding

RNA
Genes

Total
Genes

Insulin 5 35409104 44806458 267 38 306
8 69350844 75906595 32 23 55
15 5748377 6612684 0 1 1
18 78720858 79634082 2 4 6
24 28451012 29887250 2 4 6

INS-OST 1 176773704 176873704 0 1 1
8 73173455 73699198 1 1 2
10 71967783 72438937 3 0 3

28 39322188 39488807 8 1 9

Glucose 15 83728178 83828178 2 0 2
GLU-OST 28 34271949 35138699 9 0 9

Adiponectin 1 171861236 178270042 25 24 49
18 60060215 61349045 7 6 13

Leptin 5 39751797 50431769 207 32 239
6 488137 4012580 15 10 25
7 65678376 68117086 1 2 3

10 692055 1068890 0 5 5
21 22940681 23516697 1 0 1

NEFA 19 1005718 1105718 2 0 2
28 32909542 35703535 65 11 76

ACTH 1 42944403 45232767 5 4 9
1 69558737 70960589 7 16 23

10 55060512 56255134 1 1 2

10 78795710 80306613 20 5 25
20 60381850 60481850 0 0 0

NH 4 67130904 69873296 8 8 16
4 77298241 81186565 24 15 40
4 83144842 83244842 1 0 1
7 93176991 93628686 0 1 1
9 32632235 37587269 10 8 18
11 18342117 19876247 55 4 60
14 63702522 63847210 0 2 2

20 40244007 41210876 3 11 14
20 60723014 61735694 0 2 2
21 5280993 6396786 2 6 8
21 19515280 25046226 22 27 49
24 31843480 36758215 47 10 57
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Table 2. Cont.

Trait Chr Min Max Protein
Coding

RNA
Genes

Total
Genes

GH 1 132184772 133716124 9 7 16
4 68425678 69636837 5 1 6
4 70026254 81648125 49 45 95
4 82570011 86366835 49 25 75
7 93191676 93628672 0 1 1
11 15414337 16451463 24 1 25
11 18613895 19317536 26 0 26
18 79527484 81467661 13 12 25
19 31204596 31799125 0 0 0
20 29486630 30976763 54 8 62
20 59464566 61015217 1 2 3
20 64722427 65336095 1 3 4
21 20611963 22057711 3 4 7
22 41032889 41066045 0 0 0

25 19435041 19535041 4 0 4

LAM 1 49391032 49491032 0 1 1

2 35880861 36665473 8 6 14

19 57082025 62825378 42 16 59

28 9990892 10844823 4 0 4

Total 1146 415 1567

Final region boundaries were based on LD and are indicated by the lowest base pair position (Min) and the
highest base pair position (Max). The total number of genes includes all protein-coding genes, pseudogenes, and
RNA genes identified for region based on EquCab3. Shared regions across prioritized traits are indicated by
highlighted chromosomes.

3.6. Prioritization of LD-Bound GWA Regions, Identification of Positional Candidate Genes, and Network
Analysis in Morgan Horses

The LD-bound GWA regions for the Morgan horse identified three additional regions shared
across traits (ECA 21 for triglycerides and adiponectin, ECA 6 for adiponectin and INS-OST, and ECA
19 for NH and laminitis status), but did not identify two regions as shared across traits that were
identified with the fixed boundaries (ECA 20 for adiponectin and insulin and ECA 24 for insulin and
NEFA) (Table S14). This resulted in 39 high priority regions containing 1142 positional candidate
genes (Table 3). Further, eight regions were assigned medium priority and contained 155 positional
candidate genes, and nine regions were assigned low priority and contained 176 positional candidate
genes for a total of 1473 positional candidate genes. Accounting for the 12 shared regions resulted in
1167 positional candidate genes (Tables S14 and S15).

Functional enrichment analysis of the protein-coding genes within the prioritized regions identified
enrichment (adjusted p-value < 0.05) for the Kyoto Encyclopedia of Genes and Genomes (KEGG)
terms PI3K-AKT signaling pathway (ACTH, adiponectin, GH, glucose-OST, INS-OST, laminitis status,
leptin, NEFA, and NH) and the Wnt-signaling pathway (ACTH, adiponectin, INS-OST, NH, and TG).
Enrichment was also identified for the GO terms arylesterase activity for adiponectin (adjusted p-value
= 1.3 × 10−02) and G-protein-coupled receptor activity for leptin (adjusted p-value = 1.2 × 10−21).
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Table 3. LD-bound high priority GWA regions for the Morgan horses.

Trait Chr Min Max Protein
Coding

RNA
Genes

Total
Genes

Insulin 24 21134897 21184897 1 0 1
INS-OST 4 28373202 28423202 0 0 0

6 32751552 34029749 12 10 22
10 71666607 73534053 6 5 12

Glucose 4 17239374 19043831 6 5 11
8 11193683 12404572 8 9 17

GLU-OST 3 55746338 58085997 15 6 21
4 26695616 29116058 5 4 9

NEFA 1 184859013 187238015 24 17 41

17 12653835 14464765 4 2 6

24 20287835 20973401 15 1 16

30 20915473 21380977 0 0 0

Adiponectin 2 16362904 18105119 21 21 42

4 34723398 39321960 36 10 47
6 32486287 32841880 3 4 7
6 64297403 71493047 168 22 191
18 41448414 41498414 0 1 1
20 3649052 4325872 8 3 11

Leptin 4 51590680 52810437 4 5 9
19 51286493 53959028 7 14 21

24 25564765 29384679 7 14 21
1 82700933 84269783 18 5 24
3 42674448 44422013 2 7 10

3 102944842 103801021 2 4 6

5 25378878 27689002 12 16 28
NH 1 82097718 83618523 14 6 20

4 52024470 54237747 8 12 20
6 60410647 70570773 144 26 172
19 661978 1345372 4 1 6
19 32962795 37391949 53 19 73

GH 1 120644115 124691346 36 20 56

17 31806060 33720086 3 3 7
LAM 4 17301415 19812653 8 7 16

12 32885278 34800986 29 16 45

14 87916190 91602875 32 26 58

18 30095266 35177011 23 13 36
19 30133826 30183826 2 0 2
22 2843476 5225020 13 10 23

23 7656404 12984095 11 23 34

Total 764 367 1142

Final region boundaries were based on LD and are indicated by the lowest base pair position (Min) and the
highest base pair position (Max). The total number of genes includes all protein-coding genes, pseudogenes,
and RNA genes identified for region based on EquCab3. Shared regions across prioritized traits are indicated by
highlighted chromosomes.

4. Discussion

In this study, we used high density SNP genotype data and GWA in two high risk breeds to
identify hundreds of regions of the genome contributing to 12 EMS traits. Both fixed (500 kb) and
linkage disequilibrium-based approaches were used to identify the boundaries of genomic regions
identified on GWA and from there positional candidate genes within these regions. Within breed
prioritization of the LD-bound regions was used to begin the process of organizing and managing
this large list, and resulted in 56 high, 26 medium, and seven low priority regions, for a total of 1853
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candidate genes in the Welsh ponies; and 39 high, eight medium, and nine low priority regions, for
a total of 1167 candidate genes in the Morgan horses. Meta-analysis demonstrated that 65 of these
regions were shared across breeds. These data support the hypothesis that EMS is a polygenic trait
with both across breed and breed-specific genetic variants and predict that identifying even the major
functional variants and risk loci will be a challenging task.

Comparison of the regions identified from the within breed GWA identified fewer shared regions
across breeds than we anticipated. This could indicate that breed differences account for more of
the risk alleles for EMS than previously thought, or that additional regions were shared but not
identified in the breed-specific GWA, which can occur for several reasons. First, if the allele frequency
of the variant is low in one breed, then it will not be detected on that GWA. Second, the effect of
the variant on a trait can vary between breeds. The within-breed population sizes were powered to
detect variants of moderate to high effect but would not find variants of low effect [33,34]. Third,
variations in recombination of the ancestral chromosome can lead to differences in marker alleles
between populations [35]. Depending on the markers represented on the genotyping array, the variant
may be identified in one breed but not the other. Increasing the power of the study by performing
across-breed GWA could identify more shared regions between breeds. However, combining data can
lead to the inclusion of additional population substructure and unknown confounding variables into
the model [36]. Therefore, we used meta-analysis to increase the number of individuals within the
analysis and to improve the power to find unique associations, variants of low effect, and additional
shared regions across breeds [37,38], and identified 65 shared regions of which five were unique
(not identified in either breed specific GWA).

Selective breeding can lead to population stratification within breeds [39], and not accounting for
this population stratification can lead to spurious associations on GWA [40]. For this data, principal
components analysis revealed population stratification in the Welsh pony cohort based on clustering
of the registered sections (Figure A1). This was not unexpected as the Welsh pony sections are distinct
subpopulations based on pedigree and conformation. Mixed linear models are a common way to
account for population stratification and relatedness in GWA with the inclusion of a genetic relationship
matrix (GRM) [18,41]. However, the Welsh ponies presented a unique challenge since, although the
GRM would account for genetic similarities between Welsh pony sections, it would not account for
all the phenotypic (conformation traits) variation between sections. On the other hand, including
both the GRM and section as a covariate would lead to over-fitting of the model by accounting
for relatedness both as a random effect (GRM) and fixed effect (section). Therefore, to account for
population stratification within our Welsh pony cohort while maximizing sensitivity to identify genetic
variations contributing to EMS both within and across sections, we chose to perform the GWA using
the full data set and then subset the data to the section A, B, C and D ponies, and the section A and B
ponies. Notably, there is likely a degree of population segregation in the section A and B which we are
not fully controlling with a mixed model analysis, and ideally, we would have included the section
A, B, C and D ponies as a separate GWA cohorts in order to account for all population substructure;
however, our sample size made these analyses unfeasible due to the limited statistical power.

To reduce false positives, regions were prioritized based on sharing across breeds and traits.
Regions shared across breeds (MA-ROI) were given high priority, as these regions were not breed
specific and likely to be found in other high-risk breeds. Regions shared across traits with at least one
ROI were also assigned high priority since many components and downstream effects of the endocrine
system are highly interrelated; therefore, a variant affecting multiple traits would be expected to have
a larger biological effect then a variant affecting a single trait. An ROI identified in one GWA cohort
was assigned medium priority as these regions were likely breed or section (Welsh pony) specific
and, based on the power of our study, variants of moderate to high effect. Finally, regions that were
not an ROI but shared across traits were assigned low priority, because these regions were identified
across multiple GWA and were less likely to be false positives and/or regions that contain variants of
low effect.
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Our prioritization removed 71% of the 303 GWA regions for the Welsh ponies and 58% of the 142
GWA regions in the Morgan horses. Of the removed regions, 49% were single SNP regions, 38% were
regions with less than five SNPs, and 13% were regions with greater than or equals to five SNPs but
no SNPs which exceeded the threshold for genome wide significance. Given: (i) the large percentage
of single or low SNP regions that were removed, (ii) the high-density genotype data used in these
analyses, and (iii) the use of the max gamma value for BSLMM (improving sensitivity at the cost of
specificity), it is likely most of these regions were false positives. However, we utilized Bonferroni
corrected p-values which tend to be more conservative corrections [42]; therefore, some of the removed
regions may harbor genetic variants associated with EMS but represent variants with very low effect or
poorly annotated regions of the genome (relative decreased number of SNPs in that region). Increasing
the number of individuals, or represented Welsh pony sections, would improve the power of the study
to determine which of these regions were true or false positives.

In order to identify candidate genes, we first used a fixed boundary of 500 kb 5′ of the SNP
identified on GWA with the lowest base pair position and 3’ of the SNP with the highest base pair
position. 500 kb was chosen based on the average distance for LD to breakdown in Thoroughbred
horses [26,27,29]. Although LD decay varies between horse breeds [28], using the more conservative
Thoroughbred estimate gave a higher likelihood that we would capture all variants within LD (r2 > 0.3)
of the marker SNPs in our cohorts. From the fixed boundaries, 1511 and 963 positional candidate genes
were identified in the Welsh ponies and Morgan horses, respectively.

Estimates of LD decay are based on the average r2 across chromosomal segments and do not
represent specific regions of the genome [26,28]. Newer variants or variants within regions under
selection will have longer LD blocks whereas older/ancestral variants will have shorter LD blocks due
to longer periods of recombination. Therefore, using a fixed region has the potential to exclude causal
variants or to include candidate genes that are not in LD with the marker SNPs. To more precisely
call positional candidate genes for GWA regions, we calculated LD using the squared correlation
coefficients between SNPs. SNPs within LD were defined as an r2 > 0.3 [28]. Boundaries were identified
based on gaps of LD, i.e. where all SNPs dropped below 0.3 for a span of 100 kb 5′ (defined the start of
the LD block) and 3’ (defined the end of LD block) to the widest peak of LD.

Across all Welsh pony cohorts, 70% of the boundaries identified by LD were smaller than those
identified by the fixed-size region, with an average difference of 645.4 kb (range of 11.4 kb to 1.7 Mb);
whereas, in the Morgan horses, 57% of the LD boundaries were smaller than that of the fixed regions,
with an average difference of 566.6 kb (range of 51.5 kb to 2.2 Mb). The large percentage of fixed-size
boundaries, likely overestimating the region size, is not surprising given that the fixed-size regions
were based on data from Thoroughbreds which have one of the highest inbreeding coefficients and
LD amongst horse breeds [24,28]. Ponies and Morgan horses were identified to have LD similar to
Quarter Horses [28], a breed with a high level of genetic diversity. For the remaining regions, the LD
boundaries were an average of 1.9 Mb longer (range of 22.8 kb to 9.3 Mb) in the Welsh ponies and
1.4 Mb longer (range of 12.6 kb to 8.2 Mb) in the Morgan horses then defined by the fixed-size region
and likely represent regions under selection.

Results of the functional enrichment analysis of the prioritized regions based on LD provided
support for our approach. In the Welsh ponies, nine traits were enriched for pathways associated
with inflammation or fatty acid metabolism. This is not surprising given that chronic, low-grade
inflammation and dyslipidemia are common components of EMS. The latter results are also consistent
with human GWA studies of MetS which have consistently identified a large number of variants related
to lipid metabolism [43–45]. In addition, the GO term thiosulfate sulfurtransferase (Tst, Rhodanese)
activity was enriched in positional genes identified for plasma NEFA concentrations. Tst encodes a
mitochondrial enzyme which is involved in mitochondrial energetics and removal of reactivate-oxygen
species and was identified as a candidate obesity-resistant gene in the polygenic Lean mouse model [46].
In this study, the authors evaluated Tst mRNA concentrations in multiple cross-ethnic human
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populations and found that they were higher in lean individuals compared with obese individuals or
individuals with type 2 diabetes and negatively correlated with body mass index [46].

In the Morgan horses, the KEEG terms for PI3K/AKT and Wnt signaling pathways were functionally
enriched across several traits. Both of these pathways have significant roles in metabolism, with the
PI3K/AKT signaling pathway being essential for glucose homeostasis and lipid metabolism [47,48],
and the Wnt signaling pathway regulating body mass, glucose metabolism, de novo lipogenesis,
and low-density lipoprotein clearance [49]. Further, the GO term arylesterase (ARE) activity was
enriched for plasma adiponectin concentrations. ARE activity has been linked to the paraoxonase-1
gene which has roles in lipoprotein oxidative damage prevention and being protective against metabolic
syndrome [50,51]. Lastly, serum leptin concentrations were enriched for the GO term G-protein-coupled
receptor activity, which have been found to be directly involved in pancreatic β-cell destruction and
insulin resistance and remain potential targets for drug therapy for metabolic syndrome and type II
diabetes [52].

5. Conclusions

In conclusion, the results of these data provide strong evidence that EMS is a complex, polygenic
syndrome with dozens of risk alleles contributing to the phenotype. Prioritization of the hundreds of
regions identified on the GWA of 12 individual traits led to the identification of thousands of positional
candidate genes which contained protein-coding genes which were functionally enriched for pathways
associated with glucose metabolism, lipid metabolism and inflammation. However, further work is
required to narrow down the candidate gene pool. Nonetheless, these data were an important first step
in the identification of the genetic risk alleles associated with EMS. In addition, this data concludes that
a single variant genetic test will not provide enough information to accurately predict an individual’s
risk for EMS, and a future DNA test will require a panel of genetic variants including both shared and
breed specific variants.
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Appendix A

Appendix A.1. Welsh Pony Population Structure

The Welsh Pony and Cob Society (http://wpcs.uk.com) registers Welsh ponies into six sections
based on pedigree, withers height and conformation as follows: section A (sire and dam must both be
section A, and the pony can be up to 50 inches for withers height), section B (either sire and dam are
both section B or one parent can be a section A, and the pony can be up to 58 inches for withers height),
section C (at least one parent must be C or D and the pony can be up to 54 inches for withers height),
section D (at least one parent must be C or D and the pony must be over 54 inches for withers height),
section H (either the sire or dam is a registered Welsh pony, and there are no height restrictions) and
section P (either sire or dam is at least 50% Welsh pony with no height restrictions).
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Appendix A.2. GWA Results

For the Welsh ponies, GWA across all 12 traits resulted in 130 regions where at least one SNP
exceeded the suggestive threshold, of which 33 were identified as ROI (entire Welsh pony cohort;
n = 264), 139 regions where at least one SNP exceeded the suggestive threshold, of which 23 were
identified as ROI (section A, B, C, and D Welsh ponies; n = 238), and 82 regions where at least one SNP
exceeded the suggestive threshold, of which 13 were identified as ROI (section A and B Welsh ponies;
n = 220) (Table S1).

Across all 12 traits, 38 regions were shared with two of the Welsh pony GWA cohorts and 5
regions were shared with all three of them. Fifteen of the 43 shared regions contained at least one
GWA where the region met the criteria to be considered an ROI (Tables S2 and S3). The 43 shared
regions represented 18.9%, 26.6%, and 30.5% of the total regions identified in the full cohort, the section
A, B, C and D Welsh ponies, and the section A and B Welsh ponies, respectively. Eight regions had
an ROI identified in the full cohort (24.2% of the total ROI for this cohort), six regions had an ROI
identified in the section A, B, C and D ponies (26.1% of the total ROI for this cohort), and six regions
had an ROI identified in the section A and B ponies (46.2% of the total ROI identified in this cohort).
For example, analysis of ACTH identified five shared regions. The region on equine chromosome
(ECA) 5 was shared across all three cohorts but was only identified as an ROI in the GWA of the full
cohort (Figure A2 and Table S3).

Appendix A.3. Prioritization of GWA Results and Identification of Positional Candidate Genes Based on
Fixed-Size Regions in Welsh Ponies

For the full Welsh pony cohort, 78 of the 130 regions were eliminated from further prioritization,
35 were categorized as high priority, 12 were categorized as medium priority and five were categorized
as low priority (Table S4). For the section A, B, C and D Welsh ponies, 94 of the 139 regions were
eliminated from further prioritization, 19 were categorized as high priority, 19 were categorized as

http://wpcs.uk.com
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medium priority and eight were categorized as low priority (Table S5). For the section A and B Welsh
ponies, 57 of the 82 regions identified on GWA were eliminated from further prioritization, nine were
categorized as high priority, 10 were categorized as medium priority and six were categorized as low
priority (Table S6).

Appendix A.4. Prioritization of LD-Bound GWA Regions, Identification of Positional Candidate Genes, and
Network Analysis in Welsh Ponies

The LD boundaries for the 130 regions identified on GWA for the full Welsh pony cohort, the
139 regions identified on GWA for the Section A, B, C and D Welsh ponies, and the 82 regions
identified on GWA for the Section A and B Welsh ponies are presented in Tables S10–S12, respectively.
Our prioritization removed 61% of the 130 regions for the full Welsh pony cohort, 66% of the 139 regions
in the section A, B, C and D Welsh ponies, 63% of the 82 regions in the section A and B Welsh ponies.Genes 2019, 10, x FOR PEER REVIEW  17 of 23 
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Figure A2. Manhattan plots of the genome-wide association results for ACTH in (A) full Welsh
pony cohort, (B) the section A, B, C and D Welsh ponies, and (C) the section A and B Welsh ponies.
The equine chromosomes (ECA) are plotted on the x-axis and the −log10 of the p-value is plotted on
the y-axis. The blue line indicates the suggestive threshold (1.0 × 10−05) and the red line represents the
genome-wide significant threshold (5.9 × 10−08). In all three GWA, the same region on ECA5 exceeds
the suggestive threshold but is only identified as an ROI in the full cohort (A).
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Appendix A.5. Shared Regions Across Welsh Ponies and Morgan Horses

Identification of the shared regions between the Morgan horses and at least one Welsh pony
cohort from the boundaries of the fixed region obtained from the GWA results identified one shared
region for laminitis status (all ponies), one shared region for ACTH (Morgan horses with section A, B,
C, and D ponies), and one shared region for INS-OST (for Morgan horses with both the section A, B, C,
and D and section A and B ponies; Figure 2). The boundaries defined by the LD-region identified the
above shared regions as well as an additional shared region for GH on ECA 22 between the Morgan
horses and the full Welsh pony cohort.

Appendix B

Appendix B.1. Description of the Mixed Liner Model Used for Genome-Wide Association Analyses

Within breed GWA were performed from the imputed SNP genotype data using a custom code
for an improved mixed linear regression analysis [9]. This algorithm utilizes a three-step process,
which combines a Bayesian Sparse Linear Mixed Model (BSLMM) [18] available in the software
program Genome-Wide Efficient Mixed Model Association (GEMMA) [19] and a linear mixed model
implemented in FaST-LMM [20]. In step one, the genome is divided by chromosome and SNPs are
placed into 500 kb bins. Based on results from BSLMM, the SNP with the highest model frequency and
the two adjacent SNPs were chosen to represent the corresponding bin. In step two, a likelihood ratio
test was performed to determine if inclusion of the top ranked bin as a random effect will improve the
null model (model with sex and age as fixed effects and farm as a random effect). If the model was
improved, the alternative model became the null model and the next highest-ranked bin was tested.
If the model was not improved, the bin was discarded, and the next highest-ranked bin was tested
against the null hypothesis. After all bins were evaluated, SNPs which improved the model were
utilized to create the select SNP genetic relationship matrix (GRM). In step three, all imputed SNPs
were tested for an effect on the trait using FastLMM with the inclusion of the select SNP GRM in place
of the standard all-SNP GRM. For the GWA, the tested SNP, and SNPs within 1Mb of the tested SNP,
were removed from the select SNP GRM to avoid proximal contamination.

The number of iterations for the Markov chain Monte Carlo (MCMC) implemented in BSLMM has
not been previously assessed [9,17], and our initial results with the default of 550 thousand (k) iterations
with 10 k burn-in iterations provided inconsistent results across seeds. Therefore, we took appropriate
steps to determine the number of iterations for the MCMC to converge and provide consistent results
across seeds. First, to assess the concordance of SNPs identified by BSLMM, we performed this
step using 10 million (M) iterations with 100 K burn-in iterations, which was repeated across ten
different seeds. SNPs with a beta value greater than zero (i.e. the posterior mean for SNPs which
were estimated to have a large effect on the outcome variable) were extracted from the dataset for
each seed. For this subset of SNPs, the intersect between seeds was determined, and correlations
between gamma values (proportion of iterations that the SNP was estimated to have a large effect)
were calculated. For 10 M iterations, the total number of SNPs with a beta value greater than zero
ranged from 486,937 to 497,207 SNPs. Approximately 50% of the SNPs were shared between two
seeds, ~13% were shared between four seeds, and ~3% were shared across all ten seeds. Pearson’s
correlation coefficient between gamma values were minimal at <0.01. Thus, this process was repeated
using 20 M iterations (200 K burn-in iterations) and then increasing in 10 M and 100 k increments up
to 100 M iterations (1 M burn-in iterations). Although SNP concordance improved as the number of
iterations increased, the gain plateaued after 50 M iterations where all SNPs had a beta value greater
than zero. In addition, the Pearson’s correlation coefficient for gamma values was still poor at 0.20 at
100 M iteration. Computational time was extensive at 30 and 60 days to complete the 50 M and 100 M
iterations, respectively, utilizing six processors per node and running seeds in parallel [53].

Previous studies have averaged the values of MCMC estimates across repeated chains [54]. For this
analysis the goal was to maximize sensitivity; therefore, using data from the 10 M iterations, the max
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gamma value across all ten seeds was chosen to represent each SNP in which beta was greater than zero.
These values were then used to choose the most influential SNP per 500 kb bins (step 1). To assess the
repeatability of these results, this process was repeated using 10 different seeds at 10M iterations and
20 M iterations. Although differences were present, most regions were shared across all three results
(Table A1). Thus, to maximize computational efficiency and sensitivity, we used the max gamma
value across 10 seeds obtained from 10 M iterations (100 K burn-in) and prioritized regions of interest
(see Section 2.5. Prioritization of GWA Regions and Identification of Positional Candidate Genes).

Appendix B.2. Fixed and Random Effects

Age and sex were included in our model as fixed effects based on epidemiological studies
which identified both as risk factors for EMS [55,56]. Season [57,58], diet [3,59], exercise [59,60],
and endocrine-disrupting chemicals [61] have also been identified as environmental risk factors
for EMS, but a large percentage of environmental variation has yet to be explained [9]. Further,
several studies have produced conflicting findings as to the effect of season on EMS biochemical
measurements [62,63], as well as the long-term effect of high non-structural carbohydrate diets on
insulin sensitivity [64,65]. Therefore, we included farm as a random variable to account for both known
and unknown environmental risk factors, as well as non-independent sampling of our data (each farm
was required to have one control and one horse with EMS to be included in the study).

Table A1. Repeatability across results for the Bayesian sparse linear mixed model (BSLMM).

10 M Iterations
Seeds 1–10

10 M Iterations
Seeds 11–20

20 M Iterations
Seeds 1–10

30 M Iterations
Seeds 1–10

CHR Sugg Sign Sugg Sign Sugg Sign Sugg Sign

1 2 0 NA NA NA NA NA NA

1 1 0 NA NA 1 0 4 0
2 38 27 5 1 32 2 5 1
3 NA NA NA NA 1 NA
4 54 4 25 2 3 0 5 2
6 68 4 8 1 11 2 11 2
7 14 0 10 0 5 0 8 0

8 6 0 NA NA NA NA NA NA

9 NA NA 2 0 NA NA NA NA

14 NA NA NA NA 1 0 NA NA
15 6 1 5 1 5 2 12 1
16 NA NA NA NA 2 0 NA NA

18 NA NA 1 0 NA NA NA NA

19 NA NA NA NA NA NA 3 0

20 NA NA NA NA NA NA 1 0

22 NA NA NA NA 4 0 NA NA

23 NA NA 11 0 NA NA NA NA

24 NA NA 4 1 16 0 NA NA

Repeatability across results for the Bayesian sparse linear mixed model (BSLMM) using the max gamma values from
10 million (M) iterations with seeds 1–10, 10 M iterations with seeds 11–20, 20 M iterations with seeds 1–10, and 30 M
iterations with seeds 1–10 for adiponectin concentrations in the Morgan horses. Regions which are highlighted in
yellow indicate those which would have been identified as a region of interest (contained a minimum of five SNPs
exceeding the suggestive threshold, with at least one SNP exceeding the threshold for genome wide significance).
Abbreviations: Sugg (total number of SNPs which exceeded the suggested threshold for genome-wide significance),
Sign (total number of SNPs which exceed the threshold for genome-wide significance).
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