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Abstract: For cancer diagnosis, many DNA methylation markers have been identified. However,
few studies have tried to identify DNA methylation markers to diagnose diverse cancer types
simultaneously, i.e., pan-cancers. In this study, we tried to identify DNA methylation markers to
differentiate cancer samples from the respective normal samples in pan-cancers. We collected whole
genome methylation data of 27 cancer types containing 10,140 cancer samples and 3386 normal
samples, and divided all samples into five data sets, including one training data set, one validation
data set and three test data sets. We applied machine learning to identify DNA methylation markers,
and specifically, we constructed diagnostic prediction models by deep learning. We identified two
categories of markers: 12 CpG markers and 13 promoter markers. Three of 12 CpG markers and four
of 13 promoter markers locate at cancer-related genes. With the CpG markers, our model achieved an
average sensitivity and specificity on test data sets as 92.8% and 90.1%, respectively. For promoter
markers, the average sensitivity and specificity on test data sets were 89.8% and 81.1%, respectively.
Furthermore, in cell-free DNA methylation data of 163 prostate cancer samples, the CpG markers
achieved the sensitivity as 100%, and the promoter markers achieved 92%. For both marker types,
the specificity of normal whole blood was 100%. To conclude, we identified methylation markers to
diagnose pan-cancers, which might be applied to liquid biopsy of cancers.

Keywords: biomarker; methylation; pan-cancer; deep learning; CpG; promoter

1. Introduction

DNA methylation, as an important epigenetic modification, is associated with gene silencing,
and the primary methylated sequence in vertebrates is CpG [1,2]. CpG methylations located at
promoter silence the promoter activity, thus, they are negative correlated with the gene expression [3,4].
Furthermore, promoter methylations play major roles in cancers by suppressing transcription of some
vital genes, such as tumor suppressor genes [5,6].

Since DNA methylation plays an important role in cancers, many studies have utilized DNA
methylated sequences as biomarkers for cancer detections, including CpG markers and promoter
markers. Specifically, irregular methylations in promoters of cancer-related genes could serve as
biomarkers for early cancer diagnosis and prognosis [7]. For example, adenomatous polyposis coli
(APC) promoter methylation could be a biomarker for early diagnosis of prostate cancer [8], and
O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation might be a predictive
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biomarker for cancer prognosis [9]. For CpG markers, ten diagnosis markers and eight prognosis
markers in circulating tumor DNA of hepatocellular carcinoma have been screened [10].

Although quite a few DNA methylation biomarkers have been identified, and some of them
have even been commercialized [11], one of the common limits is that these markers can only apply
to one or few cancer types. Studying the similarities and differences among diverse cancer types is
known as pan-cancer analysis, which has revealed that some different cancer types could have similar
methylation patterns, and biomarkers that cross boundaries among diverse cancer types are expected
to be identified [12,13]. Although some pan-cancer differentially methylated CpG sites have been
identified [14,15], effective and practical pan-cancer methylation biomarkers remain to be identified.
In this study, we focused on identifying DNA methylation biomarkers, including CpG markers and
promoter markers, for diagnosing pan-cancers. We collected the whole genome methylation data of
27 cancer types containing 10,140 cancer samples and 3386 normal samples from TCGA (The Cancer
Genome Atlas) [12] and GEO (Gene Expression Omnibus) [16]. Then, we used machine learning to
analyze and identify cancer-special CpG markers and promoter markers. Specifically, we constructed
diagnostic prediction models by deep learning. Finally, we identified 12 CpG markers and 13 promoter
markers, which can be used to predict pan-cancer precisely.

2. Materials and Methods

2.1. Datasets

We totally collected whole genome methylation data of 10,140 cancer samples and 3386 normal
samples from TCGA and GEO. Specifically, methylation data of 4840 cancer samples and 1742 matched
normal samples (matched normal sample: healthy tissue adjacent to tumor from the same patient) were
divided randomly into a training data set (named as Training data set), a validation data set (named as
Validation data set), and a test data set (named as Test data set 1) (Table S1). To make markers more
adaptive in virtual normal samples, we added 727 cancer samples and 836 normal samples (most of
them were virtual normal samples) into the Training data set (virtual normal sample: healthy tissue
from healthy, unrelated individuals). Therefore, the Training data set contained 4827 cancer samples
and 2716 normal samples (Tables S2 and S3). Both Validation data set and Test data set 1 contained
370 cancer samples and 201 matched normal samples from eight cancer types (Tables S1 and S2);
The other two test data sets are named as Test data set 2 and Test data set 3. Test data set 2 contained
3041 cancer samples and 268 matched normal samples from 15 cancer types (Table S4); Test data set
3 contained 1532 cancer samples and 540 virtual normal samples from five cancer types (Table S5).
The methylation data of each sample came from Illumina’s Infinium HumanMethylation450 BeadChip,
which contains more than 450,000 methylation sites. The details of all samples are summarized in
Tables S2–S6. We calculated the average methylation beta value of all CpG sites located in the promoter
of the same gene as methylation beta value of the promoter. Specifically, upstream 1500 bp of TSS
(Transcription start site) to downstream 500 bp of TSS are defined as a promoter [17,18]. We removed
CpG sites and promoters where at least one sample had missed value to guarantee more strict data
sets. Finally, 139,422 of 485,000 CpG sites and 15,316 of 24,062 promoters were left for the following
analysis. Therefore, all samples had 139,422 common CpG sites and 15,316 common promoters. Data
containing CpG sites and data containing promoters were analyzed parallelly in the following steps.

2.2. Identifying Markers

For mining markers, first we used the ‘moderated t-statistics’ method [19] to conduct the
prescreening procedure to get the methylation sites with the most differential methylation
expression. This method utilized Empirical Bayes for shrinking the variance and Benjamini–Hochberg
procedure [20] to adjust p values. We sorted all candidate markers by the adjusted p values from low to
high (lower adjusted p value means that the differential rates of methylation between cancer samples
and normal samples are larger), and we took the top 2000 markers as the next candidate markers.
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Next, we used two strategies to obtain fewer markers. One machine learning strategy is LASSO
(least absolute shrinkage and selection operator) [21] under a binomial distribution. We randomly
subsampled 75 percent of the samples every time and conducted LASSO procedure to identify markers
with the biggest methylation beta value difference. After 1000 times sampling, we selected the markers
that were chosen by LASSO at least 750 times. In this process, we did not choose the minimum lambda
but chose the “1-se” lambda which is one standard error larger than the minimum to make the model
simpler. Besides, the minimization goal we chose was ‘auc’ to make our model more robust. 10-fold
cross-validation was applied each time. Another machine learning strategy is a random forest. The tree
number to use for the first forest was 5000 and for all additional forests was 2000. The algorithm we
applied used OOB (Out-of-bag) error as minimization criterion, and removed those least important
variables from the random forest [22]. At each iteration, we set the dropping fraction of variables at 0.3.
Four main R packages (‘limma’, ‘glmnet’, ‘doParallel’, and ‘varSelRF’) were implemented in R version
3.5.0 to conduct these three machine learning strategies.

2.3. Constructing Diagnostic Prediction Models

To construct diagnostic prediction models, we constructed two multi-layer feedforward neural
networks, both of which contained one input layer, multiple hidden layers and one output layer. The
source code we used for prediction is publicly available at https://github.com/BiaoLiu2017/Cancer-
methylation. The input layer was namely the input data matrix (data matrices only containing marker
sites), and the output layer had just one neural unit, whose activation function was sigmoid activation
function while the activation function of hidden units was ReLU. For each hidden layer, the number of
hidden units was the same. The cost function of the neural network was standard logistic regression
cost function. The optimization algorithm we deployed in the network was Adam optimization
algorithm, and the exponential decay rate for the first moment estimates was 0.9, while the second
was 0.999. The learning rate decay strategy was an exponential decay, which means the learning rate
would multiple a decay rate after specified epochs. To prevent overfitting, we carried out a batch
normalization after activation function of every hidden layer. Another strategy to prevent overfitting is
early stopping, and we chose a befitting training point to stop to make the model more suitable for the
Validation data set. We conducted a random search [23] for hyper-parameter optimization. Table S7
shows the hyper-parameters we tuned in the process of training the neural network. In other words,
we adopted the strategy that randomly initializes these hyper-parameters in the range as Table S7.
We parallelly trained 1000 neural networks, and finally chose the hyper-parameters combination that
had the best performance for the Validation data set. The final hyper-parameters combination is the
best scheme as Table S7 shows. We deployed the best hyper-parameters into the final deep learning
models and trained them by feeding the Training data set. We used the Validation data set to justify
whether the model was overfitting. After we trained two neural network models whose performance
were good enough in the Validation data set, we tested our diagnostic prediction models in Test data
set 1. Furthermore, to evaluate the performance of our model unbiasedly, we tested our prediction
models in the other two test data sets: Test data set 2 and Test data set 3. What needs to be emphasized
is that all three test data sets were tested just once. The reason we divided samples in this way was
to evaluate whether our model could predict untrained cancers. Before being fed into deep learning
models, all data were subjected to standardization to fit a standardized normal distribution; namely the
average was 0, and the standard deviation was 1. The deep neural network models that we deployed
were based on the deep learning framework Tensorflow-GPU version 1.4.0 [24]. Logistic regression
required scikit-learn version 0.19.1. We obtained SHAP (SHapley Additive exPlanation) values [25]
by executing package ‘shap’ to interpret model predictions. To evaluate the robustness of markers
we selected, random sampling of 100 times were carried out. Each time, 6000 samples were random
selected from all samples. Each data set was requested to have the same ratio of cancer and normal as
that of the original data set. Additionally, <30% sample overlap among all 100 data sets was required
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too. Each data set was divided into one training data set and one test data set with same ratio of cancer
and normal.

3. Results

3.1. Identifying Cancer-Specific Methylation Markers by Machine Learning

We utilized the Training data set to analyze and identify methylation markers by three machine
learning methods. Figure 1 shows the procedure of identifying methylation marker. We organized
the Training data set into two data matrices: CpG methylation matrix and promoter matrix. The
CpG methylation matrix consisted of beta values of 139,422 CpG methylation sites, and promoter
matrix consisted of beta values of 15,316 promoters. These two data matrices were utilized to identity
the CpG markers and the promoter markers. First, a prescreening procedure was conducted by
‘moderated t-statistics’, to identify candidate markers with the most differential methylation beta value
between cancer samples and normal samples. After that, we obtained the top 2000 markers as the
candidate markers, including 2000 CpG markers and 2000 promoter markers. Next, we used two
strategies to reduce the number of markers parallelly. One machine learning strategy was LASSO
(least absolute shrinkage and selection operator) under a binomial distribution. After 1000 times
sampling, we selected the markers that were chosen by LASSO at least 750 times. Eventually, by
LASSO we got 63 CpG markers and 68 promoter markers. Another machine learning strategy was
random forest, and we got 115 CpG markers and 57 promoter markers. We took 12 overlapping
CpG markers (Table 1) and 13 overlapping promoter markers (Table 2) between these two machine
learning methods as final markers. In 12 CpG markers, reference genes of three markers involve
cancer-related pathway. SOX14 (cg04374393 locates at the promoter of SOX14 gene) involves molecular
mechanisms of cancer; TP73 (reference gene of cg17804348) involves p53 signaling pathway; SND1
(cg26642667 locates at the promoter of SND1 gene) involves viral carcinogenesis. In 13 promoter
markers, associated genes of four markers involve cancer-related pathway. ACVRL1 involves TGF-beta
signaling pathway; AURKB involves regulation of TP53 activity; RHOT2 involves mitophagy; WT1
involves transcriptional misregulation in cancer.

Figure 1. Workflow chart of identifying markers by machine learning. (a) Workflow of CpG methylation
data. (b) Workflow of promoter methylation data. CpG methylation data contained 139,422 CpG
sites, and promoter methylation data contained 15,316 promoters. We utilized the Training data set
containing 4827 cancer samples and 2176 normal samples to identify markers applying three machine
learning strategies (Moderated t-statistics, LASSO, and Random-forest) and obtained 12 markers for
the CpG methylation data, and 13 markers for the promoter methylation data. Then, we trained two
deep learning models for CpG markers and promoter markers respectively.
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Table 1. Characteristics of 12 CpG markers in the Training data set.

Markers Ref Gene Coefficients SE z Value p Value

4.28017 0.12365 34.614 <0.001
cg01397449 EXOC3L1 −1.26195 0.0828 −15.241 <0.001
cg04374393 SOX14 0.44095 0.10759 4.098 <0.001
cg06575035 PCDHGA1 1.0089 0.09321 10.823 <0.001
cg07333191 Chr4:13 0.5435 0.11389 4.772 <0.001
cg16389386 Chr7:154 −0.38554 0.06408 −6.016 <0.001
cg16508627 HS3ST2 −0.54732 0.11407 −4.798 <0.001
cg16926102 Chr10:23 0.8946 0.11951 7.486 <0.001
cg17804348 TP73 1.09724 0.06442 17.033 <0.001
cg19710323 Chr12:34 −0.8628 0.10259 −8.41 <0.001
cg22620090 Chr6:104 0.36339 0.07759 4.683 <0.001
cg26642667 SND1 −0.85746 0.04911 −17.461 <0.001
cg26733975 RP11–760D2.1 −0.97163 0.10248 −9.481 <0.001

Note: SE indicates standard errors of coefficients; z value indicates Wald z-statistic value.

Table 2. Characteristics of 13 promoter markers in the Training data set.

Markers Coefficients SE z Value p Value

2.6472 0.5316 4.979 <0.001
ACVRL1 5.5848 0.7523 7.423 <0.001
AURKB −3.9969 1.2242 −3.265 0.001

GRASPOS −1.0094 0.3599 −2.805 0.005
MC3R −12.2853 0.858 −14.319 <0.001

OR10H2 −6.8254 0.6101 −11.188 <0.001
OTX2-AS1 3.664 0.6136 5.972 <0.001

PCDHGA12 0.6188 0.5294 1.169 0.242
PCDHGA5 1.8653 0.704 2.649 0.008
PCDHGA6 1.0961 0.6552 1.673 0.094

PHC3 −12.865 0.9678 −13.293 <0.001
RHOT2 11.3143 0.8959 12.628 <0.001
TOX2 3.039 0.8061 3.77 <0.001
WT1 4.5058 0.4796 9.394 <0.001

Note: SE indicates standard errors of coefficients; z value indicates Wald z-statistic value.

3.2. Constructing Diagnostic Prediction Models by Deep Learning

The markers obtained by machine learning were used to classify and predict cancer and normal
samples by deep learning method. We constructed two multi-layer feedforward neural networks
based on the deep learning framework Tensorflow and fed the Training data set into these two deep
neural network models. We utilized a random search for hyper-parameter optimization, and Table
S7 shows the best hyper-parameter combination. These two deep learning models were deployed
with the best hyper-parameters and trained again. Figure S1 shows the training curves. By early
stopping strategy, we chose a befitting training point to stop, to make the model more suitable for
the Validation data set. After obtaining the best parameters, we tested our deep learning models in
the three test data sets (Test data set 1, Test data set 2, and Test data set 3). Figure 2 shows the ROC
(Receiver operating characteristic) curves of both two marker types. AUC (Area under the Curve of
ROC) of Test data set 1 is 0.989 for CpG markers, and 0.985 for promoter markers. Figure 3 shows the
results of unsupervised hierarchical clustering for Training data set, Validation data set, and Test data
set 1, while Figure 4 shows the results for the other two test data sets (Test data set 2 and Test data
set 3). These results indicate that cancer samples can be distinguished markedly from normal samples
by both two marker types. Table 3 shows a summary of all prediction results for both CpG markers
and promoter markers (More details see Tables 4–7). Figure 5 shows the distribution of predict values
in all samples. For CpG markers, average sensitivity and specificity of three test data sets were 92.8%
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and 90.1% respectively (Table 3). For promoter markers, average sensitivity and specificity of three test
data sets were 89.8% and 81.1% respectively (Table 3). Although sensitivity and specificity in most
cancer types were higher than 0.7 for both two marker types, specificity of esophagus and stomach
cancer for promoter markers were lower than 0.6, and the sensitivity of oral, thyroid, and nasopharynx
cancer for promoter markers were lower than 0.6 (Tables 4–7). Therefore, all 27 cancer types could be
diagnosed precisely by CpG markers, while only twenty-two of 27 cancer types could be diagnosed
precisely by promoter markers. Both two categories of markers predicted the same results in each of
88.4% samples (i.e., 5262 samples) of three test data sets (i.e., 5952 samples), and average sensitivity
and specificity of these 5262 samples were promoted to 96.4% and 91.6%. Therefore, if the prediction
result of one sample is same between CpG markers and promoter markers, the prediction will be more
reliable. Average sensitivity and specificity in Test data set 1 were much higher than Test data set 2
and Test data set 3 for both two categories of markers, which means the models we trained are more
adapted to eight trained tissue types than the other 20 untrained tissue types. Furthermore, for CpG
markers, sensitivity and specificity of the eight cancers (breast, kidney, liver, lung, bile duct, lymph
nodes, cervix, and skin cancer) were both higher than 95% (Tables 4–7). Additionally, for promoter
markers, sensitivity and specificity of nine cancers (breast, colorectal, liver, lung, adrenal gland, bile
duct, soft tissue, cervix, and skin cancer) were both higher than 95% (Tables 4–7). Conclusively, the
prediction results indicate that our deep learning models can correctly classify cancer samples and
normal samples in pan-cancers.

Figure 2. ROC curves of the three data sets. (a) ROC curves of CpG methylation data. (b) ROC curves
of promoter methylation data. ROC curves: Receiver operating characteristic curves.
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Figure 3. Unsupervised hierarchical clustering of the three data sets. (a,c,e) come from 12 CpG markers
and (b,d,f) come from 13 promoter markers. Methylation beta values range from 0 to 1.

Figure 4. Unsupervised hierarchical clustering of Test data set 2 and Test data set 3. (a,c) come from 12
CpG markers and (b,d) come from 13 promoter markers. Methylation beta values range from 0 to 1.
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Table 3. The summary of all prediction results.

Marker Data Set Total
Cancer Normal

Total
Accuracy

MCCCancer
Total

Predict
Cancer

Predict
Normal Sensitivity Normal

Total
Predict
Cancer

Predict
Normal Specificity

CpG

Training 7003 4827 4734 93 0.981 2176 11 2165 0.995 0.985 0.966
Validation 571 370 352 18 0.951 201 10 191 0.95 0.951 0.894
Test set 1 571 370 360 10 0.973 201 9 192 0.955 0.967 0.927
Test set 2 3309 3041 2795 246 0.919 268 39 229 0.854 0.914 0.602
Test set 3 2072 1532 1433 99 0.935 540 52 488 0.904 0.927 0.817

All three test sets 5952 4943 4588 355 0.928 1009 100 909 0.901 0.924 0.761

Promoter

Training 7003 4827 4676 151 0.969 2176 3 2173 0.999 0.978 0.951
Validation 571 370 354 16 0.957 201 5 196 0.975 0.963 0.921
Test set 1 571 370 353 17 0.954 201 8 193 0.96 0.956 0.906
Test set 2 3309 3041 2641 400 0.868 268 28 240 0.9 0.871 0.528
Test set 3 2072 1532 1443 89 0.942 540 155 385 0.713 0.882 0.684

All three test sets 5952 4943 4437 506 0.898 1009 191 818 0.811 0.883 0.639

Note: ‘Predict cancer’ or ‘Predict normal’ indicates samples predicted as cancer or normal. Training, Validation, Test set 1, Test set 2 and Test set 3 respectively indicate Training data set,
Validation data set, Test data set 1, Test data set 2 and Test data set 3. MCC indicates Matthews Correlation Coefficient [25].
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Table 4. The prediction results of three data sets for 12 CpG markers.

Data Set Tissue
Types

Total
Cancer Normal

Total
Accuracy

MCCCancer
Total

Predict
Cancer

Predict
Normal Sensitivity Normal

Total
Predict
Cancer

Predict
Normal Specificity

Training

Breast 1122 1006 993 13 0.987 116 2 114 0.983 0.987 0.932
Colorectal 390 371 367 4 0.989 19 0 19 1 0.99 0.904

Kidney 794 593 573 20 0.966 201 0 201 1 0.975 0.937
Leukocyte 576 0 0 0 - 576 1 575 0.998 0.998 0

Liver 442 366 355 11 0.97 76 0 76 1 0.975 0.92
Lung 1155 857 839 18 0.979 298 2 296 0.993 0.983 0.956

Prostate 529 491 476 15 0.969 38 0 38 1 0.972 0.834
Uterus 432 416 415 1 0.998 16 0 16 1 0.998 0.969

Validation

Breast 85 60 60 0 1 25 1 24 0.96 0.988 0.972
Colorectal 56 40 40 0 1 16 2 14 0.875 0.964 0.913

Kidney 85 60 56 4 0.933 25 0 25 1 0.953 0.897
Leukocyte 40 0 0 0 - 40 0 40 1 1 0

Liver 60 40 40 0 1 20 0 20 1 1 1
Lung 120 80 73 7 0.912 40 1 39 0.975 0.933 0.86

Prostate 70 50 44 6 0.88 20 5 15 0.75 0.843 0.621
Uterus 55 40 39 1 0.975 15 1 14 0.933 0.964 0.908

Test 1

Breast 85 60 58 2 0.967 25 1 24 0.96 0.965 0.916
Colorectal 56 40 40 0 1 16 1 15 0.938 0.982 0.956

Kidney 85 60 58 2 0.967 25 0 25 1 0.976 0.946
Leukocyte 40 0 0 0 - 40 0 40 1 1 0

Liver 60 40 38 2 0.95 20 1 19 0.95 0.95 0.889
Lung 120 80 80 0 1 40 0 40 1 1 1

Prostate 70 50 46 4 0.92 20 5 15 0.75 0.871 0.681
Uterus 55 40 40 0 1 15 1 14 0.933 0.982 0.954
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Table 5. The prediction results of three data sets for 13 promoter markers.

Data Set Tissue
Types

Total
Cancer Normal

Total
Accuracy

MCCCancer
Total

Predict
Cancer

Predict
Normal Sensitivity Normal

Total
Predict
Cancer

Predict
Normal Specificity

Training

Breast 1122 1006 984 22 0.978 116 1 115 0.991 0.98 0.902
Colorectal 390 371 370 1 0.997 19 0 19 1 0.997 0.973

Kidney 794 593 545 48 0.919 201 0 201 1 0.94 0.861
Leukocyte 576 0 0 0 - 576 0 576 1 1 0

Liver 442 366 354 12 0.967 76 0 76 1 0.973 0.914
Lung 1155 857 829 28 0.967 298 0 298 1 0.976 0.94

Prostate 529 491 470 21 0.957 38 1 37 0.974 0.958 0.769
Uterus 432 416 416 0 1 16 1 15 0.938 0.998 0.967

Validation

Breast 85 60 59 1 0.983 25 0 25 1 0.988 0.972
Colorectal 56 40 40 0 1 16 0 16 1 1 1

Kidney 85 60 57 3 0.95 25 0 25 1 0.965 0.921
Leukocyte 40 0 0 0 - 40 0 40 1 1 0

Liver 60 40 40 0 1 20 0 20 1 1 1
Lung 120 80 70 10 0.875 40 0 40 1 0.917 0.837

Prostate 70 50 48 2 0.96 20 3 17 0.85 0.929 0.823
Uterus 55 40 40 0 1 15 2 13 0.867 0.964 0.909

Test set 1

Breast 85 60 57 3 0.95 25 0 25 1 0.965 0.921
Colorectal 56 40 40 0 1 16 0 16 1 1 1

Kidney 85 60 56 4 0.933 25 0 25 1 0.953 0.897
Leukocyte 40 0 0 0 - 40 0 40 1 1 0

Liver 60 40 38 2 0.95 20 1 19 0.95 0.95 0.889
Lung 120 80 77 3 0.963 40 0 40 1 0.975 0.946

Prostate 70 50 45 5 0.9 20 5 15 0.75 0.857 0.65
Uterus 55 40 40 0 1 15 2 13 0.867 0.964 0.909
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Table 6. The prediction results of two test data sets for 12 CpG markers.

Data Set Tissue Types Total
Cancer Normal

Total
Accuracy

MCCCancer
Total

Predict
Cancer

Predict
Normal Sensitivity Normal

Total
Predict
Cancer

Predict
Normal Specificity

Test data
set 2

Adrenal gland 267 264 213 51 0.807 3 0 3 1 0.809 0.212
Bile duct 45 36 36 0 1 9 0 9 1 1 1
Bladder 440 419 411 8 0.981 21 3 18 0.857 0.975 0.758

Esophagus 202 186 185 1 0.995 16 5 11 0.688 0.97 0.779
Eyes 80 80 74 6 0.925 0 0 0 - 0.925 0

Head and neck 580 530 529 1 0.998 50 10 40 0.8 0.981 0.874
Lymph nodes 51 48 46 2 0.958 3 0 3 1 0.961 0.758

Oral 104 65 46 19 0.708 39 2 37 0.949 0.798 0.637
Ovary 10 10 10 0 1 0 0 0 - 1 0

Pancreas 391 352 265 87 0.753 39 3 36 0.923 0.77 0.436
Pleura 87 87 81 6 0.931 0 0 0 - 0.931 0

Small bowel 56 28 27 1 0.964 28 4 24 0.857 0.911 0.826
Soft tissue 269 265 250 15 0.943 4 0 4 1 0.944 0.446

Testis 156 156 135 21 0.865 0 0 0 - 0.865 0
Thyroid 571 515 487 28 0.946 56 12 44 0.786 0.93 0.655

Test data
set 3

Bone marrow 386 325 257 68 0.791 61 0 61 1 0.824 0.611
Cervix 356 315 311 4 0.987 41 1 40 0.976 0.986 0.934

Nasopharynx 48 24 19 5 0.792 24 2 22 0.917 0.854 0.714
Skin 694 473 466 7 0.985 221 1 220 0.995 0.988 0.974

Stomach 588 395 380 15 0.962 193 48 145 0.751 0.893 0.753
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Table 7. The prediction results of two test data sets for 13 promoter markers.

Data Set Tissue Types Total
Cancer Normal

Total
Accuracy

MCCCancer
Total

Predict
Cancer

Predict
Normal Sensitivity Normal

Total
Predict
Cancer

Predict
Normal Specificity

Test data
set 2

Adrenal gland 267 264 251 13 0.951 3 0 3 1 0.951 0.422
Bile duct 45 36 36 0 1 9 0 9 1 1 1
Bladder 440 419 414 5 0.988 21 3 18 0.857 0.982 0.81

Esophagus 202 186 186 0 1 16 7 9 0.562 0.965 0.736
Eyes 80 80 74 6 0.925 0 0 0 - 0.925 0

Head and neck 580 530 523 7 0.987 50 6 44 0.88 0.978 0.859
Lymph nodes 51 48 48 0 1 3 3 0 0 0.941 0

Oral 104 65 37 28 0.569 39 2 37 0.949 0.712 0.518
Ovary 10 10 10 0 1 0 0 0 - 1 0

Pancreas 391 352 297 55 0.844 39 3 36 0.923 0.852 0.544
Pleura 87 87 82 5 0.943 0 0 0 - 0.943 0

Small bowel 56 28 27 1 0.964 28 2 26 0.929 0.946 0.893
Soft tissue 269 265 263 2 0.992 4 0 4 1 0.993 0.813

Testis 156 156 134 22 0.859 0 0 0 - 0.859 0
Thyroid 571 515 259 256 0.503 56 2 54 0.964 0.548 0.279

Test data
set 3

Bone marrow 386 325 261 64 0.803 61 0 61 1 0.834 0.626
Cervix 356 315 310 5 0.984 41 0 41 1 0.986 0.937

Nasopharynx 48 24 9 15 0.375 24 0 24 1 0.688 0.48
Skin 694 473 470 3 0.994 221 1 220 0.995 0.994 0.987

Stomach 588 395 393 2 0.995 193 154 39 0.202 0.735 0.363
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Figure 5. The distribution of prediction values in all samples. (a,c,e) come from 12 CpG markers and
(b,d,f) come from 13 promoter markers. Red indicates the status of the sample is cancer, and green
indicates the status of the sample is normal.

Interpreting model predictions becomes more and more crucial in the field of machine learning,
especially for deep learning. An outstanding approach has been proposed, which used SHAP (SHapley
Additive exPlanation) values as a unified measure of feature importance [26]. Figure 6 shows the
average absolute SHAP value of each marker. For CpG markers, cg07333191 has biggest impact on
model output, while cg04374393 has least impact. For promoter markers, AURKB has biggest impact
on model output, while the impact of ACVRL1 is least. Figure S4 shows the detailed impact of each
marker to the model output in four samples.
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Figure 6. The distribution of average absolute SHAP value for all markers. (a) comes from 12 CpG
markers and (b) comes from 13 promoter markers. SHAP: SHapley Additive explanation.

3.3. Evaluating Reliability of Markers and Diagnostic Prediction Models

To verify whether our deep learning models perform better than general traditional machine
learning strategy, such as logistic regression, we fitted our data in two logistic regression models.
The results indicate that deep learning predicting method performs more precise than logistic regression
method in our data sets actually (Figure S2, Table S8). To test the reliability of the selected markers,
we randomly partitioned all samples into 80% for training, 10% for validation, and 10% for testing.
We constructed two other deep learning models for CpG markers and promoter markers, and fed
all these samples into the models. Figure S3 shows ROC of the three data sets, and AUCs (0.993 for
CpG markers and 0.995 for promoter markers) demonstrate that the selected markers can classify all
samples precisely. The robustness of biomarkers for cancer diagnosis or prognosis might be low due to
tumor heterogeneity, and random sampling was suggested to evaluate the robustness of markers [27].
We performed random sampling of 100 times, data were divided into one training data set and one test
data set each time. Training data set was used to train models and test data set was used to evaluate
the performance of models. Figure S5 shows predict accuracies for both CpG markers and promoter
markers. The result indicates the robustness of our markers is strong, since the predict accuracies are
high in different data sets. To test performance of the markers in liquid biopsy, we utilized the markers
to predict cell-free DNA methylation data of 163 prostate cancer samples. Sensitivity for CpG markers
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was 100%, and for promoter markers was 92%. Additionally, another dataset whose GEO accession
number is GSE110185 contains six cell-free DNA pooled samples (two colorectal cancer, two advanced
adenomas and two healthy control samples). Additionally, all of these six samples were predicted as
normal samples. Notably, for both marker types, specificity of normal whole blood is 100%, and whole
blood samples are the most similar samples to cell-free DNA samples.

4. Discussion

Most related studies identifying methylation markers focused on one or a few cancer types.
The most important impact for our study is that we attempted to identify two categories of methylation
markers, CpG markers and promoter markers, to classify and predict pan-cancers. The reliability
of this study lies in the fact that all three test data sets were tested only once to avoid overfitting.
Therefore, the predict results we show here can prove that pan-cancers can be predicted precisely by
the selected methylation markers. Sensitivity and specificity in most cancer types are high enough
for both markers. Nonetheless, for promoter markers, specificities of two cancer types (esophagus
and stomach cancer) and sensitivities of three cancer types (oral, thyroid, and nasopharynx cancer)
are too low to predict precisely. Sensitivity and specificity of these five cancer types are high enough
for CpG markers, which means the samples are qualified. Therefore, a possible reason is that in
these samples, CpG probes located at promoters are not enough to calculate promoter methylation
values precisely. This is the potential defect of promoter markers that promoter methylation value
calculating might be inaccurate since each promoter has different length definition actually. Another
possible reason is that CpG markers may be more adapted to these cancer types than promoter markers.
Nonetheless, identifying promoter methylation markers is worth attempting, since promoter has a close
relation with the process of cancer developing. The advantage of pan-cancer methylation biomarkers
is that diagnosis of diverse cancer types can be based on targeted measuring of these biomarkers.
Therefore, these biomarkers could be applied in liquid biopsy effectively. The performance of the
selected markers in cell-free DNA methylation data of 163 cancer samples was excellent. However,
for GSE110185 dataset, all six pooled samples were predicted as normal samples. Two advanced
adenomas samples should be regarded as non-cancer samples, thus the prediction accuracy is 0.667.
However, because lack of abundant normal cell-free DNA samples, specificity remains to be verified in
more normal samples. We have put arguments of the well-trained deep learning models online to let
more researchers validate the reliability of our model. What should be emphasized is the dependability
of cell-free DNA samples. Since in the process of cell-free DNA isolation, contamination could easily
happen, such as ruptured blood cells [28]. Therefore, samples containing cell-free DNA are prone to be
classified as normal samples.

Comparing other studies to our study, Vrba et al. [15] attempted to identify CpG markers to
predict pan-cancer. One difference between their strategy and ours is that they reduced the number
of markers by comparing cancer samples to mix unrelated normal whole blood samples. While we
identified markers by comparing cancer samples to mix matched normal samples. Another difference
is that they identified markers in each cancer, and summarized all markers to one marker set. However,
our strategy involves gathering all samples from the start, and identifying markers fitting all data.
Due to a lack of cell-free DNA methylation data, one compromise in their research is that they treated
whole blood samples as cell-free DNA samples simulation. Although whole blood samples mainly
contained leukocytes, whole blood samples are the most similar samples to cell-free samples. Therefore,
specificity for cell-free DNA samples in our study could be calculated by whole blood approximately,
which means for both two marker types, specificity of whole blood is 100%. In our study, taking the
intersection of markers from two machine learning strategies to reduce the number of markers is a
compromising strategy. In the future, more convincing statistics, machine learning, and data dividing
strategies for mining marker are necessary. With a lack of abundant cell-free DNA samples, more
verification results depend on more researchers using our models published online to classify cell-free
DNA samples. Additionally, the pipeline of this study can be applied in cell-free DNA samples to
identify methylation markers more adaptive to cell-free DNA samples. The long-range perspective is
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identifying one methylation markers set for cell-free DNA samples, applying them to cancer early
diagnosis for pan-cancers, and making all cancers be exposed early, be cured early, to reduce death rate
of cancers. The models we have trained can only diagnose whether a sample is cancer or normal tissue,
but cannot judge which cancer type the sample belongs to. Multiple classification models need to be
constructed to diagnose the exact cancer type of samples in future study.

5. Conclusions

In our study, we collected whole genome methylation data of 10,140 cancer samples and 3386
normal samples, and divided them into five data sets. Using three machine learning methods,
we identified two categories of markers: 12 CpG markers and 13 promoter markers. Three of 12 CpG
markers and four of 13 promoter markers located at cancer-related genes. The performances of these
markers in solid or cell-free DNA samples are both pretty good. Additionally, if the prediction result
of one sample is the same between CpG markers and promoter markers, the prediction will be more
reliable. To conclude, we found it possible to identify methylation markers used to predict pan-cancer.
The long-range perspective is identifying one methylation markers set for efficient and precise liquid
biopsy of pan-cancers.
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and 1742 matched normal samples (All were divided into Training data set, Validation data set and Test data set 1
as Table S1 shows), Table S3: The sample details of 727 cancer samples and 836 normal samples (All were added
into Training data set), Table S4: The sample details of 3041 cancer samples and 268 matched normal samples
(All were added into Test data set 2), Table S5: The sample details of 1532 cancer samples and 540 virtual normal
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