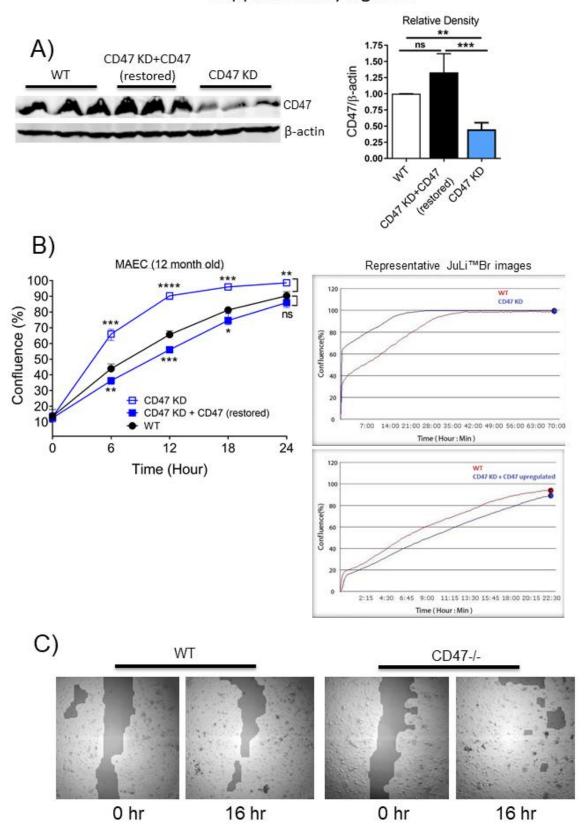

Α



# **Supplementary Materials**

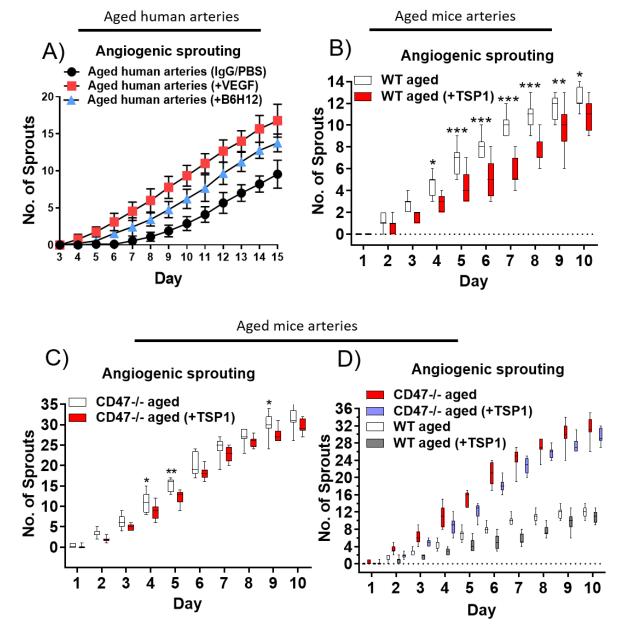
### Supplementary Figure 1


| ) |     |                         |        |             |                  |                              |
|---|-----|-------------------------|--------|-------------|------------------|------------------------------|
| , |     | Demographic Information |        |             |                  |                              |
|   | No. | Age (yrs)               | Gender | Weight (kg) | Ethnicity        | Cause of Death               |
|   | 1   | 28                      | M      | 62          | African American | Head Trauma                  |
|   | 2   | 32                      | F      | 55          | Caucasian        | Anoxia                       |
|   | 3   | 21                      | M      | 98          | Hispanic         | Head Trauma                  |
|   | 4   | 61                      | F      | 70          | Caucasian        | Trauma (gunshot)             |
|   | 5   | 63                      | М      | 68          | Caucasian        | Cerebrovascular<br>Accident  |
|   | 6   | 72                      | M      | 76          | Caucasian        | Trauma (vehicle<br>accident) |



**Supplementary Figure 1.** Demographic characteristics of organ donors (**A**); Age-associated induction of TSP1 is attenuated, and OSKM sustained, in the absence of CD47 (**B**–**G**). Gene expression profiling by q-PCR of *Thbs1* and *Cd47* (**A** and **B**) and self-renewal factors *OCT4*, *SOX2*, *KLF4*, and *cMYC* (**C**–**F**) in aortas from young (3-month-old) and aged (18-month-old) mice. Error bars represent the mean  $\pm$  SEM, samples in triplicate/mouse; 3-5 mice/group. Data normalized to 18srRNA gene. \*p < 0.05, \*\*p < 0.01, \*\*\*p < 0.01.

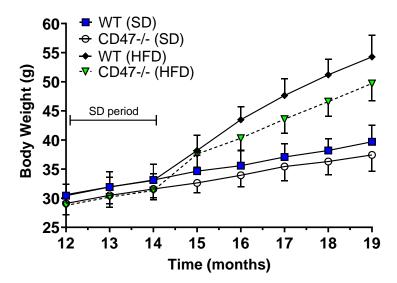
Cells **2020**, *9*, 1695


## Supplementary Figure 2



**Supplementary Figure 2.** Restoring CD47 in CD47-depleted ECs using TNF- $\alpha$  (50 ng/mL),middle lanes (**A**). Increasing CD47 levels rescues wildtype behavior in CD47-depleted 12 month old mouse aortic ECs (MAEC) (**B**, left graph), with representative JuLi<sup>TM</sup>Br images on the right. CD47 delays restoration of endothelial scratch wounds (**C**), with representative images of endothelial cell monolayer scratch wounds at 0 and 16 h.

Cells **2020**, *9*, 1695


#### Supplementary Figure 3



**Supplementary Figure 3.** Comparison of angiogenic sprouting in human and mouse arteries under various conditions. Side-by-side comparison of angiogenic sprouting in arteries from older individuals treated with a CD47 antibody (2  $\mu$ g/mL) or VEGF (50ng/mL) (**A**). TSP1 (2.2 nM) inhibited sprouting in aged mice arteries compared to controls (**B**) TSP1 was ineffective to inhibit the increased sprouting seen in aged CD47-null aortic rings (**C**) and side by side comparison of the results (B and C) in (**D**). Side-by-side comparison of results (**C**). Error bars represent the mean  $\pm$  SEM. 3 wells/vessel, 3 subjects/group. Unpaired t-test between the matched groups of each day. \*p < 0.05, \*\*p < 0.01, \*\*\*p < 001.

Cells **2020**, *9*, 1695

#### Supplementary Figure 4



**Supplementary Figure 4.** Absence of CD47 retards HFD-induced weight gain with age. Body weight measurements of wild-type (WT) and CD47-null mice. All groups were on a standard diet (SD) until 14 months of age after which two groups (10 mice/group) were placed on the HFD and weight monitored until 19 months of age. Unpaired t-test between weight measurements of aged WT and CD47-null mice on the HFD, \*p < 0.05, \*\*p < 0.01, \*\*\*p < 0.01.