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Abstract: Insulin-like growth factor binding protein-3 (IGFBP-3) is a p53 tumor suppressor-regulated
protein and a major carrier for IGFs in circulation. Among six high-affinity IGFBPs, which are IGFBP-1
through 6, IGFBP-3 is the most extensively investigated IGFBP species with respect to its IGF/IGF-I
receptor (IGF-IR)-independent biological actions beyond its endocrine/paracrine/autocrine role in
modulating IGF action in cancer. Disruption of IGFBP-3 at transcriptional and post-translational
levels has been implicated in the pathophysiology of many different types of cancer including
breast, prostate, and lung cancer. Over the past two decades, a wealth of evidence has revealed
both tumor suppressing and tumor promoting effects of IGF/IGF-IR-independent actions of IGFBP-3
depending upon cell types, post-translational modifications, and assay methods. However, IGFBP-3′s
anti-tumor function has been well accepted due to identification of functional IGFBP-3-interacting
proteins, putative receptors, or crosstalk with other signaling cascades. This review mainly focuses
on transmembrane protein 219 (TMEM219), which represents a novel IGFBP-3 receptor mediating
antitumor effect of IGFBP-3. Furthermore, this review delineates the potential underlying mechanisms
involved and the subsequent biological significance, emphasizing the clinical significance of the
IGFBP-3/TMEM219 axis in assessing both the diagnosis and the prognosis of cancer as well as the
therapeutic potential of TMEM219 agonists for cancer treatment.

Keywords: IGF system; IGFBP-3; IGFBP-3R; TMEM219; anti-tumor; anti-metastatic; agonists;
mAb therapy

1. Introduction

The insulin-like growth factor (IGF) system comprises of ligands IGF-I, IGF-II, its corresponding
cell-membrane receptors IGF-I receptor (IGF-IR), IGF-II receptor (IGF-IIR), IGF-binding proteins
(IGFBPs), and IGFBP degrading enzymes known as proteases. The IGF system plays a critical role in
somatic growth in an endocrine fashion as well as cell proliferation, survival, and differentiation of
normal and malignant cells in a paracrine/autocrine fashion. Dysregulation of the IGF system attributes
to pathophysiology of a variety of human diseases such as cancer, diabetes, chronic inflammatory
disease, and malnutrition. In particular, IGF/IGF-IR-independent actions of IGFBP-3 have been
extensively investigated and their involvement in initiation and progression of various cancers has
been recognized.
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2. IGFBP-3

2.1. Structure-Function Analysis

Human IGFBP-3 is comprised of 264 amino acids, of which the molecular mass is 28.7 kDa without
any post-translational modifications [1]. The primary structures of human IGFBP-3 consist of three
distinct domains: a highly conserved cysteine-rich N- and C-terminal domains and a nonconserved
central domain. Each domain contains various functional motifs/sequences that confer IGFBP-3’s
diverse IGF/IGF-IR-dependent and IGF/IGF-IR-independent actions (Figure 1) [2–6]. These distinctive
functional motifs/sequences include a caveolin scaffolding docking domain, a metal binding domain,
heparin binding motifs, a retinoic acid binding motif, and a nuclear localization sequence.

Cells 2020, 9, x 2 of 24 

 

F2.1. Structure-Function Analysis 

Human IGFBP-3 is comprised of 264 amino acids, of which the molecular mass is 28.7 kDa 
without any post-translational modifications [1]. The primary structures of human IGFBP-3 consist 
of three distinct domains: a highly conserved cysteine-rich N- and C-terminal domains and a 
nonconserved central domain. Each domain contains various functional motifs/sequences that confer 
IGFBP-3’s diverse IGF/IGF-IR-dependent and IGF/IGF-IR-independent actions (Figure 1) [2–6].  
These distinctive functional motifs/sequences include a caveolin scaffolding docking domain, a metal 
binding domain, heparin binding motifs, a retinoic acid binding motif, and a nuclear localization 
sequence. 

 
Figure 1. Structure of the mature human IGFBP-3. This figure depicts the three distinct domains of 
the IGFBP-3 and lists the important functions and motifs/residues within each domain [3]. The vertical 
blue lines represent 18 cysteine residues in highly conserved N-terminal and C-terminal domains. 

2.1.1. The Conserved N-Terminal Domain 
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Figure 1. Structure of the mature human IGFBP-3. This figure depicts the three distinct domains of the
IGFBP-3 and lists the important functions and motifs/residues within each domain [3]. The vertical
blue lines represent 18 cysteine residues in highly conserved N-terminal and C-terminal domains.

2.1.1. The Conserved N-Terminal Domain

In the mature IGFBP-3 peptide, amino acid residues 1–87 comprise the conserved N-terminal
domain, which shares approximately 58% similarity with other high-affinity IGFBPs. A well conserved
IGFBP motif (GCGCCXXC) present in all IGFBP species is located in this domain. Ten to 12 of the 16–20
cysteines are located in the N-terminal domain of high-affinity IGFBPs. Among a total of 18 cysteines
in IGFBP-3, 12 cysteines reside in the N-terminal domain, which results in the formation of six disulfide
bonds within the domain and providing a highly organized tertiary structure. Thus, this conserved
N-terminal domain shares not only amino acid similarity but also conformational similarities among
high-affinity IGFBPs. Important IGF-binding residues including I56, L80, and L81 are also located
within this domain [2,3,7].
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2.1.2. The Variable Central Domain

The central domain contains 95 amino acids and spans residues 88–183. This domain separates
the N-terminal domain from the C-terminal domain and shares less than 15% similarity with other
high-affinity IGFBPs [2]. However, it appears that this domain structurally acts as a hinge between
the N- and C-terminal domains and bring two domains together into close proximity to create a high
affinity IGF binding pocket. Post-translational modifications such as glycosylation, phosphorylation,
and proteolysis of IGFBP-3 have been found in this domain [8–12]. The functional significance of those
post-translational modifications has been reported that glycosylation can affect cell interactions, that
phosphorylation can affect IGF-binding affinity and susceptibility to proteases, and that proteolysis
can affect both IGF-dependent and IGF-independent actions [4,11–13]. Three N-linked glycosylation
sites at asparagine 89, 109, and 172, and phosphorylation sites at serine 111, 113, 156, 165, and at
threonine 170, as well as proteolytic sites for metalloproteases (MMPs) and serine proteases exist in this
domain [8–10,12,13]. The central domain is responsible for the interaction with the IGFBP-3 specific
receptor known as transmembrane protein 219 (TMEM219) [14,15].

2.1.3. The Conserved C-Terminal Domain

This domain spans residues 184–264, containing six cysteines with three disulfide bonds.
This domain is also important in IGF binding [16–19]. Since the IGFBP-3 fragment that contains
only N- or C-terminal domains has significantly reduced affinity for IGFs, it requires an IGF-binding
pocket involving both domains for high affinity binding to IGFs. Several functionally important
sequences/motifs are present in this domain such as binding for heparin, glycosaminoglycans,
proteoglycans, fibronectin, fibrin, transferrin, plasminogen, acid-labile subunit (ALS), and metals such
as iron, zinc, and nickel [3–5,20–24]. Both IGFBP-3 and IGFBP-3-IGF complexes bind fibrinogen, fibrin,
and plasminogen. Furthermore, a nuclear localization sequence (NLS) [25] and a caveolin-scaffolding
domain consensus sequence [26] also reside in this domain.

2.2. IGF/IGF-IR Dependent Actions of IGFBP-3

The principal action of IGFBP-3 is to transport IGF-I and IGF-II in circulation, and, thereby,
prolong the half-life of IGFs. IGFBP-3 has a higher affinity for IGFs (Kd approximately 10−10 M) than
their respective receptors. In serum, most of the IGFs circulate as a 150 kDa complex, consisting of
7·5 kDa IGF-I or IGF-II and 45 kDa glycosylated IGFBP-3 and 90 kDa ALS [3–5,27–29]. The biological
activity of circulating IGFs in the tissues is determined by the transition of IGF from 150 kDa complex
to the 55 kDa IGF-IGFBP-3 complex and subsequent proteolysis of the complex to release IGF in
the circulation or in the local body fluid. In addition to functioning as an IGF transporter, IGFBP-3
also functions as modulators of IGF availability and activity at the cellular levels in an autocrine or
paracrine manner [25,28–32].

IGFBP-3 can inhibit or enhance IGF actions, depending on cell types, the cellular environment,
IGFBP-3 concentration, and post-translational modifications such as glycosylation, proteolysis,
and phosphorylation [4,11–13]. IGFBP-3 has shown to inhibit IGF activity by competitively binding
IGFs and preventing its binding to IGFRs [29,30]. On the other hand, IGFBP-3 can enhance IGF activity
by increasing IGF concentration in the extracellular microenvironment by binding to heparin and
proteoglycans, and, thereby, acting as a reservoir of IGFs [20–22].

2.3. IGF/IGF-IR Independent Actions of IGFBP-3

The IGF/IGF-IR-independent actions of IGFBP-3 have been shown to contribute to the
pathophysiology of various human diseases such as cancer, diabetes, obesity, fatty liver disease,
ischemia, and Alzheimer’s disease [15,33–47]. In an early era of IGFBP-3 research in cancer, many
studies demonstrated that IGFBP-3 is upregulated by different types of cell growth inhibitors at the
transcriptional level in a variety of human cancer cells. These include anti-estrogens (Tamoxifen,
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ICI-182780), TGF-β, retinoic acid, TNF-α, vitamin D, histone deacetylase inhibitor sodium butyrate,
and anti-cancer dietary components including silibinin, apigenin, lycopene, resveratrol, curcumin,
and quercetin [48–57]. In particular, the tumor suppressor gene p53 has been shown to upregulate
IGFBP-3 at the transcriptional level [58,59]. Two p53 binding sites, Box A and Box B, were identified in
the first and second introns of the IGFBP-3 gene, based on homology to the p53 binding consensus
sequence [58]. Further studies using p53 mutants have revealed a link between p53′s activation of
IGFBP-3 transcription and its induction of apoptosis by showing that the mutants that lost the ability
to activate IGFBP-3 could not induce apoptosis [60]. Further research also demonstrated that the
transfection of doxycycline-inducible p53 plasmids resulted in increased expression of p53 and IGFBP-3
and, subsequently, induced apoptosis in p53-negative PC-3 prostate cancer cells [40]. This p53-depedent
induction of apoptosis was inhibited by treating with IGF-I, IGFBP-3 blocking antibodies, and IGFBP-3
antisense oligonucleotides, which demonstrated p53-dependent IGFBP-3′s proapoptotic function. In
light of p53 dependency of IGFBP-3 expression, ∆Np63α, an isoform of tumor suppressor p63 with
both dominant negative (∆N) activities and a potent repressor of p53-mediated transactivation has
been demonstrated to suppress expression of IGFBP-3 [61]. It appears that ∆Np63α binds the p53
binding sites, Box A and Box B, in the IGFBP-3 gene, and, thereby, inhibits p53-dependent IGFBP-3
expression and presumably suppresses IGFBP-3-induced apoptosis. However, evidence also supports
that IGFBP-3 can be induced in a p53-independet manner [40]. Treatment with genotoxic drugs such
as etoposide and Adriamycin resulted in increased IGFBP-3 expression in p53-negative PC-3 prostate
cancer cells.

Moreover, several studies demonstrated that the loss of IGFBP-3 expression by DNA methylation
is linked to tumorigenesis and cancer progression as well as intrinsic and/or acquired resistance
to radiotherapy and chemo-drugs such as cisplatin in many different types of cancer including
lung, colon, and ovarian cancers [62–69]. These findings strongly suggested that IGFBP-3 may exert
anti-proliferative and anti-tumor functions beyond its ability to modulate IGF functions (IGF/IGF-IR
dependent actions), but the underlying mechanisms involved remain largely unknown. Since then,
there has been an intensive investigation toward characterizing the molecular and cellular mechanisms
for IGF/IGF-IR-independent antitumor effects of IGFBP-3 in human cancer in vitro and in vivo. It is
clear that IGFBP-3 exerts its IGF/IGF-IR-independent biological actions through interactions with a
variety of binding partners on cell surfaces and within cells.

2.3.1. IGFBP-3 Binding Partners on the Cell Surface

The very first evidence for the IGF/IGF-IR-independent actions of IGFBP-3 was the identification
of specific cell surface binding between IGFBP-3 and cell surface proteins and subsequent cell growth
inhibition in Hs578T human triple negative breast cancer (TNBC) cells [33,70]. These initial findings
demonstrated that only IGFBP-3 specifically binds to the cell surface among IGFBPs and the central
domain of IGFBP-3 is necessary for the binding. IGFs attenuated the cell surface binding and the
subsequent growth inhibitory effects of IGFBP-3 by forming IGF-IGFBP-3 complexes. The existence of
high-affinity binding sites for IGFBP-3, which is typical of receptor-ligand interactions, were found.
The binding sites further demonstrated 20- and 28-kDa cell surface proteins as putative receptors.
Based on biochemical and functional characteristics, these proteins are later proven to be an IGFBP-3
receptor, TMEM219, which was identified by a yeast two-hybrid screening using the central domain
of IGFBP-3 from the same Hs578T human TNBC cell line [15]. This IGFBP-3 receptor will be further
discussed in Section 3.

At present, a few proteins have been identified as IGFBP-3 cell surface binding partners such as the
low-density lipoprotein receptor-related protein-1 (LRP-1)/α2M receptor [71], autocrine motility factor
(AMF)/phosphoglucose isomerase (PGI) [72], latent TGF-β binding protein-1 (LTBP-1), caveolin, and
transferrin/transferrin receptor [26,73]. The LRP-1/α2M receptor, also known as TGF-β type V receptor,
is shown to mediate IGFBP-3-induced cell growth inhibition independent of IGF [74,75]. In addition,
it plays a crucial role for cellular internalization of IGFBP-3 since LRP knock-out cells exhibited
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significant reduction of IGFBP-3 internalization when compared with LRP-expressing mouse embryonic
fibroblasts [76]. While AMF/PGI, which is a tumor-secreted cytokine, is endocytosed and regulates
cell migration, proliferation, and survival, IGFBP-3 has been shown to inhibit AMF/PGI-induced cell
migration in T47D and MCF-7 breast cancer cells [72]. LTBP-1, which is a component of the latent
TGF-β complex and a part of structural component of the ECM, is involved in sequestration of latent
TGF-β in the ECM and delivery of TGF-β to the plasma membrane [77]. Although the functional
significance of IGFBP-3 binding to LTBP-1 as well as the large latent complex has not been fully
elucidated, it may be a potential mechanism whereby IGFBP-3 can interact with the TGF-β system [78].
Since a substantial amount of LTBP-1 can be secreted by cells without bound TGF-β, IGFBP-3 may also
involve TGF-β-independent functions of LTBP-1 [79].

IGFBP-3 interaction with caveolin-1 through a caveolin-scaffolding sequence induced IGFBP-3
internalization [26]. Furthermore, recent research indicated that caveolin-1 is an oncogenic
membrane protein and is associated with endocytosis, extracellular matrix organization, cholesterol
distribution, cell migration, and signaling. This strongly suggests the potential regulation of
IGFBP-3 on these caveolin-1-induced functions [80]. IGFBP-3 also binds to transferrin and forms
an IGFBP-3-tranferrin-transferrin receptor complex, providing another mechanism for IGFBP-3
internalization and signaling [26,73]. IGFBP-3 internalization was inhibited by co-incubation and
extracellular sequestration with IGF-I, and was dependent on the transferrin-binding C-terminal
peptide region of IGFBP-3 [26]. By the same token, blocking transferrin receptor-mediated endocytosis
suppressed IGFBP-3 internalization and IGFBP-3-induced apoptosis [26]. At present, it remains
unclear whether TMEM219 is a sole IGFBP-3 receptor mediating IGF/IGF-IR independent antitumor
actions of IGFBP-3 or whether the previously mentioned cell surface binding partners are also partly
involved in IGFBP-3 internalization and subsequent IGF/IGF-IR independent actions in cytoplasmic
and nuclear compartments.

2.3.2. IGFBP-3 Binding Partners within Cells

Although IGFBP-3 can be internalized to the cytoplasmic compartment and translocated to
the nucleus through the NLS in the conserved C-terminal domain, limited knowledge is available
on whether nuclear targeting of IGFBP-3 occurs in all types of cells or requires specific cellular
conditions. Nevertheless, IGFBP-3 has been shown to interact with cytoplasmic/nuclear proteins.
These include humanin [37], RNA polymerase II binding subunit 3 (Rpb3) [81], GalNAc-T14 [82],
glucose-regulated protein 78 (GRP78) [83,84], nuclear retinoid X receptor (RXR) [85], retinoic acid
receptor (RAR) [86], Nur77 [87], vitamin D receptor (VDR) [88], and peroxisome proliferator-activated
receptor-γ (PPARγ) [89].

Humanin is a mitochondrial-derived peptide that inhibits neuronal cell death induced by mutant
genes in Alzheimer’s disease [37]. Humanin has been shown to bind to IGFBP-3 and inhibit nuclear
translocation and induction of apoptosis of IGFBP-3 in human lung cancer cells by suppressing the
IGFBP-3 interaction with importin-β [90]. Rpb3, which is an essential component of the mRNA
transcription apparatus, aids the recruitment of the polymerase complex to specific transcription
factors. Rpb3 has been shown to interact with the NLS motif of IGFBP-3 and might lead to IGFBP-3′s
role in modulating gene transcription [81]. GalNAc-T14, a large subfamily of glycosyltransferases
residing in the Golgi complex, catalyze the first step in the O-glycosylation of mammalian proteins
by transferring N-acetyl-d-galactosamine (GalNAc) to peptide substrates [91]. Since GalNAc-T14
has been shown to be associated with poor recurrence-free survival and promote cell migration and
invasion as well as metastasis through the Wnt signaling in lung cancer [92], IGFBP-3 may interfere
with pro-tumorigenic and pro-metastatic GalNAc-T14 signaling by complexing with GalNAc-T14 in
certain types of cancer including lung cancer. On the other hand, GalNAc-T14 has been also shown
to inhibit IGFBP-3-induced cell proliferation and colony formation in glioblastoma cells. Although
overexpression of IGFBP-3 induced expression of Cyclin E, CDK2, and p-ERK1/2, and overexpression of
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GalNAc-T14 inhibited these IGFBP-3 effects in glioblastoma cells, no evidence was presented whether
direct binding of these two proteins is involved in observed biological outcomes [93].

GRP78, which is also known as immunoglobulin heavy-chain binding immunoglobulin protein
(BiP), plays a critical role for endoplasmic reticulum integrity and stress-induced autophagy in
mammalian cells [94]. When unfolded or misfolded proteins accumulate in the ER (called ER stress),
an unfolded protein response (UPR) is activated through the induction of GRP78 as the first defense
response, which, thereby, restores normal function of the ER by attenuating global translation and
increasing the folding capacity of the ER [95]. It has been shown that the elevated expression of GRP78
is correlated with cancer malignancy, metastasis, and drug resistance in a variety of cancers, including
breast cancer, prostate cancer, lung cancer, and glioma [96]. In line with these findings, GRP78 has been
further shown to possess pro-survival and anti-apoptotic properties [97]. Interaction of IGFBP-3 and
GRP78 has been identified in human breast cancer cells using a yeast two-hybrid screening [83]. In this
study, overexpression of IGFBP-3 showed that IGFBP-3 binding to GRP78 results in the disruption of the
GRP78-caspase-7 complex, which, thereby, activates caspase-7, and, subsequently, induces apoptosis
in anti-estrogen-resistant breast cancer cells. These findings strongly suggest that IGFBP-3 could
sensitize anti-estrogen-resistant breast cancer cells to anti-estrogen such as ICI 182,780 by preventing
the anti-apoptotic function of GRP78. On the contrary, IGFBP-3 has been shown to enhance the survival
of cells subjected to glucose starvation and hypoxia by inducing autophagy in a GRP78-dependent
manner in human breast cancer cells, which suggests that IGFBP-3 may play a key role in mediating an
autophagic survival response [84]. Although the biological outcomes of IGFBP-3 are much different
depending on the cellular environment, it is clear that the specific interaction of GRP78 and IGFBP-3 is
attributed to the observed IGFBP-3 effects.

IGFBP-3 has also been shown to inhibit cell growth and induce apoptosis through an interaction
with nuclear proteins such as retinoid X receptor (RXR)-α, retinoic acid receptor (RAR), and Nur77 [98].
RXR is involved in physiological functions of thyroid hormone, steroid hormones, embryonic
development, apoptosis, and homeostasis [99–101]. RXR heterodimerizes with Nur77, a nuclear
receptor transcription factor, and, thereby, enhances its DNA binding ability and regulates apoptosis
in various cancers [102]. IGFBP-3 binds RXR-α and RAR and, subsequently, modulates RAR/RXR
and RXR/Nur77 signaling, which, thereby, induces apoptosis [81,82]. It has been further shown that
Nur77 translocates to the nucleus and initiates apoptosis in the presence of IGFBP-3 [98]. However,
recent studies also showed that IGFBP-3 mutants that failed to translocate to the nucleus and lost
binding ability to RXR-α, still induced apoptosis in breast cancer cells [103,104]. This suggests that
IGFBP-3 may either utilize multiple mechanisms for its anti-tumor actions depending upon the cellular
environment or the observed IGFBP-3 interaction with cytoplasmic/nuclear partners may not represent
major IGFBP-3 anti-tumor signaling. It is clear that IGFBP-3 exerts a pro-apoptotic and anti-proliferative
IGF/IGF-IR independent actions through multiple mechanisms such as an interaction with the IGFBP-3
receptor and other binding partners on the cell surface and within cells as well as nuclear association.
The remainder of this review will focus on the IGFBP-3 receptor TMEM219 in human cancer by
mainly providing the evidence to date regarding the IGFBP-3/TMEM219 system as an anti-tumor and
anti-metastatic signaling in human cancer.

3. TMEM219 as an IGFBP-3 Specific Receptor

Early studies in the IGF/IGF-IR-independent actions of IGFBP-3 have been shown that IGFBP-3
binding to a cell surface protein is required for its anti-proliferative action in human breast cancer
cells and that the central domain of IGFBP-3, which is the least conserved region among IGFBPs 1–6,
is responsible for cell surface binding [33,70,105]. Furthermore, IGFBP-3 has been shown to induce
apoptosis by activating caspase-8 cleavage, but not cytochrome c release or caspase-9 cleavage involved
in the death receptor-mediated apoptotic pathways in MCF-7 breast cancer cells [106]. These findings
strongly suggested the existence of an IGFBP-3-specific receptor mediating the direct anti-proliferative
and pro-apoptotic effects of IGFBP-3 in a variety of cancer cells.
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As an effort to identify a novel cell death receptor specific for IGFBP-3, yeast two-hybrid screening
was employed using a cDNA construct encoding amino acid residues 88–148 of the variable central
domain of IGFBP-3 as bait against an Hs578T human TNBC cell cDNA library. As a result, a functionally
unknown transmembrane protein TMEM219 has been identified as an IGFBP-3 specific interacting
protein and later designated as an IGFBP-3 receptor (IGFBP-3R) [15]. TMEM219 consists of four exons
comprising the 915-base pair cDNA sequence on chromosome 16q13 and represents a 240-amino acid
polypeptide. Further analysis of the deduced amino acid sequence indicated that the 202-residue mature
human IGFBP-3R consists of an extracellular domain, a putative single-span transmembrane domain,
and a short C-terminal cytoplasmic domain (Figure 2). The extracellular domain contains three potential
N-glycosylation sites and three phosphorylation sites. The transmembrane domain contains a leucine
zipper-like heptad repeat pattern of amino acids that appear to involve dimerization/oligomerization
of the membrane proteins. This very unique leucine zipper sequence is also present in the single-span
transmembrane domain of the erythropoietin receptor and the discoidin domain receptor [106,107].
Additionally, IGFBP-3R activates caspase-8-induced apoptosis in unconventional ways: (1) IGFBP-3R
and inactive procaspase-8 is pre-complexed at the resting stage, and IGFBP-3 binding to IGFBP-3R
releases procaspase-8, and, thereby, activates caspase-8-dependent apoptosis, and (2) IGFBP-3R
complexes with procasepase-8 without involvement of a typical death domain (DD) sequence. The DD
sequence in the intracellular portion of the receptor is required to form a death-inducing signaling
complex (DISC) by recruiting adaptor proteins (FADD) and procaspase-8 after receptor activation in
various death receptors such as the TNF-α receptor, TNF-related apoptosis-inducing ligand receptor 1
(TRAIL-R1/DR4), TRAIL-R2 (APO-2/DR5), and CD95 (Fas, APO-1). However, similar to IGFBP-3R,
a few other proteins have been shown to interact with caspase-8 and induce apoptosis despite the lack
of a DD sequence [108,109]. IGFBP-3R is located in both the plasma membrane and cytoplasm, but not
in the nucleus of the cancer cells. This cell surface IGFBP-3R interacts specifically with IGFBP-3 but not
with other high-affinity IGFBPs, activates procaspase-8, and mediates IGFBP-3-induced apoptosis in
many different types of cancer cells and tumor suppression in both prostate and breast cancer xenograft
mouse models. Further knockdown of IGFBP-3R attenuates IGFBP-3-induced caspase activities and
apoptosis, whereas its overexpression elicited the opposite effects [15,65,110,111]. These findings
clearly indicate that IGFBP-3R (TMEM219) is a bona fide IGFBP-3 receptor and mediates anti-tumor
activities of IGFBP-3.
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Figure 2. Structure of human IGFBP-3R (TMEM219). The 202-residue mature IGFBP-3R, omitting
the 38-residue signal peptide, is comprised of three domains: extracellular, transmembrane, and
cytoplasmic domains. Extracellular domain contains three potential N-glycosylation sites (residues 73,
101, 167) and three potential phosphorylation sites (S36, T75, T77). The single-span transmembrane
domain contains a leucine zipper-like heptad repeat pattern characteristic of leucine zipper interaction
domains. The letters in red correspond to a-type and d-type interfacial residues in leucine zipper
interaction domains [15]. The vertical blue lines represent nine cysteine residues.
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In addition, IGFBP-3 has been shown to suppress tumor-induced NF-κB activity via activation
of caspase-8 and caspase-3/7 in an IGF/IGF-IR-dependent manner in prostate cancer cells [111].
IGFBP-3 suppresses NF-κB activity in a unique way. It exerts caspase-induced degradation of
IκBα and NF-κB, but not other components such as IKK. IGFBP-3 also inhibited the expression of
NF-κB-regulated factors such as VEGF, IL-8, ICAM-1, and VCAM-1. This inhibitory action of IGFBP-3
was IGF/IGF-IR-independent since the IGFBP-3 mutant devoid of IGF binding affinity had a similar
inhibitory effect. Furthermore, IGFBP-3R has been shown to be responsible for IGFBP-3-induced
suppression of NF-κB activity in cancer cells. These findings indicate that IGFBP-3 in addition
to inducing apoptosis, also suppresses tumor-induced NF-κB activity, and, thereby, enhances the
inhibition of tumor growth, angiogenesis, invasion, metastasis, and chemoresistance [111].

Recent reports further explored the therapeutic potential of the IGFBP-3/IGFBP-3R axis in cancer
by developing an IGFBP-3R agonistic monoclonal antibody (mAb) [112]. It has been shown that
activation of IGFBP-3R by IGFBP-3 and IGFBP-3R agonistic mAb inhibits cell growth by inducing
apoptosis and by tumor-induced NF-κB activity specifically in cancer cells, but not in normal cells.
At present, for the cancer cell, specific pro-apoptotic properties of IGFBP-3 and IGFBP-3R agonistic
mAb are not fully elucidated. However, a few potential mechanisms can be speculated based on the
findings in tumor-specific targeting of the death receptor (DR)-4 and DR-5 agonistic mAb therapy
despite the presence of DR-4/DR-5 in normal cells [113–115]. These include: (1) decreased level of the
cell surface DR-4/DR-5 in normal cells compared to cancer cells, (2) differential expression of unknown
intracellular inhibitor(s) of apoptosis downstream of caspase-8, and (3) changes in apoptotic potency
due to different glycosylation patterns of DRs.

In addition, IGFBP-3R agonistic mAb lost anti-proliferative effects in IGFBP-3R knockout cells.
These in vitro data indicate that IGFBP-3R is indispensable for anti-tumor functions of IGFBP-3 and
IGFBP-3R agonistic mAb in a variety of cancer cells. Further anti-tumor and anti-metastatic effects of
IGFBP-3R agonistic mAb have been shown in vivo using MDA231 TNBC and patient-derived TNBC
xenograft models [112]. Taken together, these findings provide evidence that IGFBP-3R (TMEM219) is
a bona fide IGFBP-3 receptor and a potential target for cancer therapy.

4. Clinical Insights of IGFBP-3/IGFBP-3R (TMEM219) System in Cancer

Although IGFBP-3 may utilize multiple mechanisms for its anti-tumor actions, current findings
suggest that the IGFBP-3/IGFBP-3R axis may constitute a novel anti-tumor/anti-metastatic signaling
pathway and a novel potential therapeutic target in cancer. However, since limited knowledge is
available on clinicopathologic significance and prognostic value of the IGFBP-3/IGFBP-3R system,
the remainder of this review will focus on its clinical significance using data mining and analyses of
publicly available databases including The Cell Index (CELLX) database (http://cellx.sourceforge.net)
and The Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov). Log2-transformed
RSEM (RNA-Seq by Expectation-Maximization) [116] gene expression values were obtained.

4.1. IGFBP-3 and TMEM219 Gene Expression in Tumor and Normal Samples

Analysis of IGFBP-3 expression identified highly variable expression levels among different types
of cancer as well as normal tissues (Figure 3). Further differential expression of IGFBP-3 was analyzed
in cancers and the counterpart normal tissues where at least 12 normal samples were available (Table 1).

http://cellx.sourceforge.net
https://portal.gdc.cancer.gov
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Table 1. Differential expression of IGFBP-3. “Mean log2(RSEM)”—average gene expression in normal
and cancer tissues, respectively. t-test p-values are shown.

TCGA ID Description log2 Fold
Change p-Value

Mean
log2(RSEM)

Normal

Mean
log2(RSEM)

Cancer

Upregulated in Tumor

KIRC Kidney renal clear cell carcinoma 3.44 3.11 10−53 11.86 15.30

LUSC Lung squamous cell carcinoma 2.26 1.22 10−28 10.61 12.86

LUAD Lung adenocarcinoma 1.94 9.28 10−21 10.31 12.26

HNSC Head and Neck squamous cell carcinoma 1.32 2.29 10−7 10.82 12.14

STAD Stomach adenocarcinoma 1.18 8.67 10−7 10.82 12.00

THCA Thyroid carcinoma 1.11 4.85 10−16 9.46 10.57

BLCA Bladder urothelial carcinoma 1.05 3.57 10−3 12.56 13.61

COAD Colon adenocarcinoma 0.65 4.01 10−9 10.45 11.10

KIRP Kidney renal papillary cell carcinoma 0.34 5.19 10−2 11.69 12.03

Downregulated in Tumor

LIHC Liver hepatocellular carcinoma −2.53 4.17 10−81 14.18 11.65

KICH Kidney Chromophobe −1.07 6.80 10−5 12.32 11.25

BRCA Breast invasive carcinoma −0.82 9.74 10−24 12.04 11.23

PRAD Prostate adenocarcinoma −0.56 1.47 10−5 11.27 10.72

UCEC Uterine Corpus Endometrial Carcinoma −0.43 1.53 10−1 13.29 12.86

Increased IGFBP-3 expression was observed in kidney renal clear cell carcinoma (log2 fold change
+3.44), lung squamous cell carcinoma (log2 fold change +2.26), lung adenocarcinoma (log2 fold change
+1.94), head and neck squamous cell carcinoma (log2 fold change +1.32), stomach adenocarcinoma
(log2 fold change +1.18), thyroid carcinoma (log2 fold change +1.11), bladder urothelial carcinoma
(log2 fold change +1.05), colon adenocarcinoma (log2 fold change +0.65), and kidney renal papillary
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cell carcinoma (log2 fold change +0.34). On the other hand, decreased expression of IGFBP-3 was
observed in liver hepatocellular carcinoma (log2 fold change −2.53), kidney chromophobe (log2 fold
change −1.07), breast invasive carcinoma (log2 fold change −0.82), prostate adenocarcinoma (log2 fold
change −0.56), and uterine corpus endometrial carcinoma (log2 fold change −0.43).

In the same datasets, TMEM219 expression also showed variable expression patterns, but had
less variation when compared to IGFBP-3 among different types of cancer as well as normal tissues
(Figure 4). Analysis of differential expression of TMEM219 revealed significant increased TMEM219
expression in 6 out of 14 tumors (Table 2). These include kidney renal papillary cell carcinoma (log2
fold change +0.53), thyroid carcinoma (log2 fold change +0.40), breast invasive carcinoma (log2 fold
change +0.39), kidney renal clear cell carcinoma (log2 fold change +0.29), bladder urothelial carcinoma
(log2 fold change +0.27), and uterine corpus endometrial carcinoma (log2 fold change +0.22). On the
contrary, decreased TMEM219 expression was observed in lung squamous cell carcinoma (log2 fold
change −0.74), stomach adenocarcinoma (log2 fold change −0.42), colon adenocarcinoma (log2 fold
change −0.36), head and neck squamous cell carcinoma (log2 fold change −0.32), lung adenocarcinoma
(log2 fold change −0.12), and kidney chromophobe (log2 fold change −0.10). In summary, these results
suggest IGFBP-3 as a diagnostic biomarker and TMEM219 as a therapeutic target in certain types of
tumors. Importantly, TMEM219 agonists may represent a novel therapy for tumors with significantly
lower expression of IGFBP-3 but not TMEM219 compared to the counterpart normal tissues, such as
breast invasive carcinoma, uterine corpus endometrial carcinoma, liver hepatocellular carcinoma, and
prostate adenocarcinoma.
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Table 2. Differential expression of TMEM219. “Mean log2 (RSEM)”—average gene expression in
normal and cancer tissues, respectively. t-test p-values are shown.

TCGA ID Description log2 Fold
Change p-Value

Mean
log2(RSEM)

Normal

Mean
log2(RSEM)

Cancer

Upregulated in Tumor

KIRP Kidney renal papillary cell carcinoma 0.53 3.16 10−14 11.07 11.60

THCA Thyroid carcinoma 0.40 2.77 10−8 10.94 11.34

BRCA Breast invasive carcinoma 0.39 1.00 10−19 10.71 11.10

KIRC Kidney renal clear cell carcinoma 0.29 4.30 10−11 10.88 11.18

BLCA Bladder urothelial carcinoma 0.27 1.08 10−1 10.92 11.19

UCEC Uterine Corpus Endometrial Carcinoma 0.22 4.47 10−3 11.10 11.32

LIHC Liver hepatocellular carcinoma 0.09 2.11 10−1 11.30 11.39

PRAD Prostate adenocarcinoma 0.08 2.52 10−1 11.18 11.26

Downregulated in Tumor

LUSC Lung squamous cell carcinoma −0.74 6.56 10−23 11.18 10.45

STAD Stomach adenocarcinoma −0.42 5.93 10−4 10.86 10.44

COAD Colon adenocarcinoma −0.36 1.47 10−7 11.25 10.89

HNSC Head and neck squamous cell carcinoma −0.32 9.00 10−4 10.63 10.30

LUAD Lung adenocarcinoma −0.12 3.97 10−2 11.18 11.06

KICH Kidney Chromophobe −0.10 3.20 10−1 11.24 11.14

4.2. Pan-Cancer Survival Effect of IGFBP-3 and TMEM219

To investigate the effect of IGFBP-3 and TMEM219 expression on survival in clinical settings,
the RNA-seq data from TCGA was analyzed (Figure 5). Gene expression data summarized as RSEM
values were obtained using the TCGA2STAT R package v.1.2, along with the corresponding clinical
annotations. Data for each of the 34 cancers were obtained separately. The data were log2-transformed
and analyzed using Kaplan-Meier curves and the Cox proportional hazard model. Each gene of
interest was analyzed for its effect on survival by separating patients into high/low expression
subgroups. The scanning approach KaplanScan, used on the R2 Genomics web portal [117], was
used to estimate the best gene expression cutoff that separates high/low expression subgroups with
differential survival (R code modified from Reference [118]). In addition to survival analysis across
all cancers, further survival analysis was performed within clinical subgroups of specific cancers,
e.g., in “race-black or African-American” subgroup. p-values were corrected for multiple testing
using the Benjamin-Hochberg (FDR) method [119] and reported throughout unless noted otherwise.
Only subgroups with >40 patients were considered. This approach allowed us to understand
the effect of IGFBP3 and TMEM219 expression on the level of individual cancers and in specific
population subgroups.
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Analysis of the survival effect of IGFBP-3 expression in all cancers identified its highly significant
effect on survival in glioma (FDR = 1.51·10−32 (Hazard Ratio, HR = 4.39)) (Figures 5A and 6A).
Survival in pan-kidney cohort (KICH+KIRC+KIRP), lower grade glioma, mesothelioma, colorectal
adenocarcinoma was similarly affected by IGFBP-3 to a lesser extent (FDR = 1.74·10−6 (HR = 2.73),
1.25·10−5 (HR = 2.36), 1.22·10−3 (HR = 2.98), 3.87·10−3 (HR = 2.20), respectively) (Figure 6B,C). On the
other hand, higher IGFBP-3 was suggestive of better survival outcome in lymphoid neoplasm diffuse
large B-cell lymphoma (FDR = 2.58·10−2 (HR = 0.14)), breast cancer (1.20·10−1 (HR = 0.74)), prostate
adenocarcinoma (3.43·10−1 (HR = 0.51)), cholangiocarcinoma (4.84·10−1 (HR = 0.57)), bladder urothelial
carcinoma (3.63·10−1 (HR = 0.84)), and uterine carcinosarcoma (6.65·10−1 (HR = 0.860)) (Figure 6D–F).

In summary, these results suggest IGFBP-3 as a prognostic biomarker in glioma, mesothelioma,
kidney, and colorectal cancers with lower expression suggestive of better survival outcome,
whereas diffuse large B-cell lymphoma, cholangiocarcinoma, bladder urothelial carcinoma, uterine
carcinosarcoma, breast, and prostate cancer with higher expression suggestive of better survival
outcome. Of note, the observed dichotomy of IGFBP-3 expression and patients’ survival in various
cancers may be attributed to other factors such as IGF-1/IGF-2 expression, IGFBP-3 polymorphism
status, tumor suppressor p53 family status, tumor metabolic characteristics, and others. In addition,
functional IGFBP-3 protein levels in circulation or in tumor and ratio of IGF-I and IGFBP-3 in circulation
should be further factored to interpret the TCGA data.
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of IGFBP-3 with a negative correlation (A–C) and a positive correlation (D–F). Unadjusted p-values
are shown.

The TMEM219 survival effect was less significant than that of IGFBP-3 (Figure 5B). Nevertheless,
the lower expression of the TMEM219 gene was associated with survival in kidney renal clear cell
carcinoma (FDR = 2.14·10−3 (HR = 1.85)), glioma (FDR = 1.27·10−2 (HR = 1.56)), lymphoid neoplasm
diffuse large B-cell lymphoma (FDR = 4.110.54)), head and neck squamous cell carcinoma (FDR = 4.17E-2
(HR = 1.43)) and pan-kidney cohort (KICH+KIRC+KIRP) (FDR = 2.76E-1 (HR = 1.2)) (Figure 7A–C).
On the contrary, the higher expression of TMEM219 was better for survival in mesothelioma (FDR =
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2.14E-3 (HR = 0.39)), lower grade glioma (FDR = 9.54E-3 (HR =0.54)), prostate adenocarcinoma (FDR
= 2.02·10−1 (HR = 0.18)), thyroid carcinoma (FDR = 1.332·10−1 (HR = 0.39)) and bladder urothelial
carcinoma (FDR = 9.54·10−3 (HR = 0.61)) (Figure 7D–F).
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urothelial carcinoma and head and neck squamous cell carcinoma appear to be significantly associated
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with TMEM219 but not with IGFBP-3 expression. Higher TMEM219 expression was associated with
better survival in bladder urothelial carcinoma (FDR = 9.54·10−3 (HR = 0.61)), while the reverse was
true for head and neck squamous cell carcinoma (FDR = 4.17·10−2 (HR = 1.43)). On the other hand,
the expression of TMEM219 was not significantly associated with survival in breast cancer, while
IGFBP-3 expression was positively associated with survival outcome (Figure 8). These results indicate
that the effect of TMEM219 expression on survival is less pronounced and highly cancer-specific.
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4.3. Survival Effect of IGFBP-3 and TMEM219 in Clinical Subcategories

By taking advantage of the availability of clinical annotations, survival analysis of the effect of
IGFBP-3 and TMEM219 expression in clinical subgroups, e.g., “race-black or African-American” was
further performed. Similar to all cancer analyses, p-values were corrected for multiple testing across all
tested subgroups in a given cancer. The advantage of such analyses is that they provide detailed insights
into the effect of IGFBP-3 and TMEM219 in different subgroups of patients. The disadvantage is that
some subgroups have an insufficient number of patients, e.g., in the “race-black or African-American”
subgroup, which limits the cross-cancer comparisons.

Given the high significance of IGFBP-3 gene expression on survival outcome in glioma (FDR =

1.51·10−32 (HR = 4.39)), it was unsurprising that IGFBP-3 expression affected survival in nearly all glioma
subgroups (FDR < 2.90·10−2), with lower expression being associated with better survival outcome.
Similarly, all subgroups in lower grade glioma were significantly associated with IGFBP-3 expression,
with lower expression indicative of better survival outcome (FDR < 5.82·10−2). Similar results were
observed for clinical subgroups in mesothelioma, the pan-kidney cohort, rectum adenocarcinoma,
colorectal adenocarcinoma, and colon adenocarcinoma cancers, where low expression of IGFBP-3 was
similarly associated with better survival outcome. These results confirm previous observations that
the expression of IGFBP-3 may affect survival in glioma, mesothelioma, kidney, and colorectal cancers.

Further analyses of the effect of IGFBP-3 and TMEM219 expression in specific clinical subgroups
revealed that kidney renal papillary cell carcinoma is the only cancer where the expression of both
IGFBP-3 and TMEM219 is marginally associated with survival in “race-black or the African-American”
subgroup. Lower IGFBP-3 expression was beneficial for survival (FDR = 5.84·10−2 (HR = 5.12)),
while higher TMEM219 expression was associated with better survival in the “race-black or
African-American” subgroup (FDR = 6.28·10−2 (HR = 0.16)), Figure 9). These results suggest the
importance of the IGFBP-3/TMEM219 system in kidney renal papillary cell carcinoma in the “race-black
or African-American” subgroup.
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4.4. Survival Effect of IGFBP-3 and TMEM219 in Breast Cancer

Since the expression of IGFBP-3 and TMEM219 was not significantly associated with survival
outcome in breast cancer, it is possible that heterogeneity of the disease may prevent the detection
of significant associations. Consequent analysis of the survival effect of IGFBP-3 and TMEM219
in clinical subgroups of the breast cancer cohort revealed that clinical subgroup annotated as
“histological type-Infiltrating Lobular Carcinoma” show marginally significant association of IGFBP-3
(FDR = 2.01·10−1 (HR = 0.36)) and TMEM219 ((3.96·10−2 (HR = 0.25)) with the survival outcome
(Figure 10B,C). For both genes, high expression was associated with a better prognosis. These results
suggest that targeting the IGFBP-3/TMEM219 system in patients diagnosed with infiltrating lobular
carcinoma, which is the second most common type of breast cancer, may be beneficial. Other clinical
subgroups of breast cancer patients included “breast_carcinoma_surgical_procedure_name-Modified
Radical Mastectomy” (IGFBP-3, FDR = 1.26·10−1 (HR = 0.44), Figure 10A),
“lab_proc_her2_neu_immunohistochemistry_receptor_status-Equivocal” (TMEM219, FDR =

3.27·10−1 (HR = 3.29)). Of note were race-specific survival effects with high expression of IGFBP-3
being beneficial in the “race-black or African-American” subgroup (FDR = 2.01·10−1 (HR = 0.42),
Figure 10E) and TMEM219 high expression being beneficial in the “race-Asian” subgroup (FDR =

1.16·10−1 (HR = 0.00), Figure 10D). Confirming our previous observations, the survival benefits of
IGFBP-3 expression in breast cancer were consistently associated with high IGFBP-3 expression, while
the effect of TMEM219 was more diverse and subgroup-specific.
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5. Conclusions

IGFBP-3 is a multifunctional protein and is involved in the pathophysiology of a variety of
human diseases such as cancer, diabetes, fatty liver disease, ischemia, and Alzheimer’s disease. Apart
from the IGF/IGF-IR-dependent actions, IGFBP-3 exerts multiple biological activities through the
IGF/IGF-IR-independent actions by interacting with distinct interacting proteins on the cell surface or
within the cell. Much attention was given to identify a putative receptor for IGFBP-3 since early studies
have demonstrated the anti-tumor function of IGFBP-3 in cancer. As described in this review, a few
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membrane proteins have been identified as “a putative IGFBP-3 receptor” and further characterized
their functions with potential underlying mechanisms in cancer cells. Among them, TMEM219 appears
to be the most critical IGFBP-3 receptor mediating anti-tumor and anti-metastatic activities of IGFBP-3.
Given the fact that IGFBP-3/IGFBP-3R (TMEM219) axis is impaired and shown to have great impact on
the survival outcome in specific cancers, IGFBP-3 and TMEM219 may serve as new diagnostic and
prognostic biomarkers in specific cancers. Importantly, IGFBP-3R (TMEM219) agonists, in particular
TMEM219 agonistic mAbs, are very attractive cancer therapeutics since these agonists would exhibit
no other biological activities of IGFBP-3 induced by the interaction with other binding partners.
Further characterization of specific gene regulation by TMEM219 activation and its crosstalk with
other key signaling pathways will open a new avenue to treat many different types of cancer as a
targeted monotherapy and a combination therapy with other chemotherapies.
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