Supplementary Materials

Xylosyl-extension of O-glucose glycans on the extracellular domain of NOTCH1 and NOTCH2 regulates Notch cell surface trafficking

Yusuke Urata ^{1,2}, Wataru Saiki ¹, Yohei Tsukamoto ¹, Hiroaki Sago ¹, Hideharu Hibi ², Tetsuya Okajima ^{1,*}, and Hideyuki Takeuchi ^{1,*}

Figures

EGF17

Figure S1-9

632- G T T G P N C E I N L D D C A S N P C D S G T C L D K -658

Figure S1. MS/MS spectra of (glyco)peptides from NOTCH1. MS/MS spectra of (glyco)peptide from NOTCH1. Samples were generated in wild type control HEK293T cells (A), *GXYLT1/2* DKO cells (B), *XXYLT1* KO cells (C) transfected with the plasmids encoding mouse NOTCH1 ECDs as described in Materials and Methods. The data in Figure S1-1 through S1-9 are derived from the analysis of mouse NOTCH1 EGF1-18. The data in Figure S1-10 through S1-12, S1-15 through S1-17 are derived from the analysis of mouse NOTCH1 EGF19-36. The data in Figure S1-13, and S1-14 are derived from the analysis of mouse NOTCH1 EGF24-28. MS/MS spectra confirmed the identity of (glyco)peptides based on the presence of peptide specific b- and y- ions and neutral loss of predicted glycans. Amino acid sequences are shown with the identified fragment ions at the upper right corner. For each EGF repeat from NOTCH1, MS/MS spectra of glycopeptides modified with the major glycoform derived from each cell clone are shown. The sequence of peptides, the predicted and measured m/z, and the charge state are summarized in Table S1.

Figure S2. MS/MS spectra of (glyco)peptides from NOTCH2. MS/MS spectra of (glyco)peptide from NOTCH2. Samples were generated in wild type control HEK293T cells (A), *GXYLT1/2* DKO cells (B), *XXYLT1* KO cells (C) transfected with the plasmids encoding mouse NOTCH2 ECDs as described in Materials and Methods. The data in Figure S2-1 through S2-16 are derived from the analysis of mouse NOTCH2 EGF1-36. MS/MS spectra confirmed the identity of (glyco)peptides based on the presence of peptide specific b- and y- ions and neutral loss of predicted glycans. Amino acid sequences are shown with the identified fragment ions at the upper right corner. For each EGF repeat from NOTCH2, MS/MS spectra of glycopeptides modified with the major glycoform derived from each

cell clone are shown. The sequence of peptides, the predicted and measured m/z, and the charge state are summarized in Table S2.

В

XXYLT1 KO (clone: 3C4): 10-bp deletion in XXYLT1

Wild Type:CCTCGCCAAGTTCGAGGCGCACGAGGTGCTTAA Allele 1:CCTCGCCA-----GCACGAGGTGCTTAA

GXYLT1/2 double KO (clone: 13D3, *GXYLT1* KO cell background): 7-bp deletion (allele 1) or 3-bp and 7-bp deletion (allele 2) in *GXYLT2*

GXYLT1

Wild Typ	pe:GGCCC <u>CGCAGCGCATCCCGGC</u> -	GTGTCGGACAGgtacgggcag
Allele	1:GGCCCCGCAGCGCAT	TGTCGGACAGgtacgggcag
Allele	2:GGCCCCGCAGCG	ggcag
Allele	3:(76-bp-del)(CTGCCCGTACCTGTGTCGGACAGgtacgggcag

GXYLT2

```
Wild Type:GCTGTGGGTGGCCTGTGGCAATCGGCTGGAG
Allele 1:GCTGTGGTGGCCTGT-----GGCTGGAG
Allele 2:GCTG---TGGCCTGTGGCAATC-----G
```

Figure S3. *GXYLT1, GXYLT2,* **and** *XXYLT1* **are expressed in HEK293T cells.** (A) The RT-qPCR analysis confirmed the gene expression of *GXYLT1, GXYLT2,* and *XXYLT1* in HEK293T cells. (B) Genomic sequence of the edited genomic regions in *GXYLT1, GXYLT2,* and *XXYLT1* in wild type HEK293T cells and corresponding knockout clones.

Figure S4. Knockout of the xylosyltransferases does not affect the attachment and elongation of *O*-fucose and *O*-GlcNAc glycans. EGF1-18, 19-36, and 24-28 from mouse NOTCH1 were produced in wild type, *GXYLT1/2* DKO, and *XXYLT1* KO HEK293T cells and purified from the medium as described in Materials and Methods. The protein was reduced, alkylated, purified by SDS-PAGE, and subjected to in-gel protease digestion. The resulting peptides were analyzed by LC-MS/MS, as described in Materials and Methods. (A) shows stoichiometry of *O*-fucose (Fuc) glycans on EGF3, EGF6 and EGF36 in NOTCH1, and (B) shows stoichiometry of *O*-GlcNAc glycans on EGF2, EGF10 and EGF20 in NOTCH1. Black bar, naked peptide; red triangle, Fuc; blue square, GlcNAc; yellow circle, galactose; purple diamond, Neu5Ac.

Figure S5. MS/MS spectra of (glyco)peptides with the predicted *O*-fucose site from NOTCH1. Samples were generated in wild type control HEK293T cells (A), *GXYLT1/2* DKO cells (B), *XXYLT1* KO cells (C) transfected with the plasmids encoding mouse NOTCH1 ECDs as described in Materials and Methods. The data in Figure S5-1 and S5-2 are derived from the analysis of mouse NOTCH1 EGF1-18. The data in Figure S5-3 are derived from the analysis of mouse NOTCH1 EGF19-36. MS/MS spectra confirmed the identity of (glyco)peptides based on the presence of peptide-specific b- and y-ions and neutral loss of predicted glycans. Amino acid sequences are shown with the identified fragment ions at the upper right corner. For each EGF repeat from NOTCH1, MS/MS spectra of glycopeptides modified with the major glycoform derived from each cell clone are shown. The sequence of peptides, the predicted and measured mass (m/z), and the charge state are summarized in Table S3.

Figure S6. MS/MS spectra of (glyco)peptides with the predicted *O*-GlcNAc site from NOTCH1. Samples were generated in wild type control HEK293T cells (A), *GXYLT1/2* DKO cells (B), *XXYLT1* KO cells (C) transfected with the plasmids encoding mouse NOTCH1 ECDs as described in Materials and Methods. The data in Figure S6-1 and S6-2 are derived from the analysis of mouse NOTCH1 EGF1-18. The data in Figure S6-3 are derived from the analysis of mouse NOTCH1 EGF19-36. MS/MS spectra confirmed the identity of (glyco)peptides based on the presence of peptide-specific b- and y- ions and neutral loss of predicted glycans. Amino acid sequences are shown with the identified fragment ions at the upper right corner. For each EGF repeat from NOTCH1, MS/MS spectra of glycopeptides modified with the major glycoform derived from each cell clone are shown. The sequence of peptides, the predicted and measured mass (m/z), and the charge state are summarized in Table S4.

Figure S7. Co-transfection of *XYLTs* **with NOTCH1 rescues xylosylation on NOTCH1.** NOTCH1 EGF1-18 and 19-36 are co-transfected with GXYLT1 and GXYLT2 in *GXYLT1/2* DKO cells or with *XXYLT1* in *XXYLT1* KO cells. The Notch proteins are purified from the medium as in Materials and Methods. Mass spectral data on EGF2, 14, and 28 are shown. Black bar, naked peptide; blue circle, *O*-Glc; orange star, xylose.

Figure 8. The raw data for Figure 6 "Xylosyl-extension of *O*-Glc glycans enhances the secretion of the ECDs of NOTCH1 and NOTCH2 overexpressed in HEK293T cells." (A) Data for Figure 6A. Secretion assay with the Myc-His6-tagged version of the EGF1-36 of NOTCH1 (N1 EGF1-36) in the wild type control and *XYLTs*' KO clones. The N1 EGF1-36 proteins in the culture media and the cell lysates were detected by western blotting using an anti-Myc antibody. EV, empty vector; N1, NOTCH1; G1, GXYLT1; G2; GXYLT2, X1; XXYLT1. (B) Data for Figure 6C. Secretion assay with the Myc-His6-tagged version of the EGF1-36 of NOTCH2 (N2 EGF1-36) in the wild type control and *XYLTs*' KO clones. The N2 EGF1-36 proteins in the culture media and the cell lysates were detected by western blotting using an anti-Myc antibody. EV, empty vector; N1, NOTCH1; G1, GXYLT1; G2; GXYLT2, X1; XXYLT1. (B) Data for Figure 6C. Secretion assay with the Myc-His6-tagged version of the EGF1-36 of NOTCH2 (N2 EGF1-36) in the wild type control and *XYLTs*' KO clones. The N2 EGF1-36 proteins in the culture media and the cell lysates were detected by western blotting using an anti-Myc antibody. EV, empty vector; N1, NOTCH1; G1, GXYLT1; G2; GXYLT2, X1; XXYLT1.

Table S1. Summary of mass spectral semi-quantification of NOTCH1 *O*-Glc glycans. The number of EGF repeats, the number of amino acids counted from the N-terminal, the peptide sequences, predicted mass (m/z), charge state, glycoform, measured mass (m/z), and glycoform ratio of the analyzed peptides are shown. In the glycoform ratio column, the average height of EICs and the standard error of the mean are shown (N=3). *Two biological replicates (N=2). The average and the range of two measurements are shown in the glycoform ratio column. Colored letters in sequences indicate post-translational modification sites. Blue, *O*-Glc; red, *O*-Fluc; green, *O*-GlcNAc.

						WT		GXYLT	1/2 DKO	XXYLT	1 KO
EGF	A.A.	Sequence	Predicted mass (m/z)	charge state	Glycoform	measured mass (m/z)	Glycoform Ratio	measured mass (m/z)	Glycoform Ratio	measured mass (m/z)	Glycofor m Ratio
2	57-69	CQDSNPCLSTPCK	775.3081	2+	naked	775.3086	1 ± 0 %	775.3055	1 ± 0 %	775.3214	0 ± 0 %
2	57-69	CQDSNPCLSTPCK	856.3345	2+	Glc	856.3346	1 ± 0 %	856.3477	98 ± 1 %	856.4729	2 ± 0 %
2	57-69	CQDSNPCLSTPCK	922.3557	2+	Xyl-Glc	933.3562	29 ± 3 %	922.2513	0 ± 0 %	933.1764	97 ± 0 %
2	57-69	CQDSNPCLSTPCK	988.3769	2+	Xyl-Xyl-Glc	988.3775	69 ± 3 %	988.3156	1±1%	988.8435	0 ± 0 %
4	137-165	SCQQADPCASNPCANGGQCLPFESSYICR	1112.1200	3+	naked	ND	0 ± 0 %	ND	0 ± 0 %	ND	0 ± 0 %
4	137-165	SCQQADPCASNPCANGGQCLPFESSYICR	1166.1376	3+	Glc	1166.807	3±0%	1166.0687	100 ± 0 %	1166.0870	4 ± 1 %
4	137-165	SCQQADPCASNPCANGGQCLPFESSYICR	1210.1517	3+	Xyl-Glc	1210.821	15 ± 2 %	1210.6472	0 ± 0%	1210.9284	95 ± 1 %
4	137-165	SCQQADPCASNPCANGGQCLPFESSYICR	1254.1658	3+	Xyl-Xyl-Glc	1254.833	82 ± 2 %	1254.3231	0 ± 0 %	1254.2387	0 ± 0 %
9	328-345	TGEDCSENIDDCASAACF	1011.3620	2+	naked	1011.3359	100 ± 0 %	1011.4922	100 ± 0 %	1011.2375*	100 ± 0 %
9	328-345	TGEDCSENIDDCASAACF	1092.3884	2+	Glc	ND	0 ± 0 %	ND	0 ± 0 %	ND*	0 ± 0 %
9	328-345	TGEDCSENIDDCASAACF	1158.4096	2+	Xyl-Glc	ND	0 ± 0 %	ND	0 ± 0 %	ND*	0 ± 0 %
9	328-345	TGEDCSENIDDCASAACF	1224.4307	2+	Xyl-Xyl-Glc	ND	0 ± 0 %	ND	0 ± 0 %	ND*	0 ± 0 %
10	366-395	TGLLCHLNDACISNPCNEGSNCDTNPVNGK	1111.479	3+	naked	1111.285	0 ± 0 %	1111.7050	1 ± 0 %	1111.7465	0 ± 0 %
10	366-395	TGLLCHLNDACISNPCNEGSNCDTNPVNGK	1165.4966	3+	Glc	1165.825	11 ± 1 %	1165.7761	24 ± 2 %	1165.4897	4 ± 2 %
10	366-395	TGLLCHLNDACISNPCNEGSNCDTNPVNGK	1209.5107	3+	Xyl-Glc	1209.844	9±0%	1209.4076	0 ± 0 %	1209.5458	43 ± 4 %
10	366-395	TGLLCHLNDACISNPCNEGSNCDTNPVNGK	1253.5248	3+	Xyl-Xyl-Glc	1253.857	28 ± 2 %	1253.2766	0 ± 0 %	1253.6475	0 ± 0 %
10	366-395	TGLLCHLNDACISNPCNEGSNCDTNPVNGK	1219.5142	3+	Hex-Glc	1219.846	24 ± 1 %	1219.1594	29 ± 4 %	1219.1119	13 ± 2 %
10	366-395	TGLLCHLNDACISNPCNEGSNCDTNPVNGK	1316.546	3+	Neu5Ac- Hex-Glc	1316.879	27 ± 1 %	1316.4708	47 ± 4 %	1316.2974	39 ± 2 %
12	445-474	TGPRCEIDVNECISNPCQNDATCLDQIGEF	1220.5197	3+	naked	ND	0 ± 0 %	1220.4792	0 ± 0 %	ND*	0 ± 0 %
12	445-474	TGPRCEIDVNECISNPCQNDATCLDQIGEF	1274.5373	3+	Glc	1274.5638	0 ± 0 %	1274.0725	55 ± 6 %	1274.5297*	4 ± 3 %
12	445-474	TGPRCEIDVNECISNPCQNDATCLDQIGEF	1318.5514	3+	Xyl-Glc	1318.4622	2 ± 2 %	1318.3816	1 ± 0 %	1318.0804*	96 ± 4 %
12	445-474	TGPRCEIDVNECISNPCQNDATCLDQIGEF	1362.5655	3+	Xyl-Xyl-Glc	1362.1283	98 ± 2 %	1362.6799	0 ± 0 %	1362.4866*	0 ± 0 %
12	445-474	TGPRCEIDVNECISNPCQNDATCLDQIGEF	1328.5549	3+	Hex-Glc	1328.7328	0 ± 0 %	1328.4028	31 ± 3 %	1328.9224*	0 ± 0 %
12	445-474	TGPRCEIDVNECI <mark>S</mark> NPCQNDA <mark>T</mark> CLDQIGEF	1425.5867	3+	Neu5Ac- Hex-Glc	ND	0 ± 0 %	1425.9257	13 ± 6 %	1425.9411*	0 ± 0 %
13	482-512	CEINTDECASSPCLHNGHCMDKINEF	785.5687	4+	naked	785.2771	0 ± 0 %	785.0084	0 ± 0 %	785.0961*	0 ± 0 %
13	482-512	CEINTDECASSPCLHNGHCMDKINEF	826.0819	4+	Glc	826.5149	0 ± 0 %	826.3158	100 ± 0 %	826.3374*	17 ± 13 %
13	482-512	CEINTDECASSPCLHNGHCMDKINEF	859.0924	4+	Xyl-Glc	858.8657	1±1%	858.4297	0 ± 0 %	858.1957*	83 ± 13 %
13	482-512	CEINTDECASSPCLHNGHCMDKINEF	892.1030	4+	Xyl-Xyl-Glc	892.1840	99 ± 1 %	892.3415	0 ± 0 %	892.2477*	0 ± 0 %

14	519-538	GFNGHLCQYDVDECASTPCK	786.6582	3+	naked	ND	1 ± 0 %	786.9038	1 ± 0 %	786.4928	±0%
14	519-538	GFNGHLCQYDVDECASTPCK	840.6758	3+	Glc	ND	1 ± 0 %	840.1834	98 ± 1 %	840.6792	2 ± 0 %
14	519-538	GFNGHLCQYDVDECASTPCK	884.6899	3+	Xyl-Glc	885.0549	28 ± 5 %	884.1941	1 ± 0 %	884.6925	97 ± 1 %
14	519-538	GFNGHLCQYDVDECASTPCK	928.704	3+	Xyl-Xyl-Glc	929.0391	71 ± 5 %	928.5175	1 ± 1 %	928.1634	0 ± 0 %
16	582-613	DGVATFTCLCQPGYTGHHCETNINECHSQPCR	1007.16418	4+	naked	ND	0 ± 0 %	ND	0 ± 0 %	ND	0 ± 0 %
16	582-613	DGVATFTCLCQPGYTGHHCETNINECHSQPCR	1047.67738	4+	Glc	ND	0 ± 0 %	1047.3729	100 ± 0 %	ND	0 ± 0 %
16	582-613	DGVATFTCLCQPGYTGHHCETNINECHSQPCR	1080.68795	4+	Xyl-Glc	ND	0 ± 0 %	ND	0 ± 0 %	1080.2937	100 ± 0 %
16	582-613	DGVATFTCLCQPGYTGHHCETNINECHSQPCR	1113.69853	4+	Xyl-Xyl-Glc	1114.2009	100 ± 0 %	ND	0 ± 0 %	ND	0 ± 0 %
17	632-658	GTTGPNCEINLDDCASNPCDSGTCLDK	1112.77643	3+	naked	1111.4284	1 ± 0 %	1112.2847	28 ± 3 %	1112.4478	1 ± 1 %
17	632-658	GTTGPNCEINLDDCASNPCDSGTCLDK	1166.79403	3+	Glc	1166.8013	1 ± 0 %	1166.5844	68 ± 3 %	1166.7941	1 ± 1 %
17	632-658	GTTGPNCEINLDDCASNPCDSGTCLDK	1210.80813	3+	Xyl-Glc	1211.1553	29 ± 3 %	1211.3663	2 ± 1 %	1211.4894	97 ± 1 %
17	632-658	GTTGPNCEINLDDCASNPCDSGTCLDK	1254.82223	3+	Xyl-Xyl-Glc	1254.8311	69 ± 3 %	1254.1699	2 ± 0 %	1254.6852	1 ± 1 %
19	704-731	CPEGYHDPTCLSEVNECNSNPCIHGACR	834.0869	3+	naked	834.6639	29 ± 1 %	834.9720	24 ± 5 %	834.0064	33 ± 2 %
19	704-731	CPEGYHDPTCLSEVNECNSNPCIHGACR	874.6001	3+	Glc	874.6599	4 ± 1 %	874.5538	75 ± 5 %	874.2295	3 ± 1 %
19	704-731	CPEGYHDPTCLSEVNECNSNPCIHGACR	907.6106	3+	Xyl-Glc	907.9304	1±1%	907.0809	0 ± 0 %	907.7001	64 ± 2 %
19	704-731	CPEGYHDPTCLSEVNECNSNPCIHGACR	940.6212	3+	Xyl-Xyl-Glc	940.8922	66 ± 3 %	940.7333	1 ± 1 %	940.5528	0 ± 0 %
20	739-769	CDCAPGWSGTNCDINNNECESNPCVNGGTCK	1232.1293	3+	naked	1232.0637	14 ± 2 %	1232.8530	13 ± 3 %	1232.0841	19 ± 2 %
20	739-769	CDCAPGWSGTNCDINNNECESNPCVNGGTCK	1286.1469	3+	Glc	1286.7441	2 ± 1 %	1286.4574	86 ± 3 %	1286.5417	2 ± 1 %
20	739-769	CDCAPGWSGTNCDINNNECESNPCVNGGTCK	1330.161	3+	Xyl-Glc	1329.7700	1±1%	1329.8492	1 ± 0 %	1330.5839	79 ± 1 %
20	739-769	CDCAPGWSGTNCDINNNECESNPCVNGGTCK	1374.1751	3+	Xyl-Xyl-Glc	1374.7952	84 ± 2 %	1374.6488	1 ± 1 %	1374.9282	0 ± 0 %
21	781-814	EGFSGPNCQTNINECASNPCLNQGTCIDDVAGYK	1076.4501	4+	naked	1076.9028	3±1%	1076.2213	32 ± 10 %	1076.6600	8 ± 6 %
21	781-814	EGFSGPNCQTNINECASNPCLNQGTCIDDVAGYK	1116.9633	4+	Glc	1116.1684	0 ± 0 %	1116.8744	65 ± 6 %	1116.4807	2 ± 1 %
21	781-814	EGFSGPNCQTNINECASNPCLNQGTCIDDVAGYK	1149.97388	4+	Xyl-Glc	1149.1235	21 ± 10 %	1150.7433	0 ± 0 %	1149.3826	88 ± 5 %
21	781-814	EGFSGPNCQTNINECASNPCLNQGTCIDDVAGYK	1182.98445	4+	Xyl-Xyl-Glc	1182.7345	76 ± 11 %	1182.1546	4 ± 4 %	1182.4293	2 ± 1 %
25	942-967	CEEDINECASNPCQNGADCTDCVDSY	1034.02793	3+	naked	1033.8633*	30 ± 13 %	1033.0846*	25 ± 4 %	1033.7456*	64 ± 0 %
25	942-967	CEEDINECASNPCQNGADCTDCVDSY	1088.04553	3+	Glc	1087.8568*	0 ± 0 %	1088.2751*	75 ± 4 %	1088.5379*	0 ± 0 %
25	942-967	CEEDINECASNPCQNGADCTDCVDSY	1132.05963	3+	Xyl-Glc	1132.7153*	1 ± 1 %	1132.7887*	0 ± 0 %	1132.8135*	36 ± 0 %
25	942-967	CEEDINECASNPCQNGADCTDCVDSY	1176.07373	3+	Xyl-Xyl-Glc	1176.6862*	69 ± 12 %	1176.9320*	0 ± 0 %	1176.1529*	0 ± 0 %
27	1021-1043	DVNECDSRPCLHGGTCQDSYGTY	952.0408	3+	naked	952.0937	45 ± 11 %	952.6852	30 ± 4 %	952.2100*	20 ± 16 %
27	1021-1043	DVNECDSRPCLHGGTCQDSYGTY	1006.0584	3+	Glc	1006.1933	49 ± 15 %	1006.1989	70 ± 4 %	1006.7749*	78 ± 16 %
27	1021-1043	DVNECDSRPCLHGGTCQDSYGTY	1050.0725	3+	Xyl-Glc	ND	0 ± 0 %	ND	0 ± 0 %	1050.6274*	2 ± 0 %
27	1021-1043	DVNECDSRPCLHGGTCQDSYGTY	1094.0866	3+	Xyl-Xyl-Glc	1094.5572	6 ± 4 %	ND	0 ± 0 %	ND*	0 ± 0 %
28	1062-1069	WCDSAPCK	512.2053	2+	naked	512.4991	36 ± 1 %	512.3639	37 ± 5 %	512.4764	41 ± 4 %
28	1062-1069	WCDSAPCK	593.2317	2+	Glc	593.7694	64 ± 1 %	593.4158	63 ± 5 %	593.2895	57 ± 4 %
28	1062-1069	WCDSAPCK	659.25285	2+	Xyl-Glc	660.4237	0 ± 0 %	659.4829	0 ± 0 %	659.1278	2 ± 1 %
28	1062-1069	WCDSAPCK	703.26695	2+	Xyl-Xyl-Glc	703.8407	0 ± 0 %	703.1400	0 ± 0 %	ND	0 ± 0 %
31	1176-1205	HGSDCSEEINECLSQPCQNGGTCIDLTNSY	1198.1480	3+	naked	1198.3647*	29 ± 3 %	1198.6564	20 ± 2 %	1198.0699*	0 ± 0 %
31	1176-1205	HGSDCSEEINECLSQPCQNGGTCIDLTNSY	1252.1656	3+	Glc	ND*	0 ± 0 %	1253.2573	80 ± 2 %	1252.7629*	1 ± 0 %

31	1176-1205	HGSDCSEEINECLSQPCQNGGTCIDLTNSY	1296.1797	3+	Xyl-Glc	ND*	0 ± 0 %	1296.4331	0 ± 0 %	1296.7633*	97 ± 1 %
31	1176-1205	HGSDCSEEINECLSQPCQNGGTCIDLTNSY	1340.1938	3+	Xyl-Xyl-Glc	1340.5931*	71 ± 3 %	1340.8524	0 ± 0 %	1340.8941*	2 ± 1 %
33	1264-1279	CEGDVNECLSNPCDPR	952.864525	2+	naked	952.1117	33 ± 4 %	952.8756	31 ± 4 %	952.3445	38 ± 2 %
33	1264-1279	CEGDVNECLSNPCDPR	1033.89093	2+	Glc	1033.2603	6 ± 0 %	1033.2455	68 ± 5 %	1033.2875	4 ± 1 %
33	1264-1279	CEGDVNECLSNPCDPR	1100.41208	2+	Xyl-Glc	1100.8854	25 ± 5 %	1100.3941	1 ± 0 %	1100.6274	58 ± 2 %

Table S2. Summary of mass spectral semi-quantification of NOTCH2 *O*-Glc glycans. The number of EGF repeats, the number of amino acids counted from the N-terminal, the peptide sequences, predicted mass (m/z), charge state, glycoform, measured mass (m/z), and glycoform ratio of the analyzed peptides are shown. In the glycoform ratio column, the average height of EICs and the standard error of the mean are shown (N=3). * Two biological replicates (N=2). The average and the range of two measurements are shown in the glycoform ratio column. Colored letters in sequences indicate post-translational modification sites. Blue, *O*-Glc; red, *O*-Fuc; green, *O*-GlcNAc.

					WT		<i>GXYLT1/</i> 2 DKO		XXYL	T1 KO	
EGF	A.A.	Sequence	Predicted mass (m/z)	charge state	Glycoform	measured mass (m/z)	Glycofor m Ratio	measured mass (m/z)	Glycofor m Ratio	measured mass (m/z)	Glycofor m Ratio
4	141-169	QCQWTDACLSHPCENGSTCTSVASQFSCK	1184.8130	3+	naked	1184.254 9	0 ± 0 %	1184.324 8	0 ± 0 %	1184.257 6	0 ± 0 %
4	141-169	QCQWTDACLSHPCENGSTCTSVASQFSCK	1238.8306	3+	Glc	1238.765 2	40 ± 3 %	1238.856 4	100 ± 0 %	1238.476 1	26 ± 8 %
4	141-169	QCQWTDACLSHPCENGSTCTSVASQFSCK	1282.8447	3+	Xyl-Glc	1282.497 3	59 ± 3 %	1282.776 1	0 ± 0 %	1282.840 0	72 ± 8 %
4	141-169	QCQWTDACLSHPCENGSTCTSVASQFSCK	1326.8588	3+	Xyl-Xyl-Glc	ND	0 ± 0 %	ND	0 ± 0 %	ND	0 ± 0 %
10	369-389	AGLLCHLDDACISNPCHK	521.2407	4+	naked	521.2441	0 ± 0 %	521.7644	1±1%	521.9007	0 ± 0 %
10	369-389	AGLLCHLDDACISNPCHK	561.7539	4+	Glc	561.8347	61 ± 10 %	561.3817	99 ± 1 %	561.7539	51 ± 5 %
10	369-389	AGLLCHLDDACISNPCHK	594.7645	4+	Xyl-Glc	594.0902	13 ± 6 %	594.3344	0 ± 0%	594.6254	48 ± 5 %
10	369-389	AGLLCHLDDACISNPCHK	672.7751	4+	Xyl-Xyl-Glc	672.1874	21 ± 4 %	672.6055	0 ± 0 %	672.1811	0 ± 0 %
12	453-474	CEMDINECHSDPCQNDATCLDK	953.6956	3+	naked	ND	0 ± 0 %	ND	0 ± 0 %	953.3561	0 ± 0 %
12	453-474	CEMDINECHSDPCQNDATCLDK	1007.7132	3+	Glc	ND	0 ± 0 %	1007.714 6	82 ± 7 %	ND	0 ± 0 %
12	453-474	CEMDINECHSDPCQNDATCLDK	1051.7273	3+	Xyl-Glc	1051.344 7	3 ± 4 %	ND	0 ± 0 %	1051.728 0	98 ± 1 %
12	453-474	CEMDINECHSDPCQNDATCLDK	1095.7414	3+	Xyl-Xyl-Glc	1096.074 7	97 ± 4 %	1096.076 2	2 ± 1 %	ND	0 ± 0 %
12	453-474	CEMDINECHSDPCQNDATCLDK	1061.7308	3+	Hex-Glc	ND	0 ± 0 %	1061.731 8	16 ± 6 %	ND	1 ± 1 %
13	488-512	GVHCELEVNECQSNPCVNNGQCVDK	983.0808	3+	naked	983.4023	0 ± 0 %	ND	1 ± 1 %	ND	0 ± 0 %

13	488-512	GVHCELEVNECQSNPCVNNGQCVDK	1037.0984	3+	Glc	ND	0±%	1037.432 0	97 ± 1 %	ND	0 ± 1 %
13	488-512	GVHCELEVNECQSNPCVNNGQCVDK	1081.1125	3+	Xyl-Glc	1081.696 8	4 ± 3 %	ND	0 ± 0 %	1081.445 0	99 ± 1 %
13	488-512	GVHCELEVNECQSNPCVNNGQCVDK	1125.1266	3+	Xyl-Xyl-Glc	1125.459 3	95 ± 3 %	1125.127 2	1 ± 0 %	1125.793 7	0 ± 0 %
14	516-546	FQCLCPPGFTGPVCQIDIDDCSSTPCLNGAK	1240.2063.	3+	naked	1241.260 1	0 ± 0 %	ND	0 ± 0 %	ND	0 ± 0 %
14	516-546	FQCLCPPGFTGPVCQIDIDDCSSTPCLNGAK	1294.2239	3+	Glc	1294.744 8	4 ± 0 %	1294.557 4	100 ± 0 %	ND	1 ± 1 %
14	516-546	FQCLCPPGFTGPVCQIDIDDCSSTPCLNGAK	1338.2380	3+	Xyl-Glc	1338.397 1	4 ± 2 %	ND	0 ± 0 %	1338.571 2	99 ± 1 %
14	516-546	FQCLCPPGFTGPVCQIDIDDCSSTPCLNGAK	1382.2521	3+	Xyl-Xyl-Glc	1382.291 5	92 ± 2 %	ND	0 ± 0 %	ND	0 ± 0 %
16	611-619	CYSSPCLND	549.6975	2+	naked	549.3762	1 ± 1 %	549.8763	17 ± 3 %	549.1278	6 ± 0 %
16	611-619	CYSSPCLND	630.7239	2+	Glc	630.2768	9±1%	630.0487	83 ± 3 %	630.4875	26 ± 4 %
16	611-619	CYSSPCLND	696.7451	2+	Xyl-Glc	696.6941	6 ± 5 %	696.4211	0 ± 0 %	696.7422	68 ± 4 %
16	611-619	CYSSPCLND	762.7662	2+	Xyl-Xyl-Glc	762.8571	84 ± 5 %	762.3674	0 ± 0 %	762.4855	0 ± 0 %
18	679-692	CNIDIDECASNPCR	862.3458	2+	naked	861.3684	3 ± 0 %	862.2873	1 ± 1 %	862.0773	2 ± 1 %
18	679-692	CNIDIDECASNPCR	943.3722	2+	Glc	943.4132	2 ± 0 %	943.5864	98 ± 1 %	943.2765	1 ± 0 %
18	679-692	CNIDIDECASNPCR	1009.3934	2+	Xyl-Glc	1009.394 1	37 ± 3 %	1009.936 6	0 ± 0 %	1009.401 8	97 ± 1 %
18	679-692	CNIDIDECASNPCR	1075.9159	2+	Xyl-Xyl-Glc	1075.916 2	59 ± 3 %	1076.852 3	0 ± 0 %	1075.386 4	0 ± 0 %
19	706-742	CICPEGPHHPSCYSQVNECLSNPCIHGDCTGGLSGYK	850.558	5+	naked	ND	0 ± 0 %	850.1234	9±1%	ND	0 ± 0 %
19	706-742	CICPEGPHHPSCYSQVNECLSNPCIHGDCTGGLSGYK	882.9686	5+	Glc	ND	0 ± 0 %	882.8974	91 ± 1 %	882.1453	1 ± 0 %
19	706-742	CICPEGPHHPSCYSQVNECLSNPCIHGDCTGGLSGYK	909.3770	5+	Xyl-Glc	ND	0 ± 0 %	ND	0 ± 0 %	909.3866	99 ± 0 %
19	706-742	CICPEGPHHPSCYSQVNECLSNPCIHGDCTGGLSGYK	935.7855	5+	Xyl-Xyl-Glc	935.9877	100 ± 0 %	ND	0 ± 0 %	ND	0 ± 0 %
20	759-780	NECLSNPCQNGGTCNNLVNGYR	896.3798	3+	naked	ND	0 ± 0 %	ND	0 ± 0 %	ND	0 ± 0 %
20	759-780	NECLSNPCQNGGTCNNLVNGYR	950.3947	3+	Glc	ND	0 ± 0 %	950.7438	100 ± 0 %	ND	0 ± 0 %
20	759-780	NECLSNPCQNGGTCNNLVNGYR	994.4115	3+	Xyl-Glc	ND	0 ± 0 %	ND	0 ± 0 %	994.6183	100 ± 0 %
20	759-780	NECLSNPCQNGGTCNNLVNGYR	1038.426	3+	Xyl-Xyl-Glc	1038.795 2	100 ± 0 %	ND	0 ± 0 %	ND	0 ± 0 %
21	789-828	GYNCQVNIDECASNPCLNQGTCFDDVSGYTCHCMLPYTG K	1213.9940	4+	naked	1213.463 7	0 ± 0 %	1213.346 8	0 ± 0 %	1213.471 1	0 ± 0 %
21	789-828	GYNCQVNIDECASNPCLNQGTCFDDVSGYTCHCMLPYTG K	1254.5072	4+	Glc	1254.379 8	16 ± 4 %	1254.676 8	100 ± 0 %	1254.871 5	5 ± 3%

21	789-828	GYNCQVNIDECASNPCLNQGTCFDDVSGYTCHCMLPYTG K	1287.5178	4+	Xyl-Glc	1287.060 4	5 ± 5 %	1287.167 6	0 ± 0 %	1287.498 6	95 ± 3 %
21	789-828	GYNCQVNIDECASNPCLNQGTCFDDVSGYTCHCMLPYTG K	1320.5284	4+	Xyl-Xyl-Glc	1320.529 6	79 ± 5 %	1320.293 4	0 ± 0 %	1319.378 5	0 ± 0 %
23	870-880	CTVDVDECISK	663.2895	2+	naked	ND	100 ± 0 %	ND	100 ± 0 %	ND	100 ± 0 %
23	870-880	CTVDVDECISK	744.3159	2+	Glc	ND	0 ± 0 %	ND	0 ± 0 %	ND	0±0%
23	870-880	CTVDVDECISK	810.3371	2+	Xyl-Glc	ND	0 ± 0 %	ND	0 ± 0 %	ND	0 ± 0 %
23	870-880	CTVDVDECISK	876.3582	2+	Xyl-Xyl-Glc	ND	0 ± 0 %	ND	0 ± 0 %	ND	0 ± 0 %
25	946-959	CQTDMNECLSEPCK	886.3419	2+	naked	886.4763	3 ± 0%	886.4476	2 ± 1 %	886.9701	0 ± 0 %
25	946-959	CQTDMNECLSEPCK	967.3683	2+	Glc	967.4822	0 ± 0 %	967.2399	98 ± 1 %	967.0544	0 ± 0 %
25	946-959	CQTDMNECLSEPCK	1033.3894	2+	Xyl-Glc	1033.476 9	31 ± 5 %	1033.276 8	0 ± 0 %	1033.351 9	100 ± 0 %
25	946-959	CQTDMNECLSEPCK	1099.9120	2+	Xyl-Xyl-Glc	1099.286 5	66 ± 5 %	1099.470 0	0 ± 0 %	1100.835 5	0 ± 0 %
27	1022-1047	CLHDINECSSNPCLNAGTCVDGLGTY	1019.418	3+	naked	ND	0 ± 0 %	ND	0 ± 0 %	ND	0 ± 0 %
27	1022-1047	CLHDINECSSNPCLNAGTCVDGLGTY	1073.435	3+	Glc	1073.482 6	0 ± 0 %	1073.253 5	100 ± 0 %	1073.963 7	0 ± 0 %
27	1022-1047	CLHDINECSSNPCLNAGTCVDGLGTY	1117.449	3+	Xyl-Glc	1117.324 9	0 ± 0 %	1117.112 5	0 ± 0 %	1117.287 7	100 ± 0 %
27	1022-1047	CLHDINECSSNPCLNAGTCVDGLGTY	1161.463	3+	Xyl-Xyl-Glc	1161.554 3	100 ± 0 %	1161.942 2	0 ± 0 %	1161.735 0	0 ± 0 %
30	1153-1174	CASNPCQHGATCNDFIGGYRCE	880.3401	3+	naked	ND	0 ± 0 %	ND	0 ± 0 %	ND	0 ± 0 %
30	1153-1174	CASNPCQHGATCNDFIGGYRCE	961.3665	3+	Glc	961.5782	6 ± 1 %	961.7420	100 ± 0 %	961.4750	4 ± 1 %
30	1153-1174	CASNPCQHGATCNDFIGGYRCE	1005.3806	3+	Xyl-Glc	1005.679 4	31 ± 4 %	1005.334 9	0 ± 0 %	1005.363 7	96 ± 1 %
30	1153-1174	CASNPCQHGATCNDFIGGYRCE	1049.3947	3+	Xyl-Xyl-Glc	1049.287 1	63 ± 4 %	1049.286 4	0 ± 0 %	1049.057 2	0 ± 0 %
33	1261-1285	CEGDINECLSNPCSSEGSLDCVQLK	958.0696	3+	naked	958.4327	0 ± 0 %	958.2374	0 ± 0 %	958.8433	1 ± 1 %
33	1261-1285	CEGDINECLSNPCSSEGSLDCVQLK	1012.0873	3+	Glc	1012.376 9	0 ± 0 %	ND	0 ± 0 %	1012.546 9	0 ± 1 %
33	1261-1285	CEGDINECLSNPCSSEGSLDCVQLK	1056.1014	3+	Xyl-Glc	1056.187 2	61 ± 3 %	1056.449 8	8 ± 1 %	1056.763 4	99 ± 1 %
33	1261-1285	CEGDINECLSNPCSSEGSLDCVQLK	1100.1155	3+	Xyl-Xyl-Glc	1100.186 6	39 ± 3 %	1100.379 9	0 ± 1 %	1100.287 1	0 ± 0 %
33	1176-1205	HGSDCSEEINECLSQPCQNGGTCIDLTNSY	1066.1049	3+	Hex-Glc	ND	0 ± 0 %	1066.105 9	82 ± 6 %	ND	0 ± 0 %
33	1176-1205	HGSDCSEEINECLSQPCQNGGTCIDLTNSY	1163.1367	3+	Neu5Ac-Hex-Glc	ND	0 ± 0 %	1163.783 4	10 ± 6 %	ND	0 ± 0 %

36	1373-1393	DCESGCASNPCQHGGTCYPQR	863.3297	3+	naked	863.6824	2 ± 1 %	863.4876	3 ± 2 %	863.9731	3 ± 1 %
36	1373-1393	DCESGCASNPCQHGGTCYPQR	917.3473	3+	Glc	917.9186	66 ± 10 %	917.2323	97 ± 2 %	917.2111	58 ± 5 %
36	1373-1393	DCESGCASNPCQHGGTCYPQR	961.3614	3+	Xyl-Glc	961.2832	0 ± 1 %	961.7351	0 ± 0 %	961.4577	39 ± 6 %
36	1373-1393	DCESGCASNPCQHGGTCYPQR	1005.3755	3+	Xyl-Xyl-Glc	1005.473 3	30 ± 10 %	1005.832 2	0 ± 0 %	ND	0 ± 0 %

Table S3. Summary of mass spectral semi-quantification of NOTCH1 *O*-fucose glycans. The number of EGF repeats, the number of amino acids counted from the N-terminal, the peptide sequences, predicted mass (m/z), charge state, glycoform, measured mass (m/z), and glycoform ratio of the analyzed peptides are shown. In the glycoform ratio column, the average height of EICs and the standard error of the mean are shown (N=3). Colored letters in sequences indicate post-translational modification sites. Red, *O*-Fuc.

_						WT		GXYLT1/2 DKO		XXYL	T1 KO
EGF	A.A.	Sequence	Predicted mass (m/z)	charge state	Glycoform	measured mass (m/z)	Glycoform Ratio	measured mass (m/z)	Glycoform Ratio	measured mass (m/z)	Glycoform Ratio
2	113-126	NGG <mark>T</mark> CDLLTLTEYK	792.8829	2+	naked	792.6573	1 ± 0 %	793.0288	1 ± 0 %	792.1849	1 ± 0 %
2	113-126	NGG <mark>T</mark> CDLLTLTEYK	865.9118	2+	Fuc	865.7168	99 ± 0 %	865.9923	99 ± 1 %	866.4625	99 ± 0 %
6	208-234	ATHTGPHCELPYVPCSPSPCQNGGTCR	760.8289	4+	naked	760.9859	2 ± 1 %	760.1754	7 ± 2 %	760.4492	5±1%
6	208-234	ATHTGPHCELPYVPCSPSPCQNGGTCR	797.3434	4+	Fuc	797.5814	98 ± 1 %	797.0067	93 ± 2 %	797.5836	95 ± 1 %
36	1369-1413	SPTCLCLGSFTGPECQFPASSPCVGSNPCYNQGTCEPTSENPFYR	1371.5691	4+	naked	1371.2829	1±1%	1371.5901	0 ± 0 %	1371.2299	0±0%
36	1369-1413	SPTCLCLGSFTGPECQFPASSPCVGSNPCYNQGTCEPTSENPFYR	1408.0836	4+	Fuc	1408.3744	99 ± 1 %	1407.6376	100 ± 0 %	1408.1857	100 ± 0 %

Table S4. Summary of mass spectral semi-quantification of NOTCH1 *O***-GlcNAc glycans.** The number of EGF repeats, the number of amino acids counted from the N-terminal, the peptide sequences, predicted mass (m/z), charge state, glycoform, measured mass (m/z), and glycoform ratio of the analyzed peptides are shown. In the glycoform ratio column, the average height of EICs and the standard error of the mean are shown (N=3). Colored letters in sequences indicate post-translational modification sites. Blue, *O*-Glc; red, *O*-Fuc; green, *O*-GlcNAc.

						W	Г	GXYLT	1/2 DKO	XXYL	T1 KO
EGF	A.A.	Sequence	Predicted mass (m/z)	charge state	Glycoform	measured mass (m/z)	Glycofor m Ratio	measured mass (m/z)	Glycofor m Ratio	measured mass (m/z)	Glycofor m Ratio
2	70-112	NAGTCHVVDHGGTVDYACSCPLGFSGPLCLTPLDNACLANPCR	1213.5366	4+	naked	1213.4516	71 ± 6 %	1213.8911	77 ± 3 %	1213.108 7	70 ± 6 %
2	70-112	NAGTCHVVDHGGTVDYACSCPLGFSGPLCLTPLDNACLANPCR	1264.3064	4+	GlcNAc	1264.4866	3 ± 1 %	1264.3458	2 ± 1 %	1264.792 4	2 ± 1 %
2	70-112	NAGTCHVVDHGGTVDYACSCPLGFSGPLCLTPLDNACLANPCR	1304.8196	4+	Gal- GlcNAc	1304.5226	9±1%	1304.9345	6 ± 1 %	1304.008 3	5±1%
2	70-112	NAGTCHVVDHGGTVDYACSCPLGFSGPLCLTPLDNACLANPCR	1377.5935	4+	Neu5Ac- Gal- GlcNAc	1377.4379	17 ± 3 %	1377.7476	14 ± 2 %	1377.995 4	23 ± 5 %
10	396-428	AICTCPSGYTGPACSQDVDECALGANPCEHAGK	1185.4912	3+	naked	1185.6047	91 ± 0 %	1185.6248	100 ± 0 %	1185.2671	99 ± 0 %
10	396-428	AICTCPSGYTGPACSQDVDECALGANPCEHAGK	1253.1843	3+	GlcNAc	1253.4771	8 ± 0 %	1253.455 8	0 ± 0 %	12541621	0 ± 0 %
10	396-428	AICTCPSGYTGPACSQDVDECALGANPCEHAGK	1307.2019	3+	Gal- GlcNAc	1307.3298	0 ± 0 %	ND	0 ± 0 %	1307.672 9	1 ± 0 %
10	396-428	AICTCPSGYTGPACSQDVDECALGANPCEHAGK	1404.2337	3+	Neu5Ac- Gal- GlcNAc	1404.5557	0 ± 0 %	1403.988 3	0 ± 0 %	ND	0 ± 0 %
20	781-814	EGFSGPNCQTNINECASNPCLNQGTCIDDVAGYK	1091.7014	4+	naked	1091.8113	17 ± 1 %	1091.419 5	17 ± 3 %	1092.019 5	24 ± 9 %
20	781-814	EGFSGPNCQTNINECASNPCLNQGTCIDDVAGYK	1142.4713	4+	GlcNAc	1142.7856	2 ± 1 %	1142.989 7	10 ± 1 %	1142.882 2	9±6%
20	781-814	EGFSGPNCQTNINECASNPCLNQGTCIDDVAGYK	1182.9845	4+	Gal- GlcNAc	1183.0492	64 ± 2 %	1182.381 4	58 ± 7 %	1182.356 9	51 ± 5 %
20	781-814	EGFSGPNCQTNINECASNPCLNQGTCIDDVAGYK	1255.7584	4+	Neu5Ac- Gal- GlcNAc	1255.3632	16 ± 1 %	1255.690 2	15 ± 4 %	1255.482 1	16 ± 2 %