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Abstract: Studies in humans and mice have revealed that hair follicle morphogenesis relies on
tightly coordinated ectodermal–mesodermal interactions, involving multiple signals and regulatory
factors. DNA methylation and long non-coding RNA (lncRNA) play a critical role in early embryonic
skin development by controlling gene expression. Acting as an indirect regulator, lncRNA could
recruit DNA methyltransferases to specific genomic sites to methylate DNA. However, the molecular
regulation mechanisms underlying hair follicle morphogenesis is unclear in cashmere goat. In this
study, RNA-seq and whole-genome bisulfite sequencing (WGBS) in embryonic day 65 (E 65) and E 120
skin tissues of cashmere goat were used to reveal this complex regulatory process. The RNA-seq,
qRT-PCR, and immunohistochemistry results showed that Wnt signaling played an important role in
both hair follicle induction and differentiation stage; transcriptional factors (TFs), including HOXC13,
SOX9, SOX21, JUNB, LHX2, VDR, and GATA3, participated in hair follicle differentiation via specific
expression at E 120. Subsequently, the combination of WGBS and RNA-seq analysis showed that
the expression of some hair follicle differentiation genes and TF genes were negatively correlated
with the DNA methylation level generally. A portion of hair follicle differentiation genes were
methylated and repressed in the hair follicle induction stage but were subsequently demethylated
and expressed during the hair follicle differentiation stage, suggesting that DNA methylation plays
an important role in hair morphogenesis by regulating associated gene expression. Furthermore,
45 upregulated and 147 downregulated lncRNAs in E 120 compared with E 65 were identified by
lncRNA mapping, and then the potential differentially expressed lncRNAs associated with DNA
methylation on the target gene were revealed. In conclusion, critical signals and genes were revealed
during hair follicle morphogenesis in the cashmere goat. In this process, DNA methylation was
lower in the hair follicle differentiation compared with the hair follicle induction stage and may play
an important role in hair morphogenesis by regulating associated gene expression. Furthermore,
potential lncRNAs associated with DNA methylation on target genes were delineated. This study
enriches the regulatory network and molecular mechanisms on hair morphogenesis.

Keywords: hair follicle morphogenesis; differentiation; DNA methylation; lncRNA; cashmere goat;
Wnt signaling
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1. Introduction

Hair is a primary characteristic of mammals, and exerts a wide range of functions, including
thermoregulation, physical protection, sensory activity, and social interactions [1,2]. Cashmere is
an upmarket textile material produced by the secondary hair follicle with high economic value [3,4].
As the number and quality of cashmere depend on cashmere morphogenesis, it is therefore of great
value to dissect the critical genes, signaling pathways, and their regulatory machinery underlying hair
follicle morphogenesis in the cashmere goat.

Hair follicle morphogenesis takes place during embryonic skin development, which relies on
tightly coordinated ectodermal–mesodermal interactions [5–8]. Researches in mice showed that
hair follicle morphogenesis is initiated after secreted epidermal Wnts activate broad dermal Wnt
signaling [9], which in turn, through unknown dermal signaling and subsequent Wnt, Eda, and Fgf20
epidermal downstream signaling, leads to hair placode (Pc) induction in the epidermis [2,10,11]
and dermal condensate (DC) formation below [12,13]. Following the induction stage, hair follicles
enter organogenesis and the subsequent cytodifferentiation stage, in which Pc cells give rise to all
the epithelial components of a fully developed hair follicle, including the outer root sheath, inner root
sheath, hair matrix, hair shaft, and hair follicle stem cell, while DC cells develop into the follicular
dermal papilla and connective tissue sheath [14–16]. A previous morphology study on the Inner
Mongolia cashmere goat showed that cashmere hair follicle induction was initiated around embryonic
day 65 (E 65), and subsequent differentiation thrived around E 120 [17]. A number of molecules and their
interactions in each phase, which play a role in hair follicle development, have been identified using
the transgenic mice model and hair follicle regeneration assay [18–20]. However, the unique molecular
features of specific cell types and the regulatory relationships between the signaling pathways involved
in these processes are largely unknown [21], especially in cashmere.

Hair follicle morphogenesis results from the process of temporal-spatial expression of genes
under the control of genetic and epigenetics, while DNA methylation has been shown to be
implicated in the regulation of cell- or tissue-specific gene expression during embryogenesis [22,23].
DNA methylation undergoes dynamic remodeling during early embryogenesis to initially establish
a globally demethylated state and then, subsequently, a progressively lineage-specific methylome
that maintains the cellular identity and genomic stability [24,25]. As development and differentiation
proceed, differentiated cells accumulate epigenetic marks that differ from those of pluripotent cells,
and differentiated cells of different lineages also accumulate different marks [26,27]. Corresponding
with that, Bock revealed that DNA methylation changes were locus specific and frequently overlapped
with lineage-associated transcription factors, and their binding sites. CEBPB, GATA3, and HOXA5,
were under the control of DNA methylation and involved in skin and hair follicle differentiation [28].
Through integrated analysis of the methylome and transcriptome, Xiao found 14 crucial factors for
wool fiber development under the control of epigenetic mechanisms during curly fleece dynamics in
Zhongwei goats [29]. Li revealed that FMN1, PCOLCE, SPTLC3, and COL5A1 were crucial factors for
elucidating the epigenetic mechanisms contributing to the telogen-to-anagen transition in cashmere
goats [30]. In mice, Li demonstrated that DNA methylation played an important role in maintaining
hair follicle stem cells’ homeostasis during development and regeneration [31]. However, the function
of DNA methylation in regulating cell lineage specification during hair morphogenesis is still unknown.

DNA methyltransferases (DNMTs) involved in DNA methylation lack sequence-specific DNA
binding motifs, while many long non-coding RNAs (lncRNAs) have DNA- and protein-binding motifs,
allowing them to carry DNMTs to specific genomic sites [32]. LncRNA-HIT functions as an epigenetic
regulator of chondrogenesis by recruiting of p100/CBP complexes [33]. LncRNA-LBCS inhibits
the self-renewal and chemoresistance of bladder cancer stem cells through epigenetic silencing of
SOX2 [34]. These data indicate that lncRNAs function as guides and tethers, and may be the molecules
of choice for epigenetic regulation. Meanwhile, previous study revealed that lncRNA5532 regulates
human hair follicle stem cell proliferation and differentiation [35]. However, whether lncRNAs mediate
DNA methylation and contribute to hair morphogenesis in the cashmere goat is unknown.
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To investigate the critical genes, signaling pathways, and regulatory mechanism underlying
hair morphogenesis in the cashmere goat, RNA-seq, lncRNA mapping, and whole genome bisulfite
sequencing (WGBS) were conducted on E 65 and E 120 skin samples. Altered expression patterns of
messenger RNAs (mRNAS) and lncRNAs as well as genome-wide DNA methylation profiles were
revealed. Furthermore, several signaling pathways and transcriptional factors (TFs) were identified as
participating in hair follicle induction and differentiation. Through integrated analysis of the mRNA
and lncRNA transcriptome with WGBS data, the regulation of DNA methylation on hair induction
and differentiation and the potential lncRNAs involved in DNA methylation taking part in hair
morphogenesis were delineated. Our work enriches the underlying molecular mechanisms of hair
follicle morphogenesis and skin development.

2. Materials and Methods

2.1. Animals

Shanbei White Cashmere goats from Shanbei cashmere goats engineering technology research
center of Shaanxi Province in China were used in this study. The experimental animals were healthy
and under the same management. According to the previous morphology of a study on hair
morphogenesis of cashmere goats [17], six pregnant Shanbei White Cashmere goats (two years old,
weighing 30–40 kg) were selected to obtain fetal skin samples at E 65 and E 120. Each developmental
stage had three replicates. Skin samples were obtained as we previously described [36]. At the same time,
other tissues, including muscle, adipose, heart, liver, spleen, lungs, kidney, duodenum, and gonad, were
collected. Every tissue sample was divided into two parts: One was fixed with 4% paraformaldehyde
and another one was frozen in a sample protector for RNA/DNA (Takara, China) and stored at −80 ◦C
for subsequent analysis.

All the experimental procedures with the goats used in the present study received prior approval
from the Experimental Animal Manage Committee of Northwest A&F University (2011-31101684).

2.2. Transcriptome Sequencing and Bioinformatics Analysis

Total RNA was extracted from the collected skin and other tissues. The RNA concentration
and quality were determined using the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara,
CA, USA). To obtain a transcriptome reference of the skin tissue of E 65 and E 120, the skin RNA
samples were used to construct RNA-seq libraries from E 65 and E 120. Each developmental stage had
three replicates. RNA-seq and subsequent bioinformatics analyses were performed as we previously
described [4]. Details are provided in the supplemental experimental procedures (Supplementary
Methods).

2.3. Quantitative Real-Time PCR (qRT-PCR)

The first-strand cDNA synthesis and qRT-PCR were performed as previously described [36].
Details are provided in the supplemental experimental procedures (Appendix A). Semi-quantitative
RT-PCR was performed on a 2720 thermal cycler (Applies Biosystems, Beverly, MA, USA) machine
using ES Taq master mix (Cwbio, Beijing, China). The primers used are provided in Table S1.

The primers’ efficiency, including target genes and the reference gene, was calculated using
the standard curve and met the criterion of 95–105%. Differences between E 65 and E 120 samples
were calculated based on the 2−∆∆Ct method and normalized to β-actin. Each stage included three
biological replicates and all samples were run in triplicate. Differences in gene expression between
the groups were detected by an independent sample t-test.

2.4. Histology and Immunohistochemistry (IHC)

Skin samples from E 65 and E 120 were fixed with 4% paraformaldehyde, followed by dehydration
further embedded in paraffin and cut into 5-µm sections with a microtome (Leica RM2255, Nussloch,
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Germany). Sections were rehydrated, blocked with 10% goat serum and 3% bovine serum albumin
(Merck KGaA, Darmstadt, Germany), and incubated for 40 min at room temperature. Primary antibody
against interest protein was then incubated with the samples at 4 ◦C overnight. The primary antibodies
used were: BMP2 (Abcam, Shanghai, China, Cat. No. ab214821, rabbit 1:200), SOX9 (Abcam, Shanghai,
China, Cat. No. ab185966, rabbit 1:200), VDR (Proteintech, Rosemont, IL, USA, Cat. No. 14526-1-AP,
rabbit 1:150), SOX2 (Proteintech, Cat. No. 11064-1-AP, rabbit 1:150), BMP4 (Proteintech, Cat. No.
12492-1-AP, rabbit 1:150), β-catenin (Proteintech, Cat. No. 51067-2-AP, rabbit 1:150), WLS (Proteintech,
Cat. No. 17950-1-AP, rabbit 1:100), FZD10 (Proteintech, Philadelphia, USA, Cat. No. 18175-1-AP, rabbit
1:150), EDAR (Sangon Biotech, Shanghai, China, Cat. No. D160287, rabbit 1:100), and FGF20 (Sangon
Biotech, Shanghai, China, Cat. No. D161681, rabbit 1:100). Subsequently, fluorescent goat anti-rabbit
Ig-CY3/FITC-conjugated secondary antibody (Beyotime Biotechnology, Shanghai, China, Cat. No.
A0516/A0562, goat, 1:100) or HRP-conjugated secondary antibody (Sangon Biotech, Cat. No. 110058,
goat, 1:100) were used to specifically bind to the primary antibody. A Metal Enhanced DAB Substrate
Kit (Solarbio, Beijing, China) was used for color development under the catalysis of HRP. Hoechst33342
(Beyotime Biotechnology, Shanghai, China) was used for nuclei staining and the slides were finally
mounted with Vecatshield mounting media (VECTOR, Burlingame, CA, USA). Hematoxylin and eosin
(H&E) staining was performed according to standard procedures. Fluorescent pictures were taken
under a LEICA TCS SP5 II confocal microscopy (Leica Microsystems GmbH, Wetzlar, Germany).
All images of H&E-stained sections were taken on an Eclipse 80i microscope (Nikon, Tokyo, Japan).

2.5. DNA Extraction, WGBS Library Construction, and Sequencing

Genomic DNA was extracted from skin samples (E 65 and E 120) using a Qiagen DNeasy Blood &
Tissue Kit (Qiagen, Germantown, MD, USA) according to the manufacturer’s instructions. Genomic
DNA degradation and contamination were monitored on agarose gels. DNA purity and concentration
were checked using the NanoPhotometer® spectrophotometer (IMPLEN Gmbh, Munich, Germany).

WGBS was performed as previously described [30] in the E 65 and E 120 skin tissues of cashmere
goats. Each developmental stage had three biological replicates. A total of 5.2 µg of genomic DNA
spiked with 26 ng lambda DNA were fragmented by sonication to 200–300 bp with Covaris S220,
followed by end repair and adenylation. Cytosine-methylated barcodes were ligated to sonicated
DNA according to the manufacturer’s instructions. Then, these DNA fragments were treated twice
with bisulfite using an EZ DNA Methylation-GoldTM Kit (Zymo Research, California, USA), before
the resulting single-strand DNA fragments were PCR amplificated using KAPA HiFi HotStart Uracil +

ReadyMix (2X). The library concentration was quantified by Qubit® 2.0 Flurometer (Life Technologies)
and quantitative PCR, and the insert size was assayed on an Agilent Bioanalyzer 2100 system.

The libraries were sequenced on an Illumina Hiseq 4000 platform and 150-bp paired-end reads
were generated. Image analysis and base calling were performed with an Illumina CASAVA pipeline.
We used FastQC (fastqc_v0.11.5) to perform basic statistics on the quality of the raw reads. Then,
the reads sequences produced by the Illumina pipleline in FASTQ format were pre-processed through
Trimmomatic (Trimmomatic-0.36) software using the parameter (SLIDINGWINDOW: 4:15; LEADING:3,
TRAILING:3; ILLUMINACLIP: adapter.fa: 2: 30: 10; MINLEN:36). The remaining reads that passed
all the filtering steps were counted as clean reads and all subsequent analyses were based on this.

2.6. Date Analysis, Identification of DMRs, and Functional Enrichment Analysis

Read mapping, methylation site identification, and differentially methylated analysis were
performed as previously described [30]. Details are provided in the supplemental experimental
procedures (Supplementary Methods). According to the distribution of DMRs through the genome,
we defined the genes related to DMRs as genes whose gene body region (from TSS to TES) or promoter
region (upstream 2 kb from the TSS) had an overlap with the DMRs. GO enrichment and KEGG
pathway analyses were conducted for the differentially methylated and expressed genes to investigate
their biological processes and functions.
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2.7. Bisulfite Sequencing Polymerase Chain Reaction (BSP)

BSP was performed as we previously described [36] using E 65 and E 120 skin tissues genomic
DNA. Every stage included three biological repetitions. We sequenced at least 5 clones for an individual;
hence, there were more than 15 clones for one specific DMR at each stage. Online QUMA software
was used to process the final sequencing results. The PCR primer sequences used for amplifying
the targeted products are shown Table S1. Further details and the primers used are provided in
the supplemental experimental procedures (Supplementary Methods).

3. Results

3.1. The Morphology of Hair Follicle Induction and Differentiation Stages in Cashmere Goats

Firstly, the corresponding hair follicle morphogenetic stages form E 65 and E 120 fetus cashmere
skin were identified by H&E staining. It revealed that the hair follicle morphogenesis of cashmere goat
was initiated around E 65 with the characteristics of crowded epidermal keratinocytes, which were
shown as enlarged and elongated, and became organized as a microscopically recognizable hair
placode (Pc). Meanwhile, Pc formation was succeeded along with the dermal condensate (DC) of
specialized fibroblasts in the underlying mesenchyme (Figure 1a,c). Up to E 120, the majority of
primary hair follicles had matured with a complete structure and a hair shaft had emerged through
the epidermis, while the hair canal of the secondary hair follicle was visible and the hair shaft began to
grow upwards (Figure 1b,d). In general, E 65 represented the induction stage, while E 120 represented
the differentiation stage of hair follicle morphogenesis.
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Figure 1. The skin morphology of embryonic day 65 (E 65) and E 120 during hair morphogenesis in
Shanbei White Cashmere Goat. (a,b) The skin morphology of E 65 and E 120 during hair morphogenesis
detected by hematoxylin and eosin staining (scale bars, 50 µm); (c,d) Schematic diagram of the skin
morphology in E 65 and E 120 in Shanbei White Cashmere goat. E 65 represents the hair follicle
induction stage in which the hair placode (Pc) and dermal condensate (DC) are forming, E 120 represents
the hair differentiation stage in which the majority of primary hair follicles mature with a complete
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structure and the hair shafts emerge through the epidermis, while the hair canal of the secondary hair
follicle is visible and the hair shaft begins to grow upwards. In this process, Pc cells give rise to all
the epithelial components of fully developed hair follicles, including the outer root sheath, inner root
sheath, hair matrix, hair shaft, and hair follicle stem cell, while the DC cells develop into the follicular
dermal papilla and connective tissue sheath. Red dashed lines indicate the epidermal hair follicle
placode; yellow dashed lines indicate the dermal condensate.

3.2. Defining Distinct Molecular Signatures of Hair Follicle Induction and Differentiation

To reveal the distinct molecular signatures underlying hair follicle induction and differentiation in
cashmere goat, we performed RNA-seq on E 65 and E 120 skin tissues using an Illumina Hiseq 4000
system (Figure 2a). This approach resulted in a high-quality output of about 94.9% index reads with
a quality score (q score) > 30 for all samples. On average, 99 million total clean reads and 93 million
aligned reads were produced per sample. Next, we proceeded by mapping, aligning, and quantifying
these reads to compute differentially expressed genes between the E 65 and E 120 stages.
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Figure 2. Differential expression genes (DEGs) and critical signals for hair follicle induction
and differentiation stages were revealed by RNA-seq. (a) Workflow of the sample preparation
for RNA-seq. (b) The heatmap of DEGs between E 65 and E 120. (c) Kyoto Encyclopedia of Genes
and Genomes (KEGG) analysis of DEGs between E 65 and E 120. In total, 1729 downregulated genes
and 1937 upregulated genes were identified in E 120 compared with E 65.

By comparing the RNA-seq data between E 65 and E 120, a total of 3666 differentially expressed
genes (DEGs, fold change ≥ 2 and p-adjust value ≤ 0.05) were found, in which 1729 genes were
downregulated and 1937 genes were upregulated in E 120 compared with E 65 (Figure 2b) (Appendix A).
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KEGG analysis of the DEGs revealed significant functional enrichment of cell migration and aggregation,
highlighting the central roles of intercellular crosstalk and dynamic cell rearrangement in promoting
skin and hair follicle development (Figure 2c). Specifically, the Wnt and Eda signaling pathways
were enriched in our study, which were previously demonstrated to play an important role in mouse
hair induction [9,37]. In addition, enriched Wnt and Notch signaling was demonstrated to take part
in mouse hair differentiation [38,39] (Figure S1). To confirm the expression pattern of the DEGs,
we randomly selected four genes (VCAN, FN1, TGFBI, SOX9) to validate their expression patterns
using qRT-PCR (Figure 3a). The results were in accordance with the RNA-seq data, suggesting that
the expression patterns based on the RNA-seq data were reliable.
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Figure 3. Verification of the differentially expressed genes of hair follicle induction and differentiation
(a) qRT-PCR of four randomly selected genes between E 65 and E 120 in cashmere goat. (b) qRT-PCR
confirmed the expression of the partial DEGs associated with hair follicle development between
E 65 and E 120 in cashmere goat. Additionally, the heatmap was based on the results of qRT-PCR
and standardized by the min-max normalization method. (c) Immunofluorescence (IF) of SOX9
and VDR at E 120 of cashmere goat. The expression of specific genes was quantified relative to
the expression level of β-actin using the comparative cycle threshold (∆∆CT) method. The data
are expressed as the mean ± SE (n = 3). * p < 0.05, ** p < 0.01. Green/red fluorescence indicated
the expression pattern of the interest protein. The nucleus was stained with Hoechst in blue. Scale bars,
50 µm.

We revealed that a number of keratin and keratin-associated protein genes were upregulated or
specifically expressed in E 120 (Appendix A), which was in accordance with the phenotype of hair shaft
development in E 120 and that keratin and keratin-associated protein are major structural proteins of
the hair shaft [40]. Correspondingly, signaling genes belonging to the Wnt and Notch pathways were
upregulated in E 120; at the same time, transcriptional factors with an established role in mice hair follicle
differentiation, including HOXC13, SOX9, SOX21, JUNB, LHX2, VDR, DLX3, and GATA3 [41–47],
were upregulated or specifically expressed in E 120, as detected by RNA-seq (Appendix A), qRT-PCR
(Figure 3b), and semi-quantitative RT-PCR (Figure S2). Furthermore, the expression of SOX9 and VDR
was reconfirmed using immunofluorescence (IF). The results showed that SOX9 was mainly expressed
in the outer root sheath and VDR mainly expressed in the outer root sheath and hair shaft in E 120
(Figure 3c) while it was not expressed in E 65 (data not shown). These results highlight the central
roles of these transcriptional factors and signals in hair follicle differentiation. Besides, we found
several specific genes, which were the critical genes in specific cell types (Pc and DC) during hair
follicle morphogenesis at E 14.5 in mice [8,21,48], were expressed at E 65 of cashmere goat (FPKM > 0.5)
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(Figure S3), which indicated that these genes may play important roles in hair induction. To further
validate the specificity of these genes, we performed IHC validation. The result showed that EDAR,
BMP2, and FGF20 were specifically expressed in Pc, while BMP4 was specifically expressed in DC
(Figure 4a–d), which suggests that these genes could be markers for Pc and DC of cashmere goat.
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Figure 4. Immunohistochemistry (IHC) verification of Pc and DC cell-type-specific genes on cashmere
skin tissue. (a–d) EDAR, BMP2, and FGF20 are specifically expressed in Pc, while BMP4 is specifically
expressed in DC. Brown indicates the expression of the interest protein. Green fluorescence indicates
the expression pattern of BMP2; the nucleus was stained with Hoechst in blue. Red dashed lines indicate
the epidermal hair follicle placode; blue dashed lines indicate the dermal condensate. Scale bars, 50 µm.

3.3. Wnt Signal in Hair Follicle Induction and Differentiation

From our study and previous studies, Wnt signaling is one of the foremost signaling during
hair induction and hair differentiation [9,18]. However, which cell generates the Wnt signal
molecules and which cell receives the signal during hair induction is still unclear. β-catenin is
stabilized and expressed in the nucleus when extracellular Wnt proteins bind to frizzled receptors
and low-density-related lipoproteins in the target cell’s membrane [49]. Hence, in our study, we
detected the expression of β-catenin using IF to reflect the activated Wnt signal. The result revealed
that β-catenin was expressed in the epidermal hair follicle placode (Figure 5a), suggesting the Wnt
signal is activated in epidermal cells during hair induction. Consistent with this, FZD10, the receptor
of Wnt ligands, was also expressed in the epidermal hair follicle placode (Figure 5c). Meanwhile, Wnt
ligands are lipid-modified extracellular glycoproteins that require the activity of Wntless protein (WLS)
for secretion [50]. In order to investigate which cell emits the Wnt ligands, the expression of WLS
protein by IF on dorsal skin at E 65 was examined. WLS protein was detectable in the surface ectoderm
as cytoplasmic staining and was enriched in the early developing hair follicle placode rather than
dermal cells (Figure 5b). This result suggests that the Wnt signal in the hair placode is activated under
the control of the Wnt ligand from the hair placode. At E 120, WLS and β-catenin were expressed in
the outer root sheath, matrix, and hair shaft (Figure 5d,e), which was in accordance with previous
studies in mice [51], suggesting that the Wnt signal also plays an important role in cashmere goat
hair differentiation.

3.4. LncRNA Analysis of Skin Hair Follicle Development

To investigate whether lncRNA takes part in DNA methylation and plays an important role in
hair follicle induction and differentiation, the lncRNA transcriptome from RNA-seq was analyzed
to define the lncRNA patterns in E 65 and E 120 skin tissues. After a rigorous process of selection
and coding potential analysis using the software CNCI, CPC and Pfam-scan, 1407 annotated lncRNAs
(Appendix A) and 13,881 novel lncRNAs loci (Appendix A), including long intergenic non-coding RNA
(lincRNAs), intronic lncRNA, and anti-sense lncRNAs, were identified (Figure 6a,b). Compared with
protein coding transcripts, lncRNAs showed a shorter open reading frame (ORF) length and transcript
length, and a lesser exon number (Figure 6c).
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Figure 5. The expression of β-catenin, WLS, and FZD10 at hair follicle induction and differentiation
stages were detected by IHC. (a–c) The expression of β-catenin, WLS, and FZD10 at the E 65 stage.
(d,e) The expression of β-catenin and WLS at the E 120 stage. Both β-catenin and WLS were expressed
in the epidermal hair placode at E 65 stage, suggesting that Wnt signals in the hair placode were
activated under the control of the Wnt ligand from the hair placode. At E 120, β-catenin and WLS
were expressed in the outer root sheath, matrix, and hair shaft. Green/red fluorescence indicated
the expression pattern of the interest protein. The nucleus was stained with Hoechst in blue. Brown
indicates the expression of the FZD10 protein. Red dashed lines indicate the epidermal hair follicle
placode. Scale bars, 50 µm.

Using edgeR, the differentially expressed lncRNAs (fold change ≥ 2 and p-adjust value ≤
0.05) between E 65 and E 120 were screened, resulting in 192 differentially expressed lncRNAs,
including 45 upregulated and 147 downregulated lncRNAs in E 120 compared with E 65 (Figure S4a)
(Appendix A). Meanwhile, a few lncRNAs were specifically expressed at a single developmental
stage of hair morphogenesis, such as lnc_006636, which showed E 65-specific expression, while
lnc_000374, lnc_001937 and lnc_009323 showed E 120-specific expression, indicating that these lncRNAs
could regulate cashmere morphogenesis through their spatio-temporal expression. Subsequently,
we randomly selected five differentially expressed lncRNAs to validate their expression patterns
using qRT-PCR. The results were in accordance with the RNA-seq data and showed that lnc_000374
and lnc_002056 were specifically expressed at E 120 (Figure 7), suggesting that the expression patterns
based on the RNA-seq data were reliable.
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Figure 6. Identification and characterization of lncRNAs in E 65 and E 120 skin tissues of Capra
hircus. (a) Screening of the candidate lncRNAs in the skin transcriptome by CPC, CNCI, and PFAM.
(b) The classification of lncRNAs. (c) Distribution of the transcript lengths, exon number, and open
reading frame (ORF) length in the lncRNAs and protein-coding transcripts. In total, 1407 annotated
lncRNAs and 13,881 novel lncRNA loci, including long intergenic non-coding RNA (lincRNAs), intronic
lncRNA, and anti-sense lncRNAs, were identified. Compared with protein coding transcripts, lncRNAs
showed a shorter ORF length and transcript length, and a lesser exon number.
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Figure 7. The lncRNA expression patterns in different stages. The results were in accordance with
the RNA-seq data and showed that lnc_000374 and lnc_002056 were specifically expressed at E 120.
The expression of specific genes was quantified relative to the expression level of β-actin using
the comparative cycle threshold (∆∆CT) method. The data are expressed as the mean ± SE (n = 3).
** p < 0.01.

To investigate the function of lncRNAs, the potential targets of lncRNAs in cis and trans were
predicted as previously described [4]. Subsequently, KEGG analysis was performed on these target
genes. As a result, the target genes were enriched in hair follicle-related signaling pathways, including
the Wnt, focal adhesion, and Ecm receptor pathways (Figure S4b), indicating lncRNAs may participate
in hair induction and differentiation by regulating related target genes.
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3.5. Genome DNA Methylation of Hair Induction and Differentiation during Morphogenesis

We found the differential genes between E 65 and E 120, which indicated that hair morphogenesis
is a consequence of the spatial and temporal expression of genes. As known, DNA methylation plays
a critical role in these genes’ expression [27]. However, the regulation mechanism of DNA methylation
during hair morphogenesis remains unknown in cashmere goat. Therefore, we detected the DNA
methylation levels of skin tissues at E 65 and E 120 using WGBS. A total of 195.37 G and 187.09 G raw
data were generated from the two groups, respectively. An average of 212 million raw reads of WGBS
data for the E 65 and E 120 groups were analyzed. Approximately 90.20% (E 65) and 89.6% (E 120)
of the clean reads were independently mapped to the goat reference genome assembly ARS1 (Tables S2
and S3). Any ambiguously mapped and duplicate reads were removed from the downstream analysis.
Then, the methylation levels of each cytosine were calculated.

An average of 1.78% and 1.97% methylated cytosines (mCs) of all genomic C sites in E 65 and E 120
were detected, respectively (Table S4), suggesting that the mC level in the hair follicle induction
stage was higher than that in the hair follicle differentiation stage during hair follicle morphogenesis.
Three classifications of DNA methylation: mCG, mCHH (where H is A, C, or T), and mCHG, were
detected in goat samples, in which mCG was the predominant type (> 96%) in both the E 65 and E 120
groups. The methylation levels in different genetic structural regions were determined to examine
the overall methylation status, including promoters, exons, introns, CpG islands (CGIs), and CGI
shores (regions within 2 kb of an island). As a result, the E 65 samples (hair follicle induction stage)
exhibited a higher CG methylation status than E 120 in all regions of the genome-wide scale (Figure 8),
which indicates that demethylation took place in E 120 (hair follicle differentiation stage) to ensure
the cell lineages. In accordance with this, qRT-PCR showed that TET3, which are intermediates in
the process of DNA demethylation as DNA hydroxylases, was expressed higher in E 120 compared
with E 65 (Figure S5). Meanwhile, marked hypomethylation was observed in the regions surrounding
the transcription start site corresponding with a previous study [52].Cells 2020, 9, x  12 of 21 
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Figure 8. The methylation level in different gene regions for mCG, mCHH, and mCHG.
At the genome-wide scale, the E 65 samples exhibited a higher CG methylation status in all regions.
Marked hypomethylation was observed in the regions surrounding the transcription start site.
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Subsequently, DSS was used to identify genomic regions with different methylation levels between
the E 65 and E 120 stages. A total of 6899 differentially methylated regions (DMRs) were detected,
including 5241 hyper DMRs and 1658 hypo DMRs in E 120 compared with E 65 (Appendix A),
in which 3371 genes determined to the differentially methylated genes were identified by annotating
the DMRs to the goat genome (Figure 9a). To obtain a better understanding of the role of DNA
methylation on gene regulatory networks during hair induction and differentiation, the KEGG analysis
revealed that the DMGs were enriched in TGF-β and focal adhesion signaling pathways (Figure 9b).
These results highlight the central roles of DNA methylation regulation in intercellular crosstalk
and signaling transduction during hair follicle induction and differentiation.Cells 2020, 9, x  13 of 21 
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compared with E 65 (Appendix A Additional file 6) (Figure 10). In order to verify the relationship 
between DNA methylation and gene expression, four genes involved in hair follicle development 
were selected to be reconfirmed using BSP and qRT-PCR. The result of the BSP was in accordance 
with that of the WGBS, and the gene expressions trends were in accordance with the RNA-seq data, 
in which the genes were repressed by the high DNA methylation (Figure 11).  

 

Figure 9. The heat map and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of genes
with differential methylation between E 65 and E 120. (a) The heat map of the genes with differential
methylation between E 65 and E 120. (b) The KEGG analysis of the genes with differential methylation
between E 65 and E 120. In total, 3371 differentially methylated genes (DMGs) were identified between
the two stages. KEGG analysis revealed that the DMGs were enriched in TGF-β and focal adhesion
signaling pathways.

3.6. Integrated Analysis of WGBS and mRNA-seq Data

To determine the relationship between DNA methylation and gene expression, the integrated
analysis of WGBS and RNA-seq data was performed. As a result, we detected 547 hypo-methylation
genes with higher expression while 282 hyper-methylation genes had lower expression in E 120
compared with E 65 (Appendix A) (Figure 10). In order to verify the relationship between DNA
methylation and gene expression, four genes involved in hair follicle development were selected to be
reconfirmed using BSP and qRT-PCR. The result of the BSP was in accordance with that of the WGBS,
and the gene expressions trends were in accordance with the RNA-seq data, in which the genes were
repressed by the high DNA methylation (Figure 11).
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It was noteworthy that the transcriptional factor genes associated with hair differentiation, 
including GATA3, VDR, CUX1, TP63, and RUNX1, had low expression with high DNA methylation 
during the hair induction stage in our integrated analysis on WGBS and RNA-seq data. Meanwhile, 
the signaling genes associated with hair differentiation and development, including NOTCH1, 
NOTCH3, JAG1, FZD1, SMAD7, and keratin gene KRT40, had similar expressions and DNA 
methylation patterns with the above transcriptional factor genes (Table 1). The results suggest that 
DNA methylation plays an important role in hair differentiation by regulating associated gene 
expression. Hair differentiation-related genes were not expressed at the hair induction stage with 
high methylation, while they were expressed with hypo-methylation during hair differentiation. 
Demethylation may occur in hair differentiation to regulate DNA methylation and gene expression.  
  

Figure 11. Verification of the differentially methylated genes and their expression. The DNA
methylation detected by Bisulfite Sequencing Polymerase Chain Reaction (BSP) was in accordance
with the whole-genome bisulfite sequencing (WGBS), and the gene expression was in accordance with
the RNA-seq, in which the gene expression was repressed by the high DNA methylation. The expression
of specific genes was quantified relative to the expression level of β-actin using the comparative cycle
threshold (∆∆CT) method. The data are expressed as the mean ± 1 SE (n = 3). ** p < 0.01.

It was noteworthy that the transcriptional factor genes associated with hair differentiation,
including GATA3, VDR, CUX1, TP63, and RUNX1, had low expression with high DNA methylation
during the hair induction stage in our integrated analysis on WGBS and RNA-seq data. Meanwhile,
the signaling genes associated with hair differentiation and development, including NOTCH1,
NOTCH3, JAG1, FZD1, SMAD7, and keratin gene KRT40, had similar expressions and DNA
methylation patterns with the above transcriptional factor genes (Table 1). The results suggest
that DNA methylation plays an important role in hair differentiation by regulating associated gene
expression. Hair differentiation-related genes were not expressed at the hair induction stage with
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high methylation, while they were expressed with hypo-methylation during hair differentiation.
Demethylation may occur in hair differentiation to regulate DNA methylation and gene expression.

Table 1. The genes associated with hair follicle differentiation under the control of DNA methylation.

Gene E 120
FPKM

E 65
FPKM

Log 2
(Fold Change) p-Value E 120

Mean Methy
E 65

Mean Methy Start End

TP63 48.8 5.3 3.20 0.005 0.35 0.70 77226924 77227046
VDR 19.3 0.0 Inf 0.000 0.73 0.91 31960999 31961087

GATA3 11.1 2.1 2.38 0.005 0.58 0.83 12388542 12388674
CUX1 5.0 0.0 11.11 0.011 0.52 0.84 35639445 35639901

RUNX1 3.1 1.0 1.59 0.002 0.65 0.19 146939482 146939629
GLI3 5.1 3.1 0.72 0.003 0.44 0.88 41410654 41411108

FOXO1 11.6 1.4 3.05 0.000 0.40 0.72 64694258 64694508
FZD1 18.1 5.8 1.65 0.004 0.33 0.68 111902257 111902552

NOTCH1 18.1 6.3 1.53 0.003 0.71 0.86 103351558 103351699
NOTCH3 10.6 5.0 1.09 0.017 0.51 0.87 100777692 100777863
SMAD7 7.6 1.4 2.42 0.005 0.36 0.80 48827145 48827355

JAG1 33.5 8.3 2.02 0.001 0.33 0.79 3752377 3752803
RORA 23.5 4.2 2.49 0.003 0.55 0.87 53503152 53503499
EGFR 30.8 13.0 1.24 0.004 0.32 0.68 842607 843297
FGFR2 3.2 0.9 1.78 0.007 0.44 0.70 10433298 10433462
KRT40 28.6 0.1 8.43 0.000 0.39 0.79 40830782 40831215
KRT14 1321.9 6.6 7.64 0.000 0.66 0.90 41440140 41440345

Notes: The differently methylated genes were selected according their function; only the genes associated with
hair follicle differentiation were selected and shown based on previous reports. FPKM, fragments per kilobase of
exon model per million mapped fragments. Methy, relative methylation. start-end, the start and end chromosomal
positions of methylation regions. Inf, infinity.

3.7. Potential lncRNA that Could Take Part in DNA Methylation

Furthermore, in order to investigate the function of lncRNAs on gene expression regulation by
mediating DNA methylation, an integrated analysis of lncRNAs, the mRNA transcriptome, and WGBS
was performed. As a result, the potential differentially expressed lncRNAs associated with DNA
methylation on target genes were revealed (Appendix A), such as lncRNA XR_001918556 and lnc-013255,
which may affect the DNA methylation of transcriptional factor gene GATA3 and TP63, respectively.
Lnc-003786 may affect the signal gene FGFR2 and lnc-002056 may affect teneurin-2, which encodes
transmembrane proteins. Lnc-007623 may affect the DNA methylation of the ADD1 gene, which encodes
a cytoskeletal protein. Furthermore, the lncRNA expression patterns in different tissues of E 120
and skin samples of E 65 are shown in Figure S6. We found lnc-002056, lnc-007623, and lnc-000374
were specifically expressed in skin tissue at E 120, corresponding with the hyper DNA methylation of
their target genes at E 120, which indicates their potential role in DNA methylation regulation.

4. Discussion

Mouse pelage hair follicle formation has been divided into nine distinct developmental stages
(0–8) for 20 years [53]. Increasing functional molecules have been identified and characterized for
each stage using spontaneous mouse mutants and genetically engineered mice [20,54,55]. However,
there are few reports regarding the machinery underlying cashmere goat hair follicle morphogenesis
due to technical difficulties and high costs. Although there are conservative signals in hair follicle
development among mammals, different physiology and regulation mechanisms exist between mice
and cashmere goats. Cashmere is nonmedullated and under the control of the seasonal variation
of light, which is different from mice [3,56]. Further evidence of differences is the fact that EDAR
gene-targeted cashmere goats show different phenotypes in hair follicles compared with targeted
mice [57,58]. As hair follicle morphogenesis and development determine the yield and quality of
cashmere, it is critical to reveal the underlying molecular mechanism. Hence, based on the H&E
staining results, E 65 and E 120 skin tissues were selected to identify the signals and genes involved in
hair induction and differentiation stages.
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Hair follicle morphogenesis relies on the interaction between epidermal and dermal cells, ultimately
resulting in differentiation of the hair shaft, root sheaths, and dermal papilla [40,55]. Corresponding
with this, through RNA-seq and bioinformatics analysis, DEGs were found related to signaling,
cell migration, and aggregation, highlighting the central roles of intercellular crosstalk and dynamic
cell rearrangement in hair morphogenesis. Specifically, the Wnt signal has been demonstrated to
play a critical role in hair induction [59,60]. However, accurate signal transmission between different
cells is still unknown during hair induction. Through IF of β-catenin and WLS, we revealed that
the Wnt signal in the hair placode is activated under the control of the Wnt ligand from the hair
placode. Meanwhile, a number of keratins had a similar expression pattern with some transcriptional
factors, which were specifically expressed in E 120, suggesting that these transcriptional factors play
critical roles in hair follicle differentiation and keratin expression. Furthermore, the signature genes
for Pc and DC were identified through comparison with the related reports on mice [21]. The results
illustrated the accurate signal communication between different cells, and could be used as markers to
isolate specific cells (Figure 12).Cells 2020, 9, x  17 of 21 
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During early embryonic development, cells start from a pluripotent state, from which they
can differentiate into multiple cell types, and progressively develop a narrower differentiation
potential [61]. Their gene-expression programs become more defined and restricted, in which DNA
methylation plays a critical role in this process [22,62]. Unlike embryonic stem cells, progenitors
are restricted to a certain lineage but have the potential to differentiate into distinct terminal cell
types upon stimulation. During hair morphogenesis, hair progenitor cells start in a multipotent state,
from which they can differentiate into many hair cell types, and progressively develop a narrower
potential [25,61,63]. However, the DNA methylation changes of lineage-committed progenitors to
terminally differentiated cells are largely unknown. Recently, studies have demonstrated that DNA
methylation is a critical cell-intrinsic determinant for astrocytes’, muscle satellite cells’, and mammary
epithelial cells’ differentiation and development [64]. Sen et al., revealed that the dynamic regulation
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of DNA methylation patterns was indispensable for progenitor maintenance and self-renewal in
mammalian somatic tissue. DNMT1 protein was found enriched in undifferentiated cells, where it
was required to retain proliferative stamina and suppress differentiation [65]. However, the change of
DNA methylation during hair morphogenesis is still unknown. In our study, we revealed that the level
of DNA methylation was lower in the hair follicle differentiation compared with the hair follicle
induction stage. Furthermore, hair follicle differentiation genes, including transcriptional factors
and signaling genes, were methylated in the hair induction stage but were subsequently de-methylated
during differentiation (Figure 12). This result suggests that DNA methylation patterns are required for
hair induction and differentiation. Correspondingly, Bock revealed that DNA methylation changes
play an important role during in vivo differentiation of adult stem cells [28] and Guo revealed that
demethylation events are frequently linked to brain-specific gene activation upon terminal neuronal
differentiation [66]. Another related report revealed that DNA methylation had little effect on gene
expression during the telogen-to-anagen transition in adult Shanbei White Cashmere goats [30].
It should be noted that the majority of DEGs had little correlation with DNA methylation in our study,
which indicates that other regulatory mechanisms, such as histone modification and transcriptional
control, may play an imperative role in hair follicle induction and differentiation. The results are in
accordance with a previous conclusion that genes required later in development are repressed by
histone marks, which confer short-term, and therefore flexible, epigenetic silencing [61].

Above, we revealed that locus-specific DNA methylation changes play a critical role during
hair morphogenesis. However, both DNA methyltransferases and polycomb-repressive complexes
lack sequence-specific DNA-binding motifs. Increasing evidence indicates that many lncRNAs
contain DNA-binding motifs that can bind to DNA by forming RNA:DNA triplexes and recruit
chromatin-binding factors to specific genomic sites to methylate DNA and chromatin [67,68]. Besides,
lncRNAs have been associated with important cellular processes, such as X-chromosome inactivation,
imprinting and maintenance of pluripotency, lineage commitment, and apoptosis [32,69,70]. However,
the function of lncRNAs in hair morphogenesis is still unknown. In our study, 45 upregulated
and 147 downregulated lncRNAs were identified in E 120 compared with E 65; these lncRNAs
may function by targeting hair follicle-related signals and genes. Furthermore, potential lncRNAs
involved in DNA methylation were revealed. However, the specific function of lncRNAs needs to be
studied further. The results provide a potential regulatory mechanism mediated by lncRNAs during
hair morphogenesis.

5. Conclusions

The critical signals and genes were revealed during hair follicle morphogenesis in cashmere
goat. In this process, DNA methylation was lower in the hair follicle differentiation compared with
the hair follicle induction stage, and may play an important role in hair morphogenesis by repressing
associated gene expression. Furthermore, potential lncRNAs associated with DNA methylation on
the target gene were revealed. This study enriches the regulatory network and molecular mechanisms
in hair morphogenesis.
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