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Abstract: The Nlrp3 inflammasome is a multiprotein complex activated by a number of bacterial
products or danger signals and is involved in the regulation of inflammatory processes through
caspase-1 activation. The Nlrp3 is expressed in immune cells but also in hepatocytes and
cholangiocytes, where it appears to be involved in regulation of biliary damage, epithelial barrier
integrity and development of fibrosis. Activation of the pathways of innate immunity is crucial
in the pathophysiology of hepatobiliary diseases, given the strong link between the gut and the
liver. The liver secretes bile acids, which influence the bacterial composition of the gut microbiota
and, in turn, are heavily modified by microbial metabolism. Alterations of this balance, as for the
development of dysbiosis, may deeply influence the composition of the bacterial products that
reach the liver and are able to activate a number of intracellular pathways. This alteration may
be particularly important in the pathogenesis of cholangiopathies and, in particular, of primary
sclerosing cholangitis, given its strong association with inflammatory bowel disease. In the present
review, we summarize current knowledge on the gut–liver axis in cholangiopathies and discuss the
role of Nlrp3 inflammasome activation in cholestatic conditions.
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1. Introduction

The hepatobiliary system is constantly exposed to a wide variety of antigens. A number of
environmental toxins ingested with the diet, food antigens and also bacterial products known as
pathogen-associated molecular patterns (PAMPs) are, indeed, absorbed from the gut mucosa and
reach the liver parenchyma through the portal circulation. The liver possesses unique features
that maintain an immune tolerance against antigens, which is mainly based on its strong innate
immune system [1]. While such mechanisms are important in maintaining immunological functions,
in pathologic conditions the activation of a number of innate immunity receptors may contribute to
disease development and progression. Intestinal dysbiosis, which is often associated to a number of
liver diseases, may be particularly relevant in this setting [2].

Cholangiocytes are the epithelial cells that line the ducts and are the target of a group of diseases
named cholangiopathies, such as primary sclerosing cholangitis (PSC) and primary biliary cholangitis
(PBC) [3]. Despite the fact that bile is thought to be sterile in normal conditions, PAMPs, such as
lipopolysaccharide (LPS), lipoteichoic acid and bacterial DNA fragments, may be detected in human
bile [4–6]. Not surprisingly, it is well known that cholangiocytes express a wide array of receptors
of innate immunity [7]. Human biliary cells have been shown to express the mRNAs for all ten
human Toll-like receptors (TLRs) [8]. Immunohistochemical staining confirmed that TLRs are present
in the intrahepatic biliary tree of normal and diseased human livers [9]. Moreover, LPS stimulation
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in cholangiocytes is able to activate TLR4 and cause the secretion of Il-6 and Il-8 via NF-κB and
MAPK signaling pathways, supporting a functional role of TLRs in biliary pathophysiology [10]. Such
activation may be particularly important in the setting of liver cirrhosis, in which portal levels of LPS
have been shown to be increased compared to venous blood, with even higher levels in case of acute
decompensation of liver function [11,12].

Inflammasomes are cytosolic multiprotein complexes of the innate immune system responsible
for the activation of inflammatory responses [13]. In the cell cytoplasm, the oligomerization of multiple
inflammasome components causes caspase-1 activation, which subsequently triggers the maturation
of the pro-inflammatory cytokines IL-1β and IL-18, and the initiation of the inflammatory cell death
termed pyroptosis [14]. Inflammasomes have mainly been studied in the professional immune cells
of the innate immune system, such as macrophages. Recent studies have shown the role of NRLP3
inflammasome in severe liver inflammation, hepatocyte pyroptosis and hepatic stellate cell (HSC)
activation with collagen deposition in mice [15]. The NLRP3 inflammasome has been implicated in
pathogenesis of many chronic liver diseases, including viral hepatitis, non-alcoholic steatohepatitis
(NASH) and alcoholic liver disease [16]. NLRP3 was shown to contribute to fibrosis development in
a in vivo model of NASH, and patients with increasing levels of fibrosis exhibited increased NLRP3
mRNA levels [17,18]. High levels of inflammasome components are present in many epithelial
tissues, where they have been shown to represent an important first line of defense [19]. Interestingly,
a number of recent studies have highlighted the importance of NRLP3-dependent mucosal immunity
also in inflammatory bowel diseases (IBD), which are frequently associated with cholestatic liver
diseases. Moreover, single nucleotide polymorphisms in the NLRP3 gene have been associated with
the development of both ulcerative colitis (UC) and Crohn’s disease [20,21].

In the present review, we summarize current knowledge on the interrelation between the gut
and the hepatobiliary system, with a particular focus on cholestatic liver diseases and inflammasome
activation. Disease-induced alterations of gut-derived PAMPs and biliary response to innate immunity
receptor activation, including the NLRP3 inflammasome, may, indeed, be of particular relevance for
the development and progression of cholangiopathies.

2. Activation of the Inflammasome

The sensor component of the inflammasome system is a nucleotide-binding oligomerization
domain (NOD)-like receptor (NLR) [22]. NLRs contain three domains: (i) a central nucleotide-binding
and oligomerization domain (NACHT) responsible for oligomerization; (ii) a C-terminal leucine-rich
repeat (LRR), capable of recognizing a specific ligand; and (iii) an effector-variable N-terminal interaction
domain. The N-terminal domain can be of three types, i.e., a caspase recruitment domain (CARD),
pyrin domain or baculoviral inhibition of apoptosis protein repeat domain (BIR) [22]. Depending on
the effector domain, it is possible to classify the inflammasomes into three subfamilies: the NLRP,
which contain a pyrin domain, the NLRB, which contains a BIR domain, and the NLRC in which a
CARD is present. To date, a total of 22 members of the NLR protein family have been reported [22].
NOD1 and NOD2 are CARD-containing NLRs that lead to the activation of CARD9 and nuclear
factor (NF)-kB pathways interacting with the receptor-interacting serine/threonine-protein kinase
2 (RIPK2) [23]. In contrast, several NLR proteins containing a pyrin domain were found to form
a signaling platform, the well-known inflammasome, driving caspase activation by binding to the
adaptor protein, the apoptosis-associated speck-like protein containing a CARD (ASC) [24,25]. Instead,
the NLR apoptosis inhibitory proteins (NAIPs), containing the BIR domain, function as specific
cytosolic receptors for bacterial ligands to form the NAIP–NLRC4 inflammasome for anti-bacterial
defenses [26].

Among the various prototypes of inflammasomes known, the NLRP3 inflammasome is the most
extensively studied (Figure 1) [27].
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Figure 1. Two-step model of nucleotide-binding oligomerization domain (NOD)-like receptor pyrin
domain-containing-3 (NLRP3) inflammasome activation. In the first step, pathogen-associated
molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) activate the nuclear
factor (NF)-κB pathway through the stimulation of receptors such as toll-like receptor (TLR)4,
nucleotide-binding oligomerization domain-like receptor (NOD)2, tumor necrosis factor receptor
(TNFR), and interleukin (IL)-1R. In addition, NF-κB activates NLRP3 gene transcription. The second
step involves various concomitant molecular mechanisms. Extracellular ATP induces P2×7-dependent
pore formation on the cell membrane, which allows K+ efflux depletion and opening a pannexin-1
channel, through which PAMPs and DAMPs enter in the cell, activating NLRP3. Endocitosis of dissimilar
agonists, including crystalized cholesterol and uric acid, results in lysosomal disruption, which also
leads NLRP3 activation. Additionally, reactive oxygen species (ROS) leads to thioredoxin dissociation,
which binds to the NLRP3 inflammasome to trigger its activation. The NLRP3 inflammasome is
composed of an inflammasome sensor NLRP3, apoptosis-associated speck-like protein containing a
CARD (ASC) and the precursor pro-caspase1: when activated, NLRP3 components cause the activation
of caspase-1, which leads to the maturation and secretion of proinflammatory cytokines including
IL-1β and IL-18.

The NLRP3 inflammasome is typically composed of the inflammasome sensor NLRP3, the adaptor
molecular apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC),
and the precursor pro-caspase-1 [27,28]. When activated, the assembly of the NLRP3 inflammasome
platform causes the activation of caspase-1, which leads to the maturation and secretion of
proinflammatory cytokines including IL-1β and IL-18 [13,29,30]. The expression of NLRP3 itself
seems to be the limiting factor for the activation of the NLRP3 inflammasome [31]. To date, a two-step
model has been well established in the activation of the NLRP3 inflammasome. For the platform to
be activated it requires a priming signal, which induces NLRP3 and pro-IL-1β upregulation, and a
prior or coincident second signal, which is pivotal for creating a functional inflammasome [32,33].
The priming signal involves the activation of nuclear factor kappa B (NF-κB), which occurs through
the stimulation of receptors such as TLR4, NOD2, TNFR, and IL-1R, normally caused by PAMPs or
damage-associated molecular patterns (DAMPs). NF-κB leads to increased synthesis of pro-IL-1β
and NLRP3 by binding to its promoter [31]. Furthermore, this signal involves a post-translational
regulation of inflammasome components, including NLRP3 de-ubiquitination as well as SYK- and
JNK-dependent ASC phosphorylation and linear ubiquitin assembly complex (LUBAC)-mediated
ASC ubiquitination [34]. The second signal for NLRP3 inflammasome activation depends on
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various structurally dissimilar agonists, including environmental crystalline pollutants like silica,
asbestos, crystalline monosodium urate or pathogen-derived ligands, like pore-forming toxins, such as
nigericin [33]. This process involves various concomitant molecular mechanisms. First, an intracellular
K+ efflux occurs [35], boosted by extracellular ATP that binds to P2X purinoceptor 7 resulting in large
pore formation on the cell membrane mediated by the translocation of the pannexin-1 channel [36].
As a consequence of membrane permeability, PAMPs or DAMPs enter the cell and activate the NLRP3
inflammasome. Lysosomal destruction of large molecules due to the phagocytosis results in intracellular
release of its components, which are also able to activate the NLRP3 inflammasome [37]. Additionally,
the effect of reactive oxygen species (ROS) derived from mitochondria leads to thioredoxin dissociation,
which binds to the NLRP3 inflammasome to trigger its activation [38].

3. The Gut–Liver Axis in Cholangiopathies

A strong interrelation between the hepatobiliary system and the intestine exists both in
physiological and pathological conditions (Figure 2).
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Figure 2. Gut–liver axis during cholangiopathies. In normal conditions, primary bile acids (P-BA)
reach the small intestine where they directly influence the microbiota composition, mainly by blocking
bacterial overgrowth. BA are actively reabsorbed in the terminal ileum via the apical sodium-dependent
bile acid transporter (ASBT) and activate farnesoid X receptor (FXR), which, in turn, causes Fgf-19
secretion and direct effects on mucosal defense. In the colon, bacterial metabolization produces a wide
variety of secondary bile acids (S-BA), which also enter the portal circulation. Cholangiopathies, which
alter the normal bile flow or composition, may interfere with all these processes, ultimately causing
dysbiosis and an increased or qualitatively altered PAMPs delivery to the liver via the portal circulation.

Among other functions, the liver is responsible for bile secretion, which reaches the gut via the
biliary tree. Bile acids, which form the majority of the excretory products of bile, together with bilirubin,
are essential in the digestive process of lipids and fat-soluble vitamins but are also involved in the
modulation of the gut microbiota composition, especially in the small intestine [39]. Indeed, bile
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acids are able to directly damage bacterial cell membranes with an efficacy that mainly depends on
concentration and hydrophobicity [40]. It appears intuitive that diseases that alter the physiological
bile flow, such as chronic cholestatic liver diseases, may deeply influence gut bacterial composition.
Small intestinal bacterial overgrowth has been demonstrated in PBC [41] and cirrhotic patients [42].
Moreover, a number of studies in animal models have shown that bile duct ligation causes bacterial
overgrowth with increased bacterial translocation, which could be reversed by oral administration of
bile acids or whole bile [43–45].

Bile acids are produced in hepatocytes as end products of cholesterol metabolism. The two
primary bile acids, namely cholic acid and chenodeoxycholic acid, are conjugated with glycine or
taurine to increase water solubility and are excreted in the bile canaliculus. Conjugated bile acids
are then actively reabsorbed, predominantly in the terminal ileum, by active transport via the apical
sodium-dependent bile acid transporter (ASBT), reach the liver and are secreted again in bile, in a
process known as entero-hepatic circulation [39]. When the primary conjugated bile acids reach the
terminal ileum and colon, the resident bacterial community extensively metabolizes them, giving rise
to a wide array of secondary bile acids via deconjugation, dehydrogenation, and dehydroxylation
reactions [46]. Secondary bile acids, which form the vast majority of the bile acids in the colon, may
also be passively reabsorbed and enter the entero-hepatic circulation. As a result of this extensive
metabolism, the final bile salt pool is deeply influenced by the microbiota composition of the individual
and more than 50 different secondary bile acids are found in feces [47,48]. Moreover, the bile acid pool
is involved in the feedback mechanism of bile acid synthesis. Indeed, bile acids bind with different
affinity with the farnesoid X receptor (FXR), expressed in both the hepatocytes and enterocytes. FXR
activation represents the cornerstone of bile acid homeostasis, downregulating bile acid synthesis,
transport and reabsorption [49]. Interestingly, Inagaki et al. have recently demonstrated that bile acids
also exert indirect antimicrobial effect via FXR-dependent expression of several genes involved in
mucosal defense [50].

In a physiological state, the dynamic equilibrium between the microbiota composition and the bile
acid pool ensures that beneficial effects are exerted on multiple levels by commensal bacteria and bile
acid-related endocrine functions [51,52]. Moreover, the large amounts of PAMPs that reach the liver via
the portal flow, which may activate a number of receptors of innate immunity [53,54], are kept at bay by
a tightly regulated immune tolerance, depending on hepatic antigen-presenting cells, such as Kupffer
cells, liver sinusoidal endothelial cells and hepatic stellate cells [55]. Cholangiocytes, too, have been
shown to display immune tolerance toward LPS, mainly via the upregulation of IRAK-M (a negative
regulator of TLR signaling) [56]. A disruption of the balance in the microbiota composition, responsible
for the development of dysbiosis, may in turn have deleterious effects on the hepatobiliary system.

The pathogenesis of PSC represents a clear demonstration of the close association between
dysbiosis, intestinal permeability and cholangiocyte injury. In fact, previous studies have shown
that about 70% of PSC patients are also affected by IBD, with a distinct form of colitis different to
ulcerative colitis (UC) [57]. On the contrary, about 5% of UC patients develop PSC during the course
of the disease, suggesting that intestinal inflammation and dysbiosis alone are not sufficient to cause
cholangiocyte injury [58]. Colectomy before or at the time of liver transplantation (LT) significantly
reduces the risk of PSC recurrence, which is reported to be as high as 37% after LT [59,60]. Antibiotic
treatment has been recently confirmed to be effective in improving serological markers of cholestasis in
PSC patients, with a possible indirect effect via modifications of the gut microbiome [61]. Moreover,
a number of markers of bacterial translocation and gut barrier dysfunction (i.e., zonulin, intestinal
fatty acid binding protein, soluble CD14, LPS and LPS-binding protein, antibodies against F-actin and
gliadin, and various anti-microbial antibodies) have been found elevated in the sera of PSC patients,
with a positive correlation with progressive disease [62,63]. Interestingly, genome-wide association
studies have revealed a common risk factor for PSC and Crohn’s disease in the fucosyltransferase
2 (FUT2) locus, which influences fecal and bile bacterial composition and has recently been linked to
the development of hepatobiliary abnormalities in mice [64,65].
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Despite less robust, preliminary evidence of the possible role of gut-derived PAMPs has also
emerged for PBC. Lipoteichoic acid, a cell wall component of gram-positive bacteria, has been detected
in the portal tracts of PBC patients, with a profile of immunoreactivity that changes according to
disease stage [66]. Anti-mitochondrial antibodies (AMA), the diagnostic hallmark of PBC, display
crossreactivity against E. coli, which are enriched in the feces of patients compared with controls [67,68].
Moreover, PBC patients have higher levels of serum LPS and hepatic expression of TLR4, CD14, CD68
and NF-κB when compared to control individuals [69].

Interestingly„a number of studies have reported sharp differences in the microbiota composition of
PSC and PBC compared to healthy individuals, despite it is still not clear if they are cause or consequence
of the biliary disease [54,70]. Typically, the microbiota is mainly composed of two phyla, Firmicutes and
Bacteroides, while the Proteobacteria accounts for up 2%–3% of the gut milieu [71]. Alterations in the
intestinal microbiota have been described in PSC patients, with or without concomitant IBD [72]. At the
genus level, PSC patients had an increased abundance of Enterococcus, Lactobacillus, Streptococcus and
Fusobacterium genera compared to healthy individuals and independent of IBD [73]. The Veillonella
genus, which is also associated with other chronic inflammatory and fibrotic conditions, was enriched
in PSC [74]. As in PSC, a microbial signature consisting of 12 genera has been identified for PBC [75].
In PBC patients, microbiota profile analysis highlighted the enrichment of the Enterobacteriaceae
family, followed by Pseudomonas, Veillonella and Clostridium genera; in reverse, Oscillospira and
Sutterella were less represented [76].

A number of in vivo studies in animal models also support the close relationship between the
hepatobiliary system and the gut in disease development and progression. Long-term parenteral
inoculation of high amounts of specific strains of bacteria has been shown to cause non-suppurative
cholangitis in BALB/c mice [77]. Experimental colitis can be induced in mice by oral administration of
dextran sodium sulfate (DSS), which induces mucosal injury with increased intestinal permeability [78].
A previous study demonstrated that hepatic cytochrome P450 expression is reduced in rats subjected to
DSS-induced colitis via LPS-induced downregulation [79]. Patients affected by cystic fibrosis lack the
function of the cystic fibrosis transmembrane conductance regulator (CFTR), which is involved in bile
flow and alkalinization, and may develop liver damage due to chronic cholestasis [80]. DSS-induced
colitis has been demonstrated to cause biliary injury in Cftr knockout mice, which could be reversed by
antibiotic treatment, and not by bile induction, via administration of 24-nor-ursodeoxycholic acid [81].
In Mdr2 knockout mice, a commonly used murine model of PSC, the development of a ductular
reaction, fibrosis and ductopenia was significantly higher in germ-free (GF) Mdr2 knockout animals
compared with conventionally raised mice [82]. As expected, secondary bile acids were absent in GF
Mdr2 knockout mice, while cholangiocyte senescence was significantly increased in vitro and could be
reduced by treatment with the secondary bile acid ursodeoxycholic acid [82]. The NOD.c3c4 mouse
model spontaneously develops spontaneous lymphocyte infiltrations around the bile duct and AMA,
closely resembling human PBC [83]. Schrumpf et al. have recently demonstrated that NOD.c3c4
mice have a distinct gut microbiota when compared to control mice and this has a clear effect on the
development of the biliary phenotype. Indeed, GF NOD.c3c4 mice developed milder biliary alterations
compared with conventionally raised NOD.c3c4 mice. A similar effect could be obtained also by
antibiotic treatment of NOD.c3c4 mice [84]. Taken together, these in vivo experiments show that,
in the context of a permissive genetic background (Cftr knockout, Mdr2 knockout, NOD.c3c4 mice),
the alteration of intestinal permeability and/or gut microbiota is pivotal in inducing or maintaining
biliary inflammation. In an effort to devise effective treatments, future research will necessarily be
aimed at determining if biliary alterations are the cause or consequence of microbiota and intestinal
permeability alterations, especially in the setting of human cholangiopathies.

4. Inflammasome Activation in Cholestatic Liver Injury

Despite definitive mechanistic proof that a differential activation of the NLRP3 inflammasome
due to altered PAMPs delivery to the hepatobiliary system during the course of cholestatic liver
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disease is missing, a number of studies have started to evaluate the role of NLRP3, especially in
model systems, with interesting results. In biliary atresia, a neonatal obstructive cholangiopathy,
increased expression of NLRP3, Caspase-1 and IL-1R1 has been demonstrated in the livers of patients
at the time of diagnosis [85]. Interestingly, in a murine model of biliary atresia, both Nlrp3-/- and
Il-1R1-/- mice showed reduced biliary damage and inflammation compared to controls; however,
Caspase-1-/- mice were not protected, suggesting that inflammasome activation may result in biliary
damage via the activation of non-canonical pathways in this setting [85]. Matsushita et al. showed
that the expression of NLRP3 in cholangiocytes, evaluated by immunohistochemistry, is induced
also in advanced-stage PSC patients when compared to those in the early-stage. Interestingly, higher
levels of NLRP3 expression were also detected in PSC patients with UC than in PSC patients without
UC, while patients developing cholangiocarcinoma showed lower levels of NLRP3 [86]. Increased
expression of NLRP3 and Caspase-1 has been also demonstrated in the livers of PBC patients [87].
Our group has recently demonstrated that the expression of Nlrp3 and Asc is specifically induced in
cholangiocytes of mice subjected to 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) treatment, as a
model of sclerosing cholangitis [88]. In vitro, the induction of the Nlrp3 inflammasome in cultured
cholangiocytes promoted the upregulation of Il-18 but not of IL-1β or Il-6 and had no effect on the
proliferation of biliary cells, which is one of the primary responses to injury of cholangiocytes and is
thought to be essential in disease progression and fibrosis development [89]. In contrast, activation
of the inflammasome reduced the increase in epithelial permeability induced by stimulation with
LPS and ATP through a regulation of E-cadherin and Zonulin-1 expression [88]. The disruption of
the epithelial integrity of the cholangiocyte layer, with spillover of bile acids in the portal tract, has
been demonstrated to be a key pathogenic mechanism in Mdr2-/- mice, a commonly used murine
model of PSC [90]. Moreover, a number of PAMPs and cytokines (LPS, TNF-α and INF-γ) have been
shown to directly impair the epithelial barrier function of cholangiocytes, both in vitro and in murine
models [91,92]. Interestingly, strong evidence supporting the interrelation between the gut microflora
and cholangiocyte pathology has been recently demonstrated in Mdr2-/- mice. Liao et al. showed that
Mdr2-/- mice have a particular microbiota composition that is associated with prominent activation
of the Nlrp3 inflammasome. Moreover, transfer of Mdr2-/- mice microbiota in wild-type mice was
sufficient to cause hepatic damage, which was significantly reduced by concomitant administration of
a pan-caspase inhibitor [93].

Activation of the inflammasome in immune cells may also contribute to cholestatic disease
progression via complex bile acid-induced modulations of NLRP3 functions. Guo et al. recently
demonstrated that the activation of NLRP3 in macrophages is inhibited by incubations with different
bile acids, with the most potent effect exerted by lithocholic acid [94]. With a series of in vitro and
in vivo experiments, the authors demonstrated that bile acid-induced inhibition of the inflammasome
is mediated by the activation of bile acid receptor transmembrane G protein-coupled receptor-5
(TGR5) in the cell membranes of macrophages, with subsequent protein kinase A (PKA)-dependent
phosphorylation and ubiquitination of NLRP3 [94]. Such a mechanism may limit inflammatory
response in the setting of cholestasis. However, conflicting effects of bile acids on NLRP3 activation
have also been described [95]. In the setting of cholestasis, increased levels of bile acids activated both
the primary and secondary signals for NLRP3 activation via inducing a prominent calcium influx
in macrophages. The authors also demonstrated that FXR acted as a negative regulator of NLRP3
activation; indeed, wild-type mice transplanted with the bone marrow of Fxr-/- mice showed increased
plasma levels of IL-1β after LPS treatment when compared to control-transplanted mice [95]. In support
of this data, chenodeoxycholic acid has been shown to induce NLRP3 activation in macrophages and
Kupffer cells, possibly through TGR5/EGFR-dependent ROS formation, and to contribute to the liver
fibrosis in the bile duct ligation murine model [96]. However, because of the high concentrations of
hydrophobic bile acids used in some experiments, some authors have questioned that bile acids can
directly activate the inflammasome in hepatocytes or macrophages [87]. Cai et al. showed that, while
Caspase-1-/- mice subjected to bile duct ligation (BDL) had more severe liver fibrosis, the incubation
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of hepatocytes or macrophages with cholestatic levels of conjugated bile acids did not stimulate the
activation of the inflammasome, suggesting an indirect effect of NLRP3 activation in liver damage [87].

Initial reports have also addressed possible targets for therapeutic interventions that may interfere
with inflammasome activation. The intraperitoneal administration of MCC950, a specific small molecule
inhibitor of NLRP3, resulted in the amelioration of liver injury, survival and fibrosis in BDL-treated
mice, strongly supporting a possible therapeutic modulation of the inflammasome [97]. Previous
studies have shown that Galectin-3, a lectin produced by macrophages, may activate the NLRP3
inflammasome in the liver and contribute to collagen deposition in a murine model of cholestasis [98].
Interestingly, treatment of mice with Davanat, a registered inhibitor of Galectin-3 that is currently
being studied in clinical trials, determined a significant reduction in inflammasome activation and
biliary damage in a model of autoimmune cholangitis [99]. Vardenafil, a phosphodiesterase-5 inhibitor,
has been shown to significantly reduce the expression of Nlrp3 and inflammasome components in
a cholestatic murine model induced by lithocolic acid administration [100]. Finally, a significant
reduction in Nlrp3 inflammasome activation has been demonstrated in the liver tissue of BDL rats
subjected to treatment with a saline solution enriched with methane, which has been previously
demonstrated to possess anti-oxidative and anti-inflammatory properties [101,102].

5. Conclusions

The gut and the liver are deeply connected in both physiological and pathological conditions. With
respect to cholangiopathies, this is clearly exemplified not only in a number of in vivo models of biliary
injury, but also in PSC patients, who are frequently affected by IBD. Despite the fact that the cause
or consequences of the disease are currently unclear, microbiota alterations specific for PBC and PSC
have been demonstrated in a number of studies and may affect the development of the disease [70,76].
A variety of bacterial products and PAMPs, in the context of disease-specific dysbiosis, have, indeed,
been shown to exert deep effects on the physiology of cholangiocytes through the activation of TLRs and,
more recently, activation of the NLRP3 inflammasome. A number of in vitro and in vivo experiments
have started to shed light on the molecular mechanisms behind NLRP3 activation and regulation in the
context of cholestatic liver disease. Future experiments need to specifically evaluate if disease-induced
dysbiosis exerts a direct effect on NLRP3 activation in the hepatobiliary system and, if possible, define
the specific molecular triggers in this context. A deeper understanding of such mechanisms and
their fine-tuning is expected to offer new therapeutic approaches for patients, especially in the era of
precision medicine.
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