



- 2 Supplementary Materials:
- <sup>3</sup> The Pyrazolo[3,4-d]pyrimidine Derivative, SCO-201,
- 4 Reverses Multidrug Resistance Mediated by

## 5 ABCG2/BCRP

| 6<br>7<br>8                | Sop<br>Mic<br>Jan | phie E. B. Ambjørner <sup>1</sup> , Michael Wiese <sup>2</sup> , Sebastian Köhler <sup>2</sup> , Joen Svindt <sup>3</sup> , Xamuel Loft Lund <sup>1</sup> ,<br>Chael Gajhede <sup>1</sup> , Lasse Saaby <sup>4</sup> , Birger Brodin <sup>4</sup> , Steffen Rump <sup>5</sup> , Henning Weigt <sup>6</sup> , Nils Brünner <sup>1,7</sup> ,<br>Stenvang <sup>1,7,*</sup> |
|----------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9                          | 1                 |                                                                                                                                                                                                                                                                                                                                                                         |
| 10<br>11                   | 1                 | Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark;<br>sophie.ambjoerner@gmail.com (S.A.); lxs184@alumni.ku.dk (X.L.L); mig@sund.ku.dk (M.G.)                                                                                                                                                                                    |
| 12<br>13                   | 2                 | Pharmaceutical Institute, University of Bonn, Bonn, Germany; mwiese@uni-bonn.de (M.W.);<br>skoehler@uni-bonn.de (S.K.)                                                                                                                                                                                                                                                  |
| 14                         | 3                 | Department of Biology, University of Copenhagen, Copenhagen, Denmark; joen.svindt@gmail.com (J.S)                                                                                                                                                                                                                                                                       |
| 15<br>16                   | 4                 | Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark; lasse.saaby@sund.ku.dk<br>(L.S.); birger.brodin@sund.ku.dk (B.B.)                                                                                                                                                                                                                                |
| 17                         | 5                 | SRConsulting, Sehnde, Germany; rump@s-r-consulting.com (S.R.)                                                                                                                                                                                                                                                                                                           |
| 18<br>19                   | 6                 | Division of Chemical Safety and Toxicity, Fraunhofer Institute of Toxicology and Experimental<br>Medicine, Hannover, Germany; henning.weigt@item.fraunhofer.de (H.W.)                                                                                                                                                                                                   |
| 20<br>21<br>22             | 7                 | Scandion Oncology A/S, Symbion, Copenhagen, Denmark; js@scandiononcology.com (J.S.);<br>nb@scandiononcology.com (N.B.)<br>Correspondence: js@scandiononcology.com: Tel: +45.60-777-678                                                                                                                                                                                  |
| 24<br>25<br>26<br>27<br>28 |                   | H <sup>20<sup>4</sup></sup> H <sup>20<sup>3</sup></sup> BCRP (72 kDa)<br>β-actin (42 kDa)                                                                                                                                                                                                                                                                               |
| 29                         |                   |                                                                                                                                                                                                                                                                                                                                                                         |
| 30                         |                   | <b>Figure S1:</b> Western blot analysis of BCRP expression in SN-38 sensitive and SN-38 resistant HT29 cells. $\beta$ -actin was used as loading control.                                                                                                                                                                                                               |
| 31                         |                   |                                                                                                                                                                                                                                                                                                                                                                         |
| 32                         |                   |                                                                                                                                                                                                                                                                                                                                                                         |



**Figure S2:** Cell viability assay with HT29 SN38 resistant colon cancer cells. Cells were incubated for 72 hours with the indicated concentrations of drugs. It is seen that the combination of neither SCO-201 or Ko143 with oxaliplatin (which is not a substrate for BCRP) has any combinatorial effect on the cell viability in the tested concentrations. A representative example is shown. Error bars indicate standard deviations.



**Figure S3:** Cell viability assay with mitoxantrone-resistant MDCKII-ABCG2/BCRP cells. Cells were incubated for 72 hours with the indicated concentrations of drugs. It is seen that the cell viability is reduced in a dose-dependent manner by SN38 in dose-dependent manner.



Figure S4: Cell viability assay with HT29 SN38 resistant colon cancer cells. Cells were incubated for
72 hours with the indicated concentrations of drugs. It is seen that the combination of both SCO-201
or Ko143 with SN38 has a combinatorial effect on the cell viability. It is also shown that SCO-201 is
more potent than Ko14 in restoring the effect of SN38 in the SN38 resistant cells. A representative
example is shown. Error bars indicate standard deviations.







53 Figure S5: Comparison of ABCG2 (BCRP) inhibition by SCO-201 and Ko143 as determined in the 54 Hoechst 33342 accumulation assay in MDCK cells. Open and closed squares indicate SCO-201 and 55 Ko143, respectively. For comparative purposes, the potent and selective ABCG2 inhibitor Ko143, 56 which is described in the literature as a standard inhibitor for potency assessment of new compounds, 57 was used as a comparator. Different concentrations of SCO-201 and Ko143 in a logarithmic scale were 58 tested and fluorescence values in the steady state measured for each concentration. The IC50-values 59 for SCO-201 and Ko143 were 0.175 ( $\pm$  0.077)  $\mu$ M and 0.250 ( $\pm$  0.106)  $\mu$ M, respectively. Thus, the 60 inhibitory potential of SCO-201 on ABCG2 (BCRP) was higher compared to the standard inhibitors 61 Ko143. A representative experiment is depicted.



64 Figure S6: Comparison of SCO-201 and Ko143 as determined in the Pheophorbide A accumulation 65 assay in MDCK cells. Open and closed squares indicate SCO-201 and Ko143, respectively. For 66 comparative purposes, the potent and selective ABCG2 inhibitor Ko143, which is described in the 67 literature as a standard inhibitor for potency assessment of new compounds, was used as a 68 comparator. Different concentrations of SCO-201 and Ko143 in a logarithmic scale were tested and 69 intra cellular fluorescence values in the steady state measured by flow cytometry for each 70 concentration. IC50 value of SCO-201 in the pheophorbide A accumulation assay was determined for 71 SCO-201 and Ko143 to 0.145 µM (±0.040 µM) and 0.231 (± 0.102) µM, respectively. Thus, the inhibitory 72 potential of SCO-201 was higher compared to the standard inhibitors Ko143. A representative 73 experiment is depicted.

| Compound I.D.        | Client Compound                                                | IC50 (M)                            | nH  | Test<br>Concentration | % of Control Values |                 |      |
|----------------------|----------------------------------------------------------------|-------------------------------------|-----|-----------------------|---------------------|-----------------|------|
|                      | I.D.                                                           |                                     |     |                       | 1 <sup>st</sup>     | 2 <sup>nd</sup> | Mean |
| PCDP (k) inhibition  | (RCPR CHO Heachs                                               | t 33347 substrate)                  |     |                       |                     |                 |      |
| 100014107_1          | ODP 5 240                                                      | 1 7E 06 M                           | 0.4 | 2 OF 08 M             | 04.2                | 05.2            | 04.7 |
| 100014197-1          | OBK-5-540                                                      | 1./E-00 M                           | 0.4 | 5.0E-08 M             | 94.2                | 95.2            | 94./ |
|                      |                                                                |                                     |     | 1.0E-07 M             | 83.7                | 84.9            | 84.3 |
|                      |                                                                |                                     |     | 3.0E-07 M             | 64.8                | 63.3            | 64.1 |
| 100                  |                                                                | Top: 100                            |     | 1.0E-06 M             | 45.3                | 42.3            | 43.8 |
| 90 - 1<br>85<br>80 - |                                                                | Bottom: 0<br>nH: 0.4<br>C50: 1.7E-6 |     | 3.0E-06 M             | 39.3                | 41.4            | 40.4 |
| 75 -<br>70 -<br>65 - |                                                                |                                     |     | 1.0E-05 M             | 30.0                | 31.8            | 30.9 |
| 55                   |                                                                |                                     |     | 3.0E-05 M             | 26.5                | 25.9            | 26.2 |
| රි 45<br>18 40<br>35 |                                                                |                                     |     | 1.0E-04 M             | 27.4                | 23.5            | 25.4 |
| 30<br>25<br>20       |                                                                | ×.•                                 |     |                       |                     |                 |      |
| 15<br>10<br>5        |                                                                |                                     |     |                       |                     |                 |      |
| ±,0<br>181           | 0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0<br>Log OBR-5-340(M)            | -4.5 -4.0 -3.5                      |     |                       |                     |                 |      |
|                      | - ICSO fit ¥ Mean                                              |                                     |     |                       |                     |                 |      |
| F                    | igure X. OBR-5-340 on BCRP (h)<br>(BCRP-CHO, Hoechst 33342 sul | inhibition<br>(strate)              |     |                       |                     |                 |      |

Figure S7: SCO-201 (OBR-5-340) mediated inhibition of BCRP. A dye efflux assay employing the
 BCRP substrate Hoechst 33342 in BCRP overexpressing CHO cells determined the IC<sub>50</sub> of SCO-201 to
 1.7 μM.



83 Figure S8: Figure S8: Timeline representation of interaction and contacts between residues in the 84 binding cavity of the BCRP transporter and SCO-201. Interactions (hydrogen bonds, hydrophobic, 85 ionic and water bridges) are shown over the simulation time. Residues which make more than one 86 interaction or contact with the ligand are shown as a darker shade of orange. From the timeline it 87 could be seen that SCO-201 interacts heavily with PHE-439 of the B chain. Further it shows that THR-88 435 and ASN-436 of the protein B chain interacts with SCO-201 and to a minor extent VAL-546 of the 89 A chain of the transporter also interacts with the ligand through most of the simulation. Blue bar in 90 the top of the figure shows the total number of interactions between ligand and transporter at a given 91 time. Representation produced using Desmond, Schrödinger 2019-3, LLC [1].



**Figure S9:** Timeline representation of interaction and contacts between residues in the binding cavity of the BCRP transporter and SN-38. Interactions (hydrogen bonds, hydrophobic, ionic and water bridges) are shown over the simulation time. Residues which make more than one interaction or contact with the ligand are shown as a darker shade of orange. From the timeline it could be seen that SN-38 interacts heavily with PHE-439 of both protein chains as well as ASN-436 from protein chain B. VAL-546 of the proteins chain A also interact with the substrate throughout most of the simulation. Blue bar in the top of the figure shows the total number of interactions between ligand and transporter at a given time.

| 110 | <b>Table S1.</b> In vitro DMPK analysis of transporter inhibition |                                              |                   |                          |                     |  |  |
|-----|-------------------------------------------------------------------|----------------------------------------------|-------------------|--------------------------|---------------------|--|--|
| 111 |                                                                   | Transporter                                  | Cell line         | Substrate                | Reference inhibitor |  |  |
| 112 |                                                                   | P-gp                                         | MDR1-MDCKII       | Calcein AM               | Verapamil           |  |  |
| 113 |                                                                   | BCRP                                         | BCRP-CHO          | Hoechst 33342            | Ko143               |  |  |
|     |                                                                   | OATP1B1                                      | OATP1B1-CHO       | Fluorescein methotrexate | Rifampicin          |  |  |
|     |                                                                   | OATP1B3                                      | OATP1B3-CHO       | Fluorescein methotrexate | Rifampicin          |  |  |
|     |                                                                   | OAT1                                         | OAT1-CHO          | 6-carboxyfluorescein     | Probenecid          |  |  |
|     |                                                                   | OAT3                                         | OAT3-CHO          | 6-carboxyfluorescein     | Probenecid          |  |  |
|     |                                                                   | OCT2                                         | OCT2-CHO          | ASP+                     | Verapamil           |  |  |
|     | Reference                                                         | Compound                                     |                   | IC50 (M)                 | nH                  |  |  |
|     | OCT2 (h) i                                                        | nhibition (OC                                | T2-CHO, ASP+ su   | bstrate)                 |                     |  |  |
|     | verapamil                                                         |                                              |                   | 8.3E-06 M                | 0.5                 |  |  |
|     | BCRP (h) in                                                       | nhibition (B                                 | CRP-CHO, Hoech    | nst 33342 substrate)     |                     |  |  |
|     | KO143                                                             |                                              |                   | 5.5E-08 M                | 0.5                 |  |  |
|     | OAT1 (h) i                                                        | nhibition (C                                 | DAT1-CHO, CF su   | bstrate)                 |                     |  |  |
|     | Probenecid                                                        | l                                            |                   | 3.8E-05 M                | 0.8                 |  |  |
|     | OAT3 (h) i                                                        | nhibition ((                                 | DAT3-CHO, CF su   | bstrate)                 |                     |  |  |
|     | Probenecid                                                        | l                                            |                   | 1.9E-05 M                | 0.6                 |  |  |
|     | OATP1B1                                                           | (h) inhibition (OATP1B1-CHO, FMTX substrate) |                   |                          |                     |  |  |
|     | Rifampicin                                                        | L                                            |                   | 2.2E-06 M                | 0.6                 |  |  |
|     | OATP1B3 (h) inhibition (OATP1B3-CHO, FMTX substrate)              |                                              |                   |                          |                     |  |  |
|     | Rifampicin                                                        | L                                            |                   | 5.4E-06 M                | 0.4                 |  |  |
|     | P-gp inhib                                                        | ition (MDR1-N                                | MDCKII, calcein A | M substrate)             |                     |  |  |
|     | Verapamil                                                         |                                              |                   | 3.1E-06 M                | 0.9                 |  |  |
| 444 |                                                                   |                                              |                   |                          |                     |  |  |

**Table S1:** In vitro DMPK analysis of transporter inhibition. As indicated in Table S1, several reference

116 compounds were included in the DMPK transporter inhibition analyses to demonstrate the functionality of the

transporter assay. The background for P-gp and BCRP is the mean reading in the presence of the highest

118 effective concentration of the reference inhibitor. The background for OATP1B1, OATP1B3, OAT1, OAT3, and

119 OCT2 is the mean reading in the absence of both the test compound and the substrate. For the efflux

120 transporters (P-gp and BCRP), increased fluorescence signal represents inhibition of the transporter activity.

121 For the uptake transporters (OATP1B1, OATP1B3, OAT1, OAT3, and OCT2), decreased fluorescence signal

122 represented inhibition of the transporter activity. The IC50 values are shown for the analysed transporters with

the indicated substrate.

124

## Table S2. In vitro DMPK analysis: CYP inhibition

|                                                      | Assay                                       | Substrate                                                                       | Metabolite                                                                                         | Reference inhibitor                                            |  |  |
|------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|--|
|                                                      | CYP1A                                       | phenacetin                                                                      | acetaminophen                                                                                      | furafylline                                                    |  |  |
|                                                      | CYP2B6                                      | bupropion                                                                       | hydroxybupropion                                                                                   | clopidogrel                                                    |  |  |
|                                                      | CYP2C8                                      | paclitaxel                                                                      | $6\alpha$ -hydroxypaclitaxel                                                                       | montelukast                                                    |  |  |
|                                                      | CYP2C9                                      | diclofenac                                                                      | 4'-hydroxydiclofenac                                                                               | sulfaphenazole                                                 |  |  |
|                                                      | CYP2C19                                     | omeprazole                                                                      | 5-hydroxyomeprazole                                                                                | oxybutynin                                                     |  |  |
|                                                      | CYP2D6                                      | dextromethorphan                                                                | dextrorphan                                                                                        | quinidine                                                      |  |  |
|                                                      | СҮРЗА                                       | midazolam                                                                       | 1-hydroxymidazolam                                                                                 | Ketoconazole                                                   |  |  |
|                                                      | СҮРЗА                                       | testosterone                                                                    | 6β-hydroxytestosterone                                                                             | Ketoconazole                                                   |  |  |
| Reference                                            | e Compour                                   | ıd                                                                              | IC50 (M)                                                                                           | nH                                                             |  |  |
| CYP1A in                                             | hibition (H                                 | LM, phenacetin subs                                                             | strate)                                                                                            |                                                                |  |  |
| Furafyllin                                           | ne                                          |                                                                                 | 6.2E-06 M                                                                                          | 0.9                                                            |  |  |
| CYP2B6 in                                            | nhibition (H                                | HLM, bupropion sub                                                              | strate)                                                                                            |                                                                |  |  |
| Clopidog                                             | rel                                         |                                                                                 | 7.4E-07 M                                                                                          | 1.3                                                            |  |  |
| CYP2C8 inhibition (HLM, paclitaxel substrate)        |                                             |                                                                                 |                                                                                                    |                                                                |  |  |
| Monteluk                                             | ast                                         |                                                                                 | 3.6E-06 M                                                                                          | 0.8                                                            |  |  |
| CYP2C9 inhibition (HLM, diclofenac substrate)        |                                             |                                                                                 |                                                                                                    |                                                                |  |  |
| Sulfapher                                            | nazole                                      |                                                                                 | 3.7E-07 M                                                                                          | 0.8                                                            |  |  |
| CYP2C19                                              | inhibition                                  | (HLM, omeprazole su                                                             | ıbstrate)                                                                                          |                                                                |  |  |
| Oxybutyr                                             | in                                          |                                                                                 | 5.5E-06 M                                                                                          | 1.0                                                            |  |  |
| CYP2D6 i                                             | nhibition (l                                | HLM, dextromethorp                                                              | han substrate)                                                                                     |                                                                |  |  |
| Quinidine                                            | 2                                           |                                                                                 | 1.2E-07 M                                                                                          | 1.1                                                            |  |  |
| CYP3A in                                             | hibition (H                                 | LM, midazolam subs                                                              | strate)                                                                                            |                                                                |  |  |
| Ketocona                                             | zole                                        |                                                                                 | 2.1E-07 M                                                                                          | >3                                                             |  |  |
| CYP3A inhibition (HLM, testosterone substrate)       |                                             |                                                                                 |                                                                                                    |                                                                |  |  |
| Ketocona                                             | zole                                        |                                                                                 | 2.7E-07 M                                                                                          | >3                                                             |  |  |
| <b>Fable S2:</b> In<br>ncluded in t<br>nssay. The IC | vitro DMPK<br>he DMPK tra<br>C50 values are | analysis: CYP inhibitior<br>insporter inhibition anal<br>shown for the analysed | n. As indicated in Table S2, sev<br>lyses to demonstrate the funct<br>CYP's with the indicated inh | veral reference compou<br>tionality of the CYP inh<br>ibitors. |  |  |

136

135

Table S3. In vitro DMPK analysis: CYP induction

| Positive control (conc.) | Assay  |
|--------------------------|--------|
| Omeprazole (50 µM)       | CYP1A  |
| Phenobarbital (1000 µM)  | CYP2B6 |

| 137 |         |                        |                               |                              |                               |
|-----|---------|------------------------|-------------------------------|------------------------------|-------------------------------|
|     |         |                        | Substrate (conc.)             | Metabolite                   | Assay                         |
|     |         |                        | Ethoxyresorufin (2 µM)        | Resorufin                    | CYP1A                         |
|     |         |                        | Bupropion (200 μM)            | Hydrozyl-bupropion           | CYP2B6                        |
|     |         |                        | Midazolam (10 µM)             | 1-hydroxymidazolam           | СҮРЗА                         |
| 138 |         |                        |                               |                              |                               |
| 139 | Table S | <b>3:</b> In vitro DMP | K analysis: CYP induction. As | s indicated in Table S3, var | ious compounds and substrates |
| 140 | were ap | plied as inducer       | rs of the investigated CYPs.  |                              |                               |
| 141 |         |                        |                               |                              |                               |
| 142 |         |                        |                               |                              |                               |
| 143 |         |                        |                               |                              |                               |
| 144 | Refer   | ences for su           | pplementary materia           | ls                           |                               |
| 145 |         |                        |                               |                              |                               |
| 146 | 1.      | Bowers, A.K            | .J.; Chow, E.; Xu, H.; Dro    | r, R.O.; Eastwood, M.I       | P.; Gregersen, B.A.;          |
| 147 |         | Klepeis, J.L.;         | Kolossvary, I.; Moraes,       | M.A.; ., F.D.S., et al. So   | alable algorithms for         |
| 148 |         | molecular d            | ynamics simulations on        | commodity clusters. In       | n Proceedings of              |
| 149 |         | Proceedings            | of the 2006 ACM/IEEE          | conference on Superc         | omputing, Tampa,              |
| 150 |         | Florida; pp.           | 84–es.                        |                              |                               |
| 151 |         |                        |                               |                              |                               |

| Rifampin (10 µM) | СҮРЗА |
|------------------|-------|
|------------------|-------|