Article	Cancer type	Goals of the study	Cell lines	Patient xenografts	Treatment correlation	Genetic correlation	Readouts	Stage	T (°C)
<u>Yan et al,</u> 2019.	Rhabdomyosarcoma Melanoma Breast cancer Glioblastoma	Zebrafish reared at 37 °C improve engraftment; drug response.	ERMS RD, ARMS Rh41 UACC62 MDA-MB-231	6 patients (cultured)	No	No	 Live cell tracking; Tumor growth (fluoresce. intensity); H&E Proliferation (Ki67); Apoptosis (TUNEL). Confocal microscopy 	Adult	37
<u>Wang et</u> al, 2019.	Pancreatic cancer	Optimization of zPDX as a screening platform for clinical use.	-	1 patient (cultured)	No	No	Fluorescence intensity (stereoscope)	Larvae	32
<u>Lin et al,</u> 2019.	Hepatocellular carcinoma	Tumor formation, proliferation, migration, angiogenesis	293T/EDN1		No	No	 Tumor growth (fluoresce. intensity); Angiogenesis; Live imaging; Fluorescent microscopy. 	Larvae	28-37 (gradie nt)
<u>Ji et al,</u> <u>2018.</u>	Acute myeloid leukemia	Anti-tumor effects of the phytotoxin stemphol	U-937	4 patients (cultured)	No	No	• Tumor size (fluoresce. intensity). Fluorescent microscopy.	Larvae	28.5
<u>Wu et al,</u> <u>2017.</u>	Gastric cancer	Proliferation, angiogenic and metastatic activities, drug response	AGS, SGC-7901	9 patients (cultured)	Yes (1 out of 1)	No	 Cell viability (CCK8 kit); Nuclear stain (DRAQ5); Angiogenesis; H&E Cell number (tumor dissociation). Fluorescent and confocal microscopy. 	Larvae	32
<u>Leung et</u> al, 2017.	NSCLC	Silencing of PAPSS1 sensitizes NSCLC cells to cisplatin treatment	A549	-	No	No	• Cell number (by tumor dissociation) Fluorescent <i>microscopy.</i>	Larvae	35
<u>Canella et</u> <u>al, 2017.</u>	Glioblastoma	Onalespib in combination with temozolomide as a therapeutic approach against gliomas.	U251HF	-	No	No	 Live imaging; % xenografts survival; Tumor growth (automatic quantification). Confocal microscopy 	Larvae	32
<u>Gaudenzi</u> et al. 2017.	Neuroendocrine tumors	Tumor-induced angiogenesis and cell invasiveness	-	8 patients (cultured)	Νο	No	 Angiogenesis; H&E Migration. Fluorescent and confocal microscopy. 	Larvae	32

Article	Cancer type	Goals of the study	Cell lines	Patient xenografts	Treatment correlation	Genetic correlation	Readouts	Stage	Т (°С)
<u>Fior et al.</u> 2017.	Colorectal cancer	Tumor proliferation, metastatic and angiogenic potentials; drug response.	SW480, SW620, HCT116, HT29, Hke3	10 patients (direct)	Yes (4 out of 5)	Yes (3 out of 3)	 Tumor size (number of cells); % apoptosis; Angiogenesis; % mitosis; % metastasis; H&E Live imaging; Confocal microscopy. 	Larvae	34
<u>Roh-</u> Johnson, 2017.	Melanoma	Role of immune cells in tumor cell motility in vivo.	A375P A375M1, WM266-4, B16F10, 1205Lu, WM793, Mel-624; Zmel (zebrafish melanoma cells).		No	No	 Live imaging; Tumor cell dissemination; % macrophages; Time quantification of macrophage/tumor cell contact; Whole-mount IF. Fluorescent and confocal microscopy. 	Larvae	_31
<u>Hung et al,</u> <u>2016.</u>	Breast cancer	Effect of visfatin on migration and invasion.	MDA-MB-231		No	No	Cell invasion (dissemination of labeled cells). Fluorescent microscopy.	Larvae	32.5
<u>Mercatali</u> et al, 2016.	Breast cancer	Tumor behavior.	MDA-MB-231 MCF-7	Primary cells from bone metastasis, cultured (1 patient)	No	No	• Metastasis. Fluorescent microscopy.	Larvae	34
<u>Ghotra et</u> <u>al, 2015.</u>	Prostate cancer	Role of SYK (spleen kinase) as a potential new drug target.	PC3, DU145, LNCaP, C4-2B	-	No	No	 Tumor cell spreading; Cumulative distance of cells per embryo; Mean cumulative distance (automatic quantification). Confocal microscopy. 	Larvae	34
<u>Chen et al.</u> 2015.	Retinoblastoma	Tumor invasion and metastasis.	SJmRBL-8 (mouse) RB355, WERI-Rb1	-	No	No	 Tumor areas and disseminated tumor cell (automatic quantification); % zebrafish with metastasis; Averages of maximal distance of metastatic foci. Fluorescent and confocal microscopy. 	Larvae	28.5

Article	Cancer type	Goals of the study	Cell lines	Patient xenografts	Treatment correlation	Genetic correlation	Readouts	Stage	т (°С)
Bentley et al, 2015.	T-cell acute lymphoblastic leukemia	Drug response.	Jurkat, Karpas45, TALL1	2 patients (cultured 12h) (biopsy bone marrow)	Νο	Yes (2 out of 2)	Number tumor cells (dissociation PML + cells Fluorescent and confocal microscopy.	Larvae	35
<u>Chapman</u> et al, 2014.	Melanoma	Invasion properties and cooperation of tumor cells in a heterogeneous setting	UACC62, WM266-4		No	No	 Quantification of invasion; Whole-mount IF. Confocal microscopy. 	Larvae	34
<u>Ban et al.</u> <u>2014.</u>	Ewing sarcoma	Inhibition of SIRT1 interferes with tumor growth and migration in vivo.	TC252, A673	-	No	No	 Proliferation (tumor growth) and distance of migration based on mCherry labeled foci. Confocal microscopy. 	Larvae	34
<u>Van der</u> <u>Ent et al.</u> <u>2014.</u>	Ewing sarcoma	Proliferation, migration, and angiogenesis.	CADO-ES, EW3, EW7, L1062, TC32, TC71, SK-N-MC	-	No	No	 Whole-mount IHC; H&E Angiogenesis; Migration; Interaction with immune system; Tumor burden (mCherry area). Confocal microscopy. 	Larvae and juvenile (35dpf)	34
<u>He et al.</u> 2012.	Prostate cancer Breast cancer	Tumor cell invasion, tumor vascularization and micrometastasis formation.	MAE, FGF-T-MAE, 4T1 (mouse) ZF4/PAC2 (zebrafish) PC3, MDA-MB-231	-	No	No	 Live imaging; Whole-mount IHC; Angiogenesis; % metastasis; Microangiography; Proliferation (pH3); Immune system interaction; Neutrophils migration. Confocal /2-Photon microscopy 	Larvae	34
<u>Stoletov et</u> <u>al. 2010.</u>	Fibrosarcoma Breast cancer Colorectal cancer	Behaviour of metastatic human cancer cells undergoing extravasation.	HT1080, SW620, SW480, MDA-MB- 435, MDA-MB-231,	-	No	No	 Cell extravasation; Intravascular migration (live imag.); Whole-mount IF; Blood vessel wall integrity-dextran. Confocal microscopy. 	Larvae	35.5

Article	Cancer type	Goals of the study	Cell lines	Patient xenografts	Treatment correlation	Genetic correlation	Readouts	Stage	т (°С)
<u>Marques</u> et al, 2009.	Pancreatic cancer Colon cancer Stomach cancer	Analysis of metastatic behaviour of human tumor cells.	EpRas (mouse) PaTu8988-S, PaTu8988-T	7 patients (direct)	No	No	 Whole-mount IF; H&E Cell invasion and metastasis. Confocal microscopy. 	Larvae	35
<u>Weiss et</u> <u>al, 2009.</u>	Pancreatic cancer	MicroRNA-10a— required and sufficient for tissue invasion and metastasis of pancreatic tumor cells.	PaTu8988T/S, AsPC1, Capan1/2, MiaPaCa2, PANC1, PaTu8902	3 patients (cultured)	Νο	No	 Metastasis; H&E. Fluorescent microscopy. 	Larvae	35
<u>Lee et al.</u> 2009.	Ovarian cancer Breast cancer	Tumor-induced angiogenesis, invasion and metastasis.	T241 and LLC (mouse) OVCAR 8 MDA-MB-231	-	No	No	 Angiogenesis (vessel density); Tumor volume; Nº of disseminated cells; Metastasis maximal distance. Confocal microscopy. 	Larvae	28
<u>Nicoli et al,</u> 2007.	Ovarian Breast	Tumor-induced angiogenesis.	MAE, FGF2-T-MAE and B16-BL16 (mouse) Tet-FGF2; A2780, MDA-MB- 435	-	No	No	 Whole-mount in situ hybridization; Angiogenesis; DAPI-stained transverse sections; Neo-vessel quantification. Fluorescent microscopy. 	Larvae	28
<u>Haldi et al,</u> <u>2006.</u>	Melanoma Colorectal Pancreatic	Optimization of xenotransplantation; proliferation, migration and mass formation.	WM-266-4 SW620 FG CAS/Crk CCD-1092Sk	-	No	No	 Single cell dissociation (Dil); Angiogenesis; Whole-mount IHC; Whole-mount IC; Fluorescent/2-photon microscopy. 	Larvae	35

In Blue – patient-derived cells were used.