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Abstract: Periodontitis is a general term for diseases characterised by inflammatory destruction of
tooth-supporting tissues, gradual destruction of the marginal periodontal ligament and resorption
of alveolar bone. Early-onset periodontitis is due to disturbed neutrophil extracellular trap (NET)
formation and clearance. Indeed, mutations that inactivate the cysteine proteases cathepsin C result
in the massive periodontal damage seen in patients with deficient NET formation. In contrast,
exaggerated NET formation due to polymorphonuclear neutrophil (PMN) hyper-responsiveness
drives the pathology of late-onset periodontitis by damaging and ulcerating the gingival epithelium
and retarding epithelial healing. Despite the gingival regeneration, periodontitis progression ends
with almost complete loss of the periodontal ligament and subsequent tooth loss. Thus, NETs help to
maintain periodontal health, and their dysregulation, either insufficiency or surplus, causes heavy
periodontal pathology and edentulism.

Keywords: NET insufficiency; PMN hyper-responsiveness; ulceration; crevicular occlusion;
exaggerated immune response

1. Introduction

Neutrophil extracellular traps (NETs) are evolutionary conserved innate immunity structures
produced by activated polymorphonuclear neutrophils (PMNs) mainly as a response to pathogen
challenge. NETs have a backbone of DNA and are decorated with histones and neutrophil protease,
as well as other bactericidal agents, such as lactoferrin, cathepsins and myeloperoxidase (MPO) [1–3].
NET formation can be stimulated by activation of neutrophils via receptors for (I) chemokines,
(II) cytokines, (III) immune complexes, (IV) pathogen-associated molecular patterns (PAMPs), (V)
damage-associated molecular patterns (DAMPs), (VI) C3a or 5a, and (VII) complement C3 and C4
and their derivatives [4]. Many of the mechanisms for NET formation initiated by engagement of the
aforementioned receptors are linked to the NADPH oxidase (NOX) machinery, but NOX-independent
processes have also been described [5–7]. Upon activation, the azurophilic granular proteins NE
and MPO translocate to the nucleus to promote nuclear and chromatin decondensation [8]. Histone
hypercitrullination by peptidylarginine deiminase 4 (PADI4) also contributes [9]. However, NE- and
PADI4-independent pathways have also been reported [10,11].
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Depending on the context, NETs are known to exert either pro- or anti-inflammatory effects.
NETs induce the inflammasome [12], type I interferons and pro-inflammatory cytokines; damage the
endothelium [13]; and can occlude ducts in various organs, thereby promoting organ damage [14–16].
Furthermore, disbalanced NET formation carries the risk of developing periodontal pathologies.

In areas of low neutrophil densities (e.g., in blood or during early stages of inflammation),
individual neutrophils form NETs and trap pathogens in an inflammatory manner, releasing their load
of proinflammatory mediators (e.g., cytokines, chemokines). Consequently, further neutrophils are
attracted, and the density of neutrophils increases. In areas of high cell densities, the NET-forming
neutrophils clump together and form felted aggregates (aggNETs). The latter initially trap and
finally degrade several inflammatory mediators. The NET structures exert anti-inflammatory effects
leading to downregulation of inflammatory responses by promoting the trapping and cleavage of
pro-inflammatory mediators through NET-bound proteases [17–19]. This process initiates the resolution
of inflammation.

Periodontal inflammation starts as gingival inflammation, which is completely reversible.
Periodontitis is either early onset (earlier denoted aggressive) or late-onset (earlier denoted chronic).
Despite the common morphological destruction of the periodontium, these disease entities differ in
their inflammatory response. The early onset periodontitis affects both human dentitions and is a
consequence of genetic defects [20] mostly concerning PMNs. Impaired neutrophil extracellular trap
(NET) formation, resulting from e.g., mutations that inactivate cathepsin C [21] or neutrophils elastase
(NE) [22], are accompanied by severe forms of periodontitis. In contrast, late-onset periodontitis
predominantly emerges in individuals with an age above 35 years [23]. It is characterised by a
hyper-responsiveness of the PMN [24–28]. Late-onset periodontitis is a heritable [29] inflammatory
age-related disease of tooth supporting tissues [30], characterised by resorption of periodontal ligament
and alveolar bone. With the resorption of periodontal ligament, the marginal gingival sulcus deepens,
and the so-called periodontal pocket forms, a deep narrow space enclosed between the gingival
epithelium and the dental root. The denudate root is frequently covered with subgingival concrements
and/or dental plaque and is emerged in gingival crevicular fluid, a blood plasma transudate [31] rich
in activated neutrophils and NETs [32,33] (Figure 1). Late-onset periodontitis progression takes place
through recurrent bursts of destruction followed by varying periods of stagnation. This temporally
and spatially haphazard mode of disease progression has been named the random burst model [34–36].
Periodontitis progression ends with tooth exfoliation [37].

Currently, the prevailing opinion is that inflammatory bone resorption is the main driving force of
alveolar bone destruction in late-onset periodontitis [38–41]. Osteoclast differentiation and activation
are promoted by the binding of receptor activator of nuclear factor kappa-B ligand (RANKL) (expressed
by osteoblasts and activated T-cells and B-cells) to RANK on osteoclast precursors; osteoprotegerin
acts to block the RANKL–RANK interaction and restrains osteoclastogenesis. It has been assumed
that Th17 cells, activated by oral pathogens, induce bone destruction via production of RANKL and
subsequent osteoclast proliferation. Following the hypothesis of the crucial IL17 role in late-onset
periodontitis [40,41] and considering the fact that the implant–gingiva attachment is not tighter than
the tooth–gingiva one, dental implants in patients with late-onset periodontitis should also be prone to
inflammatory osteolysis to the same extent, but this is not the case. Dental implants in patients with
late-onset periodontitis have the same or only slightly reduced surviving rate as compared to patients
without late-onset periodontitis [42]. The lack of positive effects of bisphosphonates on late-onset
periodontitis in humans [43] indicates that the inflammatory osteolysis [38–41] cannot be the main
reason for late-onset periodontitis. All of these findings cast doubt on the idea that Th17-induced
osteolysis be the primary driving force of bone resorption in late-onset periodontitis.

Many epidemiological data demonstrate that both cells and molecules of the innate and adaptive
immune response are adversely impacted by aging, yielding a reasonable tenet that the increased
periodontitis noted in aging populations is reflective of the age-associated immune dysregulation [44,45].
Thus, an increased basal level of NF-κB activation has been reported in dendritic cells (DCs) from
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aged subjects [46]. The epithelial cells in the mucosa secrete factors, such as retinoic acid and TGF-β,
which act upon DCs to induce tolerance to prevent response against harmless antigens and commensal
microbiome [47–49]. DCs from aged subjects display impaired response to retinoic acid and are
deficient in inducing T regulatory cells for tolerance [50]. The basal level of activation of DCs from aged
subjects leads to low-level secretion of pro-inflammatory cytokines, which activates the epithelium
even in the absence of infection [51]. Thus, PMN hyper-responsiveness in late-onset periodontitis
PMN [24–28] and loss of tolerance [52], i.e., an exaggerated immune response, appears reasonable as a
main cause of late-onset periodontitis [53–57].
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4. Crevicular Occlusion by NETs 

Figure 1. Periodontal crevice. On the left: subgingival plaque. On the right: an epithelial cell with
an adherent bacterium and bacteria in different stages of internalisation. In the middle: periodontal
crevice. Neutrophil extracellular trap (NETs) build a 3D web work protecting the gingiva from bacteria
dispersing out of the subgingival plaque. NETs together with the entrapped bacteria are continuously
pushed into the oral cavity by the crevicular exudate outflow. Open white arrow: direction of the
crevicular exudate outflow. Solid black arrow: a bacterium dispersing from the subgingival plaque.

2. NET Formation and Aggregation in Late-Onset Periodontitis

Canonical NETs, adequate to bacterial challenge, are a main protector of periodontal tissues,
and insufficient NETs cause severe early-onset periodontitis [56]. However, exaggerated NET formation
may be responsible for tissue damages in late-onset periodontitis. The exaggerated PMN response
in late-onset periodontitis may have various causes: one of them is the hyper-responsiveness of
PMNs in late-onset periodontitis [24–26,28]. Additionally, altering the mucosal PMNs due to the
mucosal transmigration takes place, particularly characterised by delayed PMN apoptosis [58,59],
as evident by transcriptome changes in oral PMNs [60]. NETs form exclusively on the surface of the
crevicular (pocket) epithelium [32]. Deep pockets have a resting volume of up to 1.5 µL and also
gingival crevicular fluid flow rates of up to 44 µL/h [34], i.e., the gingival crevicular fluid has a very
short dwelling time of nearly 2 min within the crevice. However, the time of PMN adhesion to the
epithelial surface may prolong the PMN dwelling time within the crevice. Nevertheless, this time is too
short, as no PMNs accumulate on the crevicular surface in late-onset periodontitis [32,61]. However,
the canonical NET formation requires at least 2 h [2]. The only type of NET formation in a few minutes
is the bicarbonate-induced non-canonical NET formation [15].
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Cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in a number of epithelia
in humans, including the gingival epithelium. Moreover, CFTR expression in gingival epithelial from
periodontitis biopsies is strongly elevated and even present in the gingival connective tissue [62].
Degradation of HCO3− by crevicular carbonic anhydrases (CAs) causes alkalinisation. Indeed, CA-1 is
regularly located in PMNs [63], some epithelia [64] and both healthy [65] and CPD-affected gingiva [66].
In particular, elevated CA-1 of gingival crevicular fluid in late-onset periodontitis [65–68] suggests a
connection to elevated pH of gingival crevicular fluid. The pH of gingival crevicular fluid varies in
late-onset periodontitis from 6.9 up to 8.7 due to the high bicarbonate concentration [69,70], but direct
measurement of pH within the gingival pocket has yielded a somewhat lower range of 6.35–8.10 [71].
Gingivitis does not appear to be associated with major changes in crevicular pH, and the mean
crevicular pH is near 7.0, but in about 7% of periodontitis individuals, there is at least one site with
a pH between 7.5 and 7.8 [71]. Bicarbonates above 37 mM and pH above 7.55 cause extremely
quick NET formation, namely non-canonical NETs [72], as in the case of pancreatitis [15]. Thus,
a bicarbonate non-canonical NET formation may be expected in the alkaline gingival crevicular fluid
of late-onset periodontitis. The elevated gingival CFTR expression in late-onset periodontitis [62] is an
important requirement for the exaggerated NET formation, as it enables the bicarbonate enrichment
and alkalosis of gingival crevicular fluid. Cystic fibrosis (CF) patients have mutated CFTR and
completely lack the ability to secrete HCO3−. However, data concerning the late-onset periodontitis in
CF patients are inconclusive [73] due to fact that the life expectancy of CF patients is below 50 years,
and this period is too short for the development of late-onset periodontitis. However, gingivitis,
the precursor of late-onset periodontitis, is significantly lower in adult CF patients as compared to
healthy controls [73,74], and the periodontal risk is at a low level [75]. Particularly, aggregated NETs
(aggNETs) [18] have also been reported [32] in purulent gingival crevicular fluid, but the final stage
of bicarbonate-induced NETosis [72] has never been reported, probably due to the short dwelling of
PMNs within the gingival periodontal crevice.

Exaggerated NETs and, hence, oversupply of proteases in the crevice are major tissue-damaging
factors in late-onset periodontitis.

3. Periodontal Damage by PMNs, NETs and NET Degradation Products

In periodontal tissues and crevices, both serine and metalloproteases are almost exclusively
delivered by PMNs [76–78]. The NETs may dissolve the basal lamina [79] and damage or even
kill the epithelial cells [80] causing epithelial ulceration. Indeed, increased gingival crevicular fluid
levels of laminin-332 [81–83], PMN proteases [76–78] and the epithelial ulceration in late-onset
periodontitis [84,85] have been reported. Epithelial ulceration may be assisted by periodontal
pathogens [86] and enables an unimpeded influx of NET-derived proteases into the periodontal
ligament. Patients with late-onset periodontitis are regarded as being immunised with periodontal
pathogens [87]. Immunisation against bacterial components and the subsequent formation of immune
complexes induces PMN infiltration, NET formation [88,89] and thus precipitates periodontitis [87,90].
Smoking further aggravates late-onset periodontitis [91–94]. Cigarette smoke fosters NET formation [95]
and PMN-derived proteases, which are responsible for the connective tissue breakdown [96]. In both
mentioned cases of external damaging factors, PMNs and NETs are key mediators of the periodontal
tissue injury.

Regardless of how destruction of the junctional epithelium and the underlying periodontal
ligament takes place, it inevitably results in long junctional epithelium formation [87] (Figure 1).
After destruction of marginal periodontal ligament, keratinocyte proliferation provides the seal of
the connective tissue wound, namely, the long junctional epithelium, which replaces the destroyed
connective tissues. As a result, the marginal periodontal ligament is gradually destroyed with each
exacerbation [34–36] up to exfoliation of the affected tooth.
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Alveolar bone resorption follows the loss of periodontal ligament, as demonstrated in cases post
extraction [97,98] and in animal models [99–101]. Thus, bone remodelling rather than inflammatory
osteolysis appears to be responsible for the alveolar bone resorption in late-onset periodontitis.

4. Crevicular Occlusion by NETs

The periodontal crevice, i.e., the space between dental root and the crevicular gingiva, is filled
with gingival crevicular fluid. The length of the crevice increases with deepening of the periodontal
pocket and can even rich the root apex. Gingival crevicular fluid is continuously produced by the
gingival epithelium and drained into the oral cavity. Thus, the crevice may be viewed as a duct,
which evacuates the gingival crevicular fluid along with bacteria, pathogen-associated molecular
patterns (PAMPs) and damage-associated molecular patterns (DAMPs) from the crevicular bottom
into the oral cavity (Figure 1). The quantity of gingival crevicular fluid and its density, i.e., content of
NETs, depend on whether remission or exacerbation of late-onset periodontitis takes place. In most
heavy cases of exacerbation, purulent exudate is produced [102]. This exudate is rich in aggNETs and
extremely viscous [32]. The extracellular DNA excess of aggNETs cause increased viscosity [103,104] of
gingival crevicular fluid and, as a result, obstruction of or even possibly occlusion of gingival crevicular
fluid evacuation out of the crevice. Such a mechanism of a duct occlusion by bicarbonate-induced
NETs has been reported in pancreatitis [15,72]. Marginal occlusion of the pocket leads to gingival
crevicular fluid retention, abscess formation in the pocket and its extension into the surrounding
periodontal tissues [105–107]. In a few cases, pH of saliva in the quiescent state is 7.5 or somewhat
higher, but does not reach 8.0 [108]. However, as a reaction to oesophageal charges, salivary pH rises
up to 8.02 (a 3.3-fold increase), and the salivary bicarbonate concentration also rises, showing a 3.7-fold
increase [109,110]. Thus, in certain cases, high salivary pH might critically accelerate NET formation in
the marginal periodontal crevice and contribute to its occlusion. Furthermore, salivary sialyl LewisX

induces NETs within 15 min, thus possibly contributing to the occlusion of the marginal periodontal
crevice [111]. Generally, two modes of periodontal abscess development in periodontitis patients
have been reported: (i) the unprompted one in untreated periodontitis and (ii) after periodontitis
treatment [106]. The unprompted periodontal abscess might be a result of occlusion by bicarbonate
NETs, whereas after periodontitis treatment, an additional mechanism may also come into question.
Surgical wounds in marginal areas of the periodontal pocket heal by long junctional epithelium
formation [87] in three days, even in the absence of stromal healing [112]. This ability is due to the high
activation of the oral epithelium showing upregulation of genes linked to epithelial and immune cell
migration, as well as increased proliferation, as demonstrated by analysis of the transcriptome of the
oral epithelium [112]. The capability of the gingival epithelium to “reattach” to the root surface by long
junctional epithelium formation is routinely used in the modified Widman flap surgical technique [113],
where, however, the whole crevicular epithelium is removed. Healing the marginal areas of the
periodontal pocket comprises the epithelial attachment to the root surface and may lead to occlusion
of deeper parts of the periodontal pocket (Figure 2). The contaminated pocket epithelium below the
epithelium reattachment continues to produce gingival crevicular fluid, which cannot be eliminated by
draining. The marginal crevicular occlusion may further increase the PMN transmigration into the
crevice and ultimately results into periodontal abscess formation.

Independent of how the crevice occludes, the pocket epithelium below the place of occlusion
sustains PMN transmigration and NET formation, and this retention yields a periodontal abscess.
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Figure 2. Occlusion of marginal pocket either by aggregated NETs (aggNETs), or by attachment of
the marginal epithelium to the root. The underlying pocket epithelium continues to secrete gingival
crevicular fluid, and polymorphonuclear neutrophils (PMNs) continue to transmigrate. The exact
nature of the plug (depicted blue) has not been clarified yet [87,113].

5. NETs in Gingival Ulceration Healing

The pocket epithelium is characterised by the tendency to reveal micro-ulcerations [84]. Epithelium
ulcerations increase the chance for invasion of microorganisms and the penetration of their PAMPs
into the soft connective tissue, thereby aggravating the course of periodontitis. However, transitory
bacteraemia is not pathognomonic for periodontitis. Mechanically caused gingival micro-ulcerations
result in transitory bacteraemia lasting minutes [114–116]. Similarly, the skin, which has a considerably
larger surface, undergoes frequently multitudes of micro-traumas such as insect bites or minor skin
scratches, which also results in transitory bacteraemia [117]. A main task of NETs is to limit the bacterial
spreading [1]. However, in late-onset periodontitis [118,119] and in experimental periodontitis [40],
i.e., in a heavily contaminated pocket epithelium, crevicular NETs are overwhelmed and appear unable
to completely prevent periodontal pathogen dissemination to inner organs, a finding demonstrating
the limitation of NETs to prevent bacterial spreading in a heavily contaminated environment. However,
exaggerated NET formation suppresses wound healing [120]. Three findings indicate the suppressive
effect of exaggerated NET formation in late-onset periodontitis: (i) increased NET degradation has been
observed in late-onset periodontitis as a consequence of periodontal therapy [121]; (ii) the correlation
between diabetes and late-onset periodontitis [122,123] appears to be a consequence of increased NET
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formation in diabetes [120]; (iii) cigarette smoke, a factor aggravating the course of periodontitis, fosters
NET overproduction [95].

Either suppression of exaggerated NET formation or NET lysis by DNase can ameliorate the
negative effects of NETs on wound healing [120]. The healing of gingival ulcerations in late-onset
periodontitis by attenuation of NET formation, e.g. through NET lysis, opens a new perspective to
amplify the late-onset periodontitis therapy.

6. NET-Driven Periodontal Inflammation

PMN hyper-responsiveness [24–28], delayed PMN apoptosis [124], immune-senescence [46,50,125]
and PAMP overload, i.e., dental plaque accumulation, dominate the immune response in late-onset
periodontitis [53–57]. Once late-onset periodontitis occurs, peripheral PMN hyper-responsiveness
is evident, which does not disappear even after successful periodontal therapy [126]. The PMN
hyper-responsiveness results in exaggerated NET formation and even in epithelial damages including
ulceration [120] and, thus, sustains and aggravates periodontal inflammations. The oral epithelium
healing mechanism cannot compensate the damages due to the exaggerated NET formation and
is incapable of providing epithelial repair. As consequence, heavy inflammatory infiltration of
the connective tissue and periodontal ligament damaging take place. The healing of damaged
periodontal ligaments occurs via replacement with the junctional epithelium [127]. Due to the high
proliferation rate of oral epithelial cells, after just a few days, the large part of the periodontal
wound would inevitably be delimitated by the epithelium [128], even in the absence of stromal
healing [112]. This phenomenon is denoted either apical migration of the junctional epithelium,
or long junctional epithelium formation. This healing through repair reduces the periodontal
ligament surface and subsequently the load-bearing capacity of the affected tooth. This results
in periodontium overburdening, which causes trauma-induced inflammation. Thus, even when the
gingival inflammation is in a state of remission [34–36], moderate bacteria challenges or mechanical
overloading may inflame the inflammation anew.

The PMN hyper-responsiveness is considered the main pathogenic factor in localised aggressive
periodontitis, a subtype of late-onset periodontitis [126], and is also responsible for overproduction
of NETs. Exaggerated NETs cause epithelial cytotoxicity [126,129] and liberate proteases, damaging
even the basal lamina [79]. This clearly indicates the destructive role of exaggerated NET formation
in periodontitis. Clinically, the topical application of prednisolone alone [130] into the periodontal
pocket in cases of periodontitis exacerbation is sufficient for a temporary resolution of periodontitis
inflammation, or at least for its attenuation. Similarly, topical application of resolvin E1 in an animal
model caused resolution of inflammation via PMN depriming [130]. These findings clearly indicate
that the bacterial challenge in periodontitis plays a secondary role.

The exaggerated immune response in late-onset periodontitis, in particular, the exaggerated
NET formation, appears to be responsible for tissue damages, impairs tissue regeneration and causes
non-resolution of inflammation.

7. Role of NETs in the Resolution of Gingival Inflammation

Periodontal NETs have been reported on for over a decade [32], but their role in the resolution
of gingival and periodontal inflammation remains largely unexplored due to technical difficulties
in the examination of periodontal NETs in both humans and animal models, as well as the lack of
interest on the side of periodontal societies. NET indispensability for periodontal health is nevertheless
evident in patients with certain gene defects that are inevitably concomitant with both deficient NET
formation and early-onset periodontitis [57]. The early-onset periodontitis is resolved only with
the teeth loss [21,22]. These findings indicate the crucial role of canonical NETs in the resolution of
gingival inflammation.

The inner mucous layer of the mucosal epithelia, where goblet cells are located, shields and
aggregates bacterial pathogens [131]. Gingival epithelia lack the mucus layer, and its task has
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been suggested to be taken over by NETs [57]. The role of NETs in maintaining periodontal health
and resolution of periodontal inflammation is comprehensible through analogy to other mucosal
surface-lacking goblet cells, e.g., the cornea. Corneal NETs render a “dead zone” for bacteria and
prevent tissue invasion by bacteria [132]. Indeed, the NET ability to block off and aggregate bacteria
and nano-particles is beyond doubt [133,134].

Late-onset periodontitis progression is characterised by recurrent bursts of destruction, followed
by varying periods of stagnation, the so-called random burst model [34–36]. The mechanism of this
“spontaneous” switch from exacerbated inflammation to resolution of inflammation remains obscure.
However, aggNETs, which are common in purulent periodontitis [32], are able to resolve inflammation
through the degradation of inflammatory cytokines and mediators [18], as well as by detoxifying the
extracellular histones [19]. Thus, aggNETs might be a crucial factor for the resolution of exacerbated
periodontal inflammation.

Further in vivo and clinical examinations on crevicular aggNETs are needed to clarify their role in
the pathology of periodontitis.

8. Treatment Approaches of Periodontitis Based on NET Suppression

The PMN hyper-responsiveness [24–28] in late-onset periodontitis appears to be the reference
point for the understanding the periodontal pathology, but its cause remains obscure. One reason for
PMN hyper-responsiveness might be the lipopolysaccharide (LPS) overload, due to dental plaque
accumulation as a consequence of the consumption of carbohydrate-rich thermally processed food.
Thus, Alaska Natives on their traditional diet, i.e., raw meat, have low rate of periodontitis [135].
In urban societies, temporary reduction of LPS load is achieved by tooth brushing and antibiotic
application. In addition, PMN hyper-responsiveness is a common feature of diabetes, rheumatic
arthritis, and other inflammatory systemic diseases [56,136], which are frequently concomitant with
late-onset of periodontitis. PMN hyper-responsiveness in late-onset periodontitis results in exaggerated
NET formation, which is responsible for gingival damages. Consequently, either lowing the PMN
hyper-responsiveness or attenuation of exaggerated NET formation might be a useful treatment
approach in late-onset periodontitis. The unawareness of the reason for PMN hyper-responsiveness
rather highlights the application of topical anti-inflammatory substances, as they have minimal
adverse effects or none at all. Many substances acting on NETs promise new treatment approaches in
periodontitis treatment. They either attenuate NET formation or diminish the deteriorating effects of
exaggerated NETs and belong to different classes of medicaments:

(i) Inhibitors of Toll-like receptors: a promising candidate is berberine, which provides significant
protection against LPS-induced mucosal injury in mice, via inhibiting the TLR4-nuclear factor
κB-MIP-2 pathway and decreasing neutrophil infiltration [137].

(ii) Another promising approach is the topical treatment with specialised pro-resolving mediators,
which stun PMNs, e.g., resolvins, lipoxin A4 etc. [138].

(iii) Topically applied prednisolone: corticosteroids downregulate NETs [139] and are efficient and
prevalent medication in periodontology [130].

(iv) Doxycycline and its derivates are metalloproteinase inhibitors and efficiently downregulate the
NET metalloproteinases in a sub-antimicrobial dose applied as a systemic adjunctive or a topical
therapy [43].

(v) Systemically applied nonsteroidal anti-inflammatory drugs, which downregulate NETs [140].

The cognition that exaggerated NETs in late-onset periodontitis are a deteriorating factor introduces
new possibilities for treatment approaches.

9. Conclusions

Canonical NET formation appears an indispensable protective mechanism of gingiva, as NET
insufficiency causes early-onset periodontitis. In contrast, the exaggerated NET response in late-onset
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periodontitis is tissue damaging. The exaggerated NET formation is due to genetic predisposition
(which occurs age-dependently), PMN hyper-responsiveness and apoptosis resistance, as well as
bacterial overload (dental plaque accumulation) due to the consumption of carbohydrate-rich thermally
processed food. Understanding the role of NETs in periodontitis pathology enables new analytical
treatment approaches supporting the empirics.

Author Contributions: Conceptualisation M.H. (Martin Herrmann), L.V. drafted the manuscript. L.V., B.M., J.K.,
C.S., M.H. (Matthias Hannig) and M.H. (Martin Herrmann) critically commented on the paper and contributed
towards. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Deutsche Forschungsgemeinschaft (DFG) and Friedrich-Alexander
Universität Erlangen-Nürnberg (FAU) grant number SCHA 2040/1-1; TRR241: B04; CRC1181: C03; FOR 2886
projects B03, and by local funds of the Interdisciplinary Center for Clinical Research (IZKF) and ELAN of the
FAU (C.S.).

Acknowledgments: We acknowledge support by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) and Saarland University within the funding programme Open Access Publishing.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A.
Neutrophil Extracellular Traps Kill Bacteria. Science 2004, 303, 1532–1535. [CrossRef] [PubMed]

2. Fuchs, T.A.; Abed, U.; Goosmann, C.; Hurwitz, R.; Schulze, I.; Wahn, V.; Weinrauch, Y.; Brinkmann, V.;
Zychlinsky, A. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 2007, 176, 231–241.
[CrossRef] [PubMed]

3. Urban, C.F.; Ermert, D.; Schmid, M.; Abu-Abed, U.; Goosmann, C.; Nacken, W.; Brinkmann, V.; Jungblut, P.R.;
Zychlinsky, A. Neutrophil Extracellular Traps Contain Calprotectin, a Cytosolic Protein Complex Involved
in Host Defense against Candida albicans. PLoS Pathog. 2009, 5, e1000639. [CrossRef] [PubMed]

4. Kaplan, M.J.; Radic, M. Neutrophil Extracellular Traps: Double-Edged Swords of Innate Immunity. J. Immunol.
2012, 189, 2689–2695. [CrossRef]

5. Röhm, M.; Grimm, M.J.; D’Auria, A.C.; Almyroudis, N.G.; Segal, B.H.; Urban, C.F. NADPH Oxidase Promotes
Neutrophil Extracellular Trap Formation in Pulmonary Aspergillosis. Infect. Immun. 2014, 82, 1766–1777.
[CrossRef]

6. Douda, D.N.; Khan, M.A.; Grasemann, H.; Palaniyar, N. SK3 channel and mitochondrial ROS mediate
NADPH oxidase-independent NETosis induced by calcium influx. Proc. Natl. Acad. Sci. USA 2015, 112,
2817–2822. [CrossRef]

7. Pieterse, E.; Rother, N.; Yanginlar, C.; Gerretsen, J.; Boeltz, S.; Muñoz, L.E.; Herrmann, M.; Pickkers, P.;
Hilbrands, L.B.; Van Der Vlag, J. Cleaved N-terminal histone tails distinguish between NADPH
oxidase (NOX)-dependent and NOX-independent pathways of neutrophil extracellular trap formation.
Ann. Rheum. Dis. 2018, 77, 1790–1798. [CrossRef]

8. Papayannopoulos, V.; Metzler, K.D.; Hakkim, A.; Zychlinsky, A. Neutrophil elastase and myeloperoxidase
regulate the formation of neutrophil extracellular traps. J. Cell Biol. 2010, 191, 677–691. [CrossRef]

9. Li, P.; Li, M.; Lindberg, M.R.; Kennett, M.J.; Xiong, N.; Wang, Y. PAD4 is essential for antibacterial innate
immunity mediated by neutrophil extracellular traps. J. Exp. Med. 2010, 207, 1853–1862. [CrossRef]

10. Martinod, K.; Witsch, T.; Farley, K.; Gallant, M.; Remold-O’Donnell, E.; Wagner, D.D. Neutrophil
elastase-deficient mice form neutrophil extracellular traps in an experimental model of deep vein thrombosis.
J. Thromb. Haemost. 2016, 14, 551–558. [CrossRef]

11. Díaz-Godínez, C.; Fonseca, Z.; Néquiz, M.; Laclette, J.P.; Rosales, C.; Carrero, J.C. Entamoeba histolytica
Trophozoites Induce a Rapid Non-classical NETosis Mechanism Independent of NOX2-Derived Reactive
Oxygen Species and PAD4 Activity. Front. Cell. Infect. Microbiol. 2018, 8, 184. [CrossRef] [PubMed]

12. Kahlenberg, J.M.; Carmona-Rivera, C.; Smith, C.K.; Kaplan, M.J. Neutrophil Extracellular Trap–Associated
Protein Activation of the NLRP3 Inflammasome Is Enhanced in Lupus Macrophages. J. Immunol. 2013, 190,
1217–1226. [CrossRef] [PubMed]

http://dx.doi.org/10.1126/science.1092385
http://www.ncbi.nlm.nih.gov/pubmed/15001782
http://dx.doi.org/10.1083/jcb.200606027
http://www.ncbi.nlm.nih.gov/pubmed/17210947
http://dx.doi.org/10.1371/journal.ppat.1000639
http://www.ncbi.nlm.nih.gov/pubmed/19876394
http://dx.doi.org/10.4049/jimmunol.1201719
http://dx.doi.org/10.1128/IAI.00096-14
http://dx.doi.org/10.1073/pnas.1414055112
http://dx.doi.org/10.1136/annrheumdis-2018-213223
http://dx.doi.org/10.1083/jcb.201006052
http://dx.doi.org/10.1084/jem.20100239
http://dx.doi.org/10.1111/jth.13239
http://dx.doi.org/10.3389/fcimb.2018.00184
http://www.ncbi.nlm.nih.gov/pubmed/29922599
http://dx.doi.org/10.4049/jimmunol.1202388
http://www.ncbi.nlm.nih.gov/pubmed/23267025


Cells 2020, 9, 2614 10 of 16

13. Lood, C.; Blanco, L.P.; Purmalek, M.M.; Carmona-Rivera, C.; De Ravin, S.S.; Smith, C.K.; Malech, H.L.;
Ledbetter, J.A.; Elkon, K.B.; Kaplan, M.J. Neutrophil extracellular traps enriched in oxidized mitochondrial
DNA are interferogenic and contribute to lupus-like disease. Nat. Med. 2016, 22, 146–153. [CrossRef]
[PubMed]

14. Muñoz, L.E.; Boeltz, S.; Bilyy, R.; Schauer, C.; Mahajan, A.; Widulin, N.; Grüneboom, A.; Herrmann, I.;
Boada, E.; Rauh, M.; et al. Neutrophil Extracellular Traps Initiate Gallstone Formation. Immunity 2019, 51,
443–450.e4. [CrossRef]

15. Leppkes, M.; Maueröder, C.; Hirth, S.; Nowecki, S.; Günther, C.; Billmeier, U.; Paulus, S.; Biermann, M.;
Muñoz, L.E.; Hoffmann, M.; et al. Externalized decondensed neutrophil chromatin occludes pancreatic ducts
and drives pancreatitis. Nat. Commun. 2016, 7, 10973. [CrossRef]

16. Schapher, M.; Koch, M.; Weidner, D.; Scholz, M.; Wirtz, S.; Mahajan, A.; Herrmann, I.; Singh, J.; Knopf, J.;
Leppkes, M.; et al. Neutrophil Extracellular Traps Promote the Development and Growth of Human Salivary
Stones. Cells 2020, 9, 2139. [CrossRef]

17. Hahn, J.; Schauer, C.; Czegley, C.; Kling, L.; Petru, L.; Schmid, B.; Weidner, D.; Reinwald, C.; Biermann, M.H.C.;
Blunder, S.; et al. Aggregated neutrophil extracellular traps resolve inflammation by proteolysis of cytokines
and chemokines and protection from antiproteases. FASEB J. 2018, 33, 1401–1414. [CrossRef]

18. Schauer, C.; Janko, C.; Munoz, L.E.; Zhao, Y.; Kienhofer, D.; Frey, B.; Lell, M.; Manger, B.; Rech, J.;
Naschberger, E.; et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines
and chemokines. Nat. Med. 2014, 20, 511–517. [CrossRef]

19. Knopf, J.; Leppkes, M.; Schett, G.; Herrmann, M.; Muñoz, L.E. Aggregated NETs Sequester and Detoxify
Extracellular Histones. Front. Immunol. 2019, 10, 2176. [CrossRef]

20. Vieira, A.R.; Albandar, J.M. Role of genetic factors in the pathogenesis of aggressive periodontitis.
Periodontology 2000 2014, 65, 92–106. [CrossRef]

21. Wani, A.A.; Devkar, N.; Patole, M.S.; Shouche, Y. Description of Two New Cathepsin C Gene Mutations in
Patients With Papillon-Lefèvre Syndrome. J. Periodontol. 2006, 77, 233–237. [CrossRef] [PubMed]

22. Ye, Y.; Carlsson, G.; Wondimu, B.; Fahlén, A.; Karlsson-Sjöberg, J.; Andersson, M.; Engstrand, L.;
Yucel-Lindberg, T.; Modéer, T.; Pütsep, K. Mutations in the ELANE Gene are Associated with Development of
Periodontitis in Patients with Severe Congenital Neutropenia. J. Clin. Immunol. 2011, 31, 936–945. [CrossRef]
[PubMed]

23. Fine, D.H.; Patil, A.G.; Loos, B.G. Classification and diagnosis of aggressive periodontitis. J. Clin. Periodontol.
2018, 45 (Suppl. 20), S95–S111. [CrossRef] [PubMed]

24. Fredriksson, M.I.; Gustafsson, A.K.; Bergström, K.G.; Åsman, B.E. Constitutionally Hyperreactive Neutrophils
in Periodontitis. J. Periodontol. 2003, 74, 219–224. [CrossRef] [PubMed]

25. Gustafsson, A.; Ito, H.; Asman, B.; Bergström, K. Hyper-reactive mononuclear cells and neutrophils in
chronic periodontitis. J. Clin. Periodontol. 2006, 33, 126–129. [CrossRef] [PubMed]

26. Johnstone, A.M.; Koh, A.; Goldberg, M.B.; Glogauer, M. A Hyperactive Neutrophil Phenotype in Patients
With Refractory Periodontitis. J. Periodontol. 2007, 78, 1788–1794. [CrossRef] [PubMed]

27. Ling, M.R.; Chapple, I.L.C.; Matthews, J.B. Peripheral blood neutrophil cytokine hyper-reactivity in chronic
periodontitis. Innate Immun. 2015, 21, 714–725. [CrossRef]

28. Matthews, J.B.; Wright, H.J.; Roberts, A.; Cooper, P.R.; Chapple, I.L.C. Hyperactivity and reactivity of
peripheral blood neutrophils in chronic periodontitis: Neutrophil hyperactivity and reactivity in chronic
periodontitis. Clin. Exp. Immunol. 2006, 147, 255–264. [CrossRef]

29. Schaefer, A.S. Genetics of periodontitis: Discovery, biology, and clinical impact. Periodontology 2000 2018, 78,
162–173. [CrossRef]

30. Persson, G.R. Periodontal complications with age. Periodontology 2000 2018, 78, 185–194. [CrossRef]
31. Goodson, J.M. Gingival crevice fluid flow. Periodontology 2000 2003, 31, 43–54. [CrossRef] [PubMed]
32. Vitkov, L.; Klappacher, M.; Hannig, M.; Krautgartner, W.D. Extracellular neutrophil traps in periodontitis.

J. Periodontal Res. 2009, 44, 664–672. [CrossRef] [PubMed]
33. Vitkov, L.; Klappacher, M.; Hannig, M.; Krautgartner, W.D. Neutrophil Fate in Gingival Crevicular Fluid.

Ultrastruct. Pathol. 2010, 34, 25–30. [CrossRef] [PubMed]
34. Goodson, J.M.; Tanner, A.C.R.; Haffajee, A.D.; Sornberger, G.C.; Socransky, S.S. Patterns of progression and

regression of advanced destructive periodontal disease. J. Clin. Periodontol. 1982, 9, 472–481. [CrossRef]
[PubMed]

http://dx.doi.org/10.1038/nm.4027
http://www.ncbi.nlm.nih.gov/pubmed/26779811
http://dx.doi.org/10.1016/j.immuni.2019.07.002
http://dx.doi.org/10.1038/ncomms10973
http://dx.doi.org/10.3390/cells9092139
http://dx.doi.org/10.1096/fj.201800752R
http://dx.doi.org/10.1038/nm.3547
http://dx.doi.org/10.3389/fimmu.2019.02176
http://dx.doi.org/10.1111/prd.12021
http://dx.doi.org/10.1902/jop.2006.050124
http://www.ncbi.nlm.nih.gov/pubmed/16460249
http://dx.doi.org/10.1007/s10875-011-9572-0
http://www.ncbi.nlm.nih.gov/pubmed/21796505
http://dx.doi.org/10.1111/jcpe.12942
http://www.ncbi.nlm.nih.gov/pubmed/29926487
http://dx.doi.org/10.1902/jop.2003.74.2.219
http://www.ncbi.nlm.nih.gov/pubmed/12666711
http://dx.doi.org/10.1111/j.1600-051X.2005.00883.x
http://www.ncbi.nlm.nih.gov/pubmed/16441737
http://dx.doi.org/10.1902/jop.2007.070107
http://www.ncbi.nlm.nih.gov/pubmed/17760550
http://dx.doi.org/10.1177/1753425915589387
http://dx.doi.org/10.1111/j.1365-2249.2006.03276.x
http://dx.doi.org/10.1111/prd.12232
http://dx.doi.org/10.1111/prd.12227
http://dx.doi.org/10.1034/j.1600-0757.2003.03104.x
http://www.ncbi.nlm.nih.gov/pubmed/12656995
http://dx.doi.org/10.1111/j.1600-0765.2008.01175.x
http://www.ncbi.nlm.nih.gov/pubmed/19453857
http://dx.doi.org/10.3109/01913120903419989
http://www.ncbi.nlm.nih.gov/pubmed/20070150
http://dx.doi.org/10.1111/j.1600-051X.1982.tb02108.x
http://www.ncbi.nlm.nih.gov/pubmed/6960023


Cells 2020, 9, 2614 11 of 16

35. Haffajee, A.D.; Socransky, S.S.; Goodson, J.M. Comparison of different data analyses for detecting changes in
attachment level. J. Clin. Periodontol. 1983, 10, 298–310. [CrossRef] [PubMed]

36. Socransky, S.S.; Haffajee, A.D.; Goodson, J.M.; Lindhe, J. New concepts of destructive periodontal disease.
J. Clin. Periodontol. 1984, 11, 21–32. [CrossRef]

37. Loos, B.G.; Van Dyke, T.E. The role of inflammation and genetics in periodontal disease. Periodontology 2000
2020, 83, 26–39. [CrossRef]

38. Hajishengallis, G.; Korostoff, J.M. Revisiting the Page & Schroeder model: The good, the bad and the
unknowns in the periodontal host response 40 years later. Periodontology 2000 2017, 75, 116–151. [CrossRef]

39. Sima, C.; Viniegra, A.; Glogauer, M. Macrophage immunomodulation in chronic osteolytic diseases—The
case of periodontitis. J. Leukoc. Biol. 2019, 105, 473–487. [CrossRef]

40. Tsukasaki, M.; Komatsu, N.; Nagashima, K.; Nitta, T.; Pluemsakunthai, W.; Shukunami, C.; Iwakura, Y.;
Nakashima, T.; Okamoto, K.; Takayanagi, H. Host defense against oral microbiota by bone-damaging T cells.
Nat. Commun. 2018, 9, 701. [CrossRef]

41. Tsukasaki, M.; Takayanagi, H. Osteoimmunology: Evolving concepts in bone–immune interactions in health
and disease. Nat. Rev. Immunol. 2019, 19, 626–642. [CrossRef] [PubMed]

42. Smith, M.M.; Knight, E.T.; Al-Harthi, L.; Leichter, J.W. Chronic periodontitis and implant dentistry.
Periodontology 2000 2017, 74, 63–73. [CrossRef] [PubMed]

43. Preshaw, P.M. Host modulation therapy with anti-inflammatory agents. Periodontology 2000 2017, 76, 131–149.
[CrossRef] [PubMed]

44. Ebersole, J.L.; Dawson, D.A., 3rd; Huja, P.E.; Pandruvada, S.; Basu, A.; Nguyen, L.; Zhang, Y.; Gonzalez, O.A.
Age and Periodontal Health—Immunological View. Curr. Oral. Health Rep. 2018, 5, 229–241. [CrossRef]
[PubMed]

45. Persson, G.R. Dental geriatrics and periodontitis. Periodontology 2000 2017, 74, 102–115. [CrossRef] [PubMed]
46. Agrawal, A.; Tay, J.; Ton, S.; Agrawal, S.; Gupta, S. Increased Reactivity of Dendritic Cells from Aged Subjects

to Self-Antigen, the Human DNA. J. Immunol. 2009, 182, 1138–1145. [CrossRef]
47. Bakdash, G.; Vogelpoel, L.T.C.; Van Capel, T.M.M.; Kapsenberg, M.L.; De Jong, E.C. Retinoic acid primes

human dendritic cells to induce gut-homing, IL-10-producing regulatory T cells. Mucosal Immunol. 2014, 8,
265–278. [CrossRef]

48. Coombes, J.L.; Siddiqui, K.R.; Arancibia-Carcamo, C.V.; Hall, J.; Sun, C.M.; Belkaid, Y.; Powrie, F.
A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via
a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med. 2007, 204, 1757–1764. [CrossRef]

49. Del Rio, M.-L.; Bernhardt, G.; Rodriguez-Barbosa, J.-I.; Förster, R. Development and functional specialization
of CD103+dendritic cells. Immunol. Rev. 2010, 234, 268–281. [CrossRef]

50. Agrawal, S.; Ganguly, S.; Tran, A.; Sundaram, P.; Agrawal, A. Retinoic acid treated human dendritic cells
induce T regulatory cells via the expression of CD141 and GARP which is impaired with age. Aging 2016, 8,
1223–1235. [CrossRef]

51. Prakash, S.; Agrawal, S.S.; Vahed, H.; Ngyuen, M.; BenMohamad, L.; Gupta, S.; Agrawal, A. Dendritic cells
from aged subjects contribute to chronic airway inflammation by activating bronchial epithelial cells under
steady state. Mucosal Immunol. 2014, 7, 1386–1394. [CrossRef] [PubMed]

52. Agrawal, A.; Agrawal, S.; Gupta, S. Role of Dendritic Cells in Inflammation and Loss of Tolerance in the
Elderly. Front. Immunol. 2017, 8, 896. [CrossRef] [PubMed]

53. Graves, D.T.; Oates, T.; Garlet, G.P. Review of osteoimmunology and the host response in endodontic and
periodontal lesions. J. Oral Microbiol. 2011, 3, 5304. [CrossRef] [PubMed]

54. Hajishengallis, G.; Moutsopoulos, N.M.; Hajishengallis, E.; Chavakis, T. Immune and regulatory functions of
neutrophils in inflammatory bone loss. Semin. Immunol. 2016, 28, 146–158. [CrossRef]

55. Hasturk, H.; Kantarci, A.; Van Dyke, T.E. Paradigm Shift in the Pharmacological Management of Periodontal
Diseases. In Frontiers of Oral Biology; Kinane, D.F., Mombelli, A., Eds.; KARGER: Basel, Switzerland, 2011;
Volume 15, pp. 160–176.

56. Vitkov, L.; Hannig, M.; Minnich, B.; Herrmann, M. Periodontal sources of citrullinated antigens and TLR
agonists related to RA. Autoimmunity 2018, 51, 304–309. [CrossRef]

57. Vitkov, L.; Hartl, D.; Minnich, B.; Hannig, M. Janus-Faced Neutrophil Extracellular Traps in Periodontitis.
Front. Immunol. 2017, 8, 1404. [CrossRef]

http://dx.doi.org/10.1111/j.1600-051X.1983.tb01278.x
http://www.ncbi.nlm.nih.gov/pubmed/6575982
http://dx.doi.org/10.1111/j.1600-051X.1984.tb01305.x
http://dx.doi.org/10.1111/prd.12297
http://dx.doi.org/10.1111/prd.12181
http://dx.doi.org/10.1002/JLB.1RU0818-310R
http://dx.doi.org/10.1038/s41467-018-03147-6
http://dx.doi.org/10.1038/s41577-019-0178-8
http://www.ncbi.nlm.nih.gov/pubmed/31186549
http://dx.doi.org/10.1111/prd.12190
http://www.ncbi.nlm.nih.gov/pubmed/28429486
http://dx.doi.org/10.1111/prd.12148
http://www.ncbi.nlm.nih.gov/pubmed/29193331
http://dx.doi.org/10.1007/s40496-018-0202-2
http://www.ncbi.nlm.nih.gov/pubmed/30555774
http://dx.doi.org/10.1111/prd.12192
http://www.ncbi.nlm.nih.gov/pubmed/28429479
http://dx.doi.org/10.4049/jimmunol.182.2.1138
http://dx.doi.org/10.1038/mi.2014.64
http://dx.doi.org/10.1084/jem.20070590
http://dx.doi.org/10.1111/j.0105-2896.2009.00874.x
http://dx.doi.org/10.18632/aging.100973
http://dx.doi.org/10.1038/mi.2014.28
http://www.ncbi.nlm.nih.gov/pubmed/24759206
http://dx.doi.org/10.3389/fimmu.2017.00896
http://www.ncbi.nlm.nih.gov/pubmed/28798751
http://dx.doi.org/10.3402/jom.v3i0.5304
http://www.ncbi.nlm.nih.gov/pubmed/21547019
http://dx.doi.org/10.1016/j.smim.2016.02.002
http://dx.doi.org/10.1080/08916934.2018.1527907
http://dx.doi.org/10.3389/fimmu.2017.01404


Cells 2020, 9, 2614 12 of 16

58. Ina, K.; Kusugami, K.; Hosokawa, T.; Imada, A.; Shimizu, T.; Yamaguchi, T.; Ohsuga, M.; Kyokane, K.;
Sakai, T.; Nishio, Y.; et al. Increased mucosal production of granulocyte colony-stimulating factor is related
to a delay in neutrophil apoptosis in Inflammatory Bowel disease. J. Gastroenterol. Hepatol. 1999, 14, 46–53.
[CrossRef]

59. Le’Negrate, G.; Rostagno, P.; Auberger, P.; Rossi, B.; Hofman, P. Downregulation of caspases and Fas
ligand expression, and increased lifespan of neutrophils after transmigration across intestinal epithelium.
Cell Death Differ. 2003, 10, 153–162. [CrossRef]

60. Lakschevitz, F.S.; Aboodi, G.M.; Glogauer, M. Oral Neutrophil Transcriptome Changes Result in a Pro-Survival
Phenotype in Periodontal Diseases. PLoS ONE 2013, 8, e68983. [CrossRef]

61. Vitkov, L.; Krautgartner, W.D.; Hannig, M. Surface Morphology of Pocket Epithelium. Ultrastruct. Pathol.
2005, 29, 121–127. [CrossRef]

62. Ajonuma, L.C.; Lu, Q.; Cheung, B.P.K.; Leung, W.K.; Samaranayake, L.P.; Jin, L. Expression and localization
of cystic fibrosis transmembrane conductance regulator in human gingiva. Cell Biol. Int. 2010, 34, 147–152.
[CrossRef] [PubMed]

63. Campbell, A.R.; Andress, D.L.; Swenson, E.R. Identification and characterization of human neutrophil
carbonic anhydrase. J. Leukoc. Biol. 1994, 55, 343–348. [CrossRef] [PubMed]

64. Sowden, J.; Leigh, S.; Talbot, I.; Delhanty, J.; Edwards, Y. Expression from the proximal promoter of the
carbonic anhydrase 1 gene as a marker for differentiation in colon epithelia. Differentiation 1993, 53, 67–74.
[CrossRef]

65. Yaprak, E.; Kasap, M.; Akpınar, G.; Kayaaltı-Yüksek, S.; Sinanoğlu, A.; Guzel, N.; Kocasarac, H.D.
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