Figure S1: Alveolar-capillary barrier co-culture model schematic. Figure generated with BioRender. The basal side of 0.4 µm transwell inserts were coated with GelTrex LDEV-Free Reduced Growth Factor Basement Membrane Matrix and rested basal side up for 1 h at 37°C and 5% CO2. Transwell inserts were turned apical side up, the apical side coated with GelTrex, and rested for 1 h at 37°C and 5% CO2. Transwell inserts were turned basal side up, the basal side of the transwell inserts seeded with HPMEC at a concentration of 1.5×10^5 cells/mL (4.5×10^4 cells/cm2) in a 1:1 mix of HPAEpiC and HPMEC media, and rested for 3 h at 37°C and 5% CO2. Transwell inserts were turned apical side up and HPAEpiC were seeded on the apical side at a concentration of 3×10^5 cells/mL (9×10^4 cells/cm2) in a 1:1 mix of HPAEpiC and HPMEC media. After 24 h, media was removed from the upper compartment of the transwell insert, to allow primary epithelial cells to grow at the air-liquid interface. Media in the lower compartment was refreshed with a 1:1 mix of HPAEpiC and HPMEC media. Cells were permitted to grow to confluency for 14 days, with media in the lower compartment being refreshed every second day.

Figure S2: Viral loads decrease during MRSA co-infection in the alveolar-capillary barrier model. Supernatants were collected by addition of PBS to the apical surface of the alveolar epithelial cells and harvested for isolation of viral RNA prior to quantification by RT-qPCR. Error bars represent SEM calculated from at least three biological replicates.

Gene	Function	Primer Sequences (5' to 3')
Coa	protects bacteria from phagocytosis by	F – TTCCACAGGGCACAATTACA
	forming fibrin clots	R-TCGGGACCTTGAACGATTTC
EbpS	binds elastin to facilitate colonization of	F – GGTGAACCTGAACCGTAGTATT
	injured tissues	R - CAGCAACAACAACGTCAAGG
Eno	forms plasmin to digest fibrin clots which	F - TGGTTACAAACCAGGTGAAGAA
	keep the bacterium localized	R - CGCCTTCGAACTTACTGTAGTC
FnbA	binds extracellular matrix components to	F - CCCATTTCCGTTCGCTTTATTAC
	mediate endothelial cell adhesion	R - GTAGGACATCCAGAGCAACTTTA
FnbB	binds fibronectin and elastin to mediate	F - TGTCGCGCTGTATGATTGT
	adhesion to endothelial cells	R - GTAGAGGAAAGTGGGAGTTCAG
Hla	forms pores in the cytoplasmic membrane	F - CTGTAGCGAAGTCTGGTGAAA
	resulting in lysis	R - AGATTCTTGGAACCCGGTATATG
HlgA	forms pores in the cytoplasmic membrane	F - CCAGCAGCACGAGACTATTT
	resulting in lysis	R - CACCTTTACCTCTTTCGTGTGA
IcaA	mediates intercellular adhesion and biofilm	F - GCAGTAGTTCTTGTCGCATTTC
	formation	R - GTTGGGTATTCCCTCTGTCTG
IcaB	mediates intercellular adhesion and biofilm	F - AGCCTATCCTTATGGCTTGATG
	formation	R - GAGTTCGGAGTGACTGCTTT
Sbi	mediates Fab-independent formation of IgG	F - AGCCAACAAGTTTGGGTAGAA
	insoluble complexes	R - CGTGTGGTGCTTTGTTATCTTG
Sek	enterotoxin with superantigen activity	F – ATCGACATCCAAATGGAATTTCTC
		R - CTACACAGGAGATGATGGGTTAC
Seq	enterotoxin with superantigen activity	F -GTAGAAACCTCGTCTGTAGATATAGTG
		R - GGAATTACGTTGGCGAATCAAA
Spa	forms IgG insoluble complexes to impede	F – GCTGCACCTAAGGCTAATGATA
	phagocytosis; binds airway epithelial cells	R - GATAAGAAGCAACCAGCAAACC

 Table S1: MRSA Virulence Factor Primer Sequences.
 Primers were designed and selected using PrimerQuest.

Table S2: Upregulated signaling pathways in pH1N1-MRSA co-infected alveolar epithelial cells at the alveolar-capillary barrier as determined by temporal kinome analysis. Pathways represent those that were found to be activated in pH1N1-MRSA co-infected cells as compared to mock-infected controls at 24 h post-MRSA addition. Thresholds for pathways over-representation analysis were fold-change ≥ 1.5 , p-value ≤ 0.05 .

Pathway Name	Pathway uploaded proteins	Genes in	Pathway up-	Pathway up-regulated p- value	Gene Symbols
	• • • • •	this entity	count		
Estrogen responsive	4	4	3	1.78E-04	CDK1; CDK2; CDK6;
protein efp controls cell					CDK7;
cycle and breast tumors					
Cyclin A/B1 associated	5	5	3	4.35E-04	CDC25A; CDK1;
events during G2/M					CDK2; CDK7;
transition					PPP2CA;
G1/S Transition	6	6	3	8.50E-04	CCNE1; CDC25A;
					CDK1; CDK2; CDK7;
					PPP2CA;
Cyclins and cell cycle	7	7	3	0.001452	CCND1; CCNE1;
regulation					CDC25A; CDK1;
					CDK2; CDK6; CDK7;
Mitotic G1-G1/S phases	8	8	3	0.002268	CCND1; CCNE1;
					CDC25A; CDK1;
					CDK2; CDK6; CDK7;
G2/M Chackpoints	2	2		0.002060	
G2/W Checkpoints	5	3	2	0.003909	
G2/M Transition	10	10	3	0.004632	
	10	10	5	0.004032	
					CSNK1D: CSNK1F:
					EP300: PPP1R12A:
					PPP2CA: PRKACA:
Mitotic G2-G2/M phases	10	10	3	0.004632	CDC25A; CDK1;
					CDK2; CDK7;
					CSNK1D; CSNK1E;

					EP300; PPP1R12A;
					PPP2CA; PRKACA;
Cell Cycle Checkpoints	4	4	2	0.007759	CCNE1; CDC25A;
					CDK1; CDK2;
Cyclin A:Cdk2-associated	4	4	2	0.007759	CCNE1; CDC25A;
events at S phase entry					CDK2; CDK7;
Cyclin E associated events	4	4	2	0.007759	CCNE1; CDC25A;
during G1/S transition					CDK2; CDK7;
D4gdi signaling pathway	4	4	2	0.007759	CASP1; CASP3; JUN;
					RHOA;
ERK1 activation	4	4	2	0.007759	CDK1; JAK1; JAK2;
					MAP2K1;
G0 and Early G1	4	4	2	0.007759	CCNE1; CDC25A;
					CDK1; CDK2;
IRAK1 recruits IKK complex	4	4	2	0.007759	CHUK; PELI1; PELI2;
					TRAF6;
IRAK1 recruits IKK complex	4	4	2	0.007759	CHUK; PELI1; PELI2;
upon TLR7/8 or 9					TRAF6;
stimulation					
Internal ribosome entry	4	4	2	0.007759	CASP1; CASP3;
pathway					CASP6; CASP8;
Regulation of cell cycle	4	4	2	0.007759	CASP3; CASP6;
progression by pik3					CDK1; CHEK2;
p53 signaling pathway	12	12	3	0.008093	CASP3; CASP8;
					CCND1; CCNE1;
					CDK1; CDK2; CDK6;
					CHEK2; GADD45A;
					IGFBP3; PTEN;
					THBS1;
Cytokine Signaling in	56	56	6	0.012262	BLNK; CAMK2A;
immune system					CAMK2D; CAMK2G;
					CASP1; CBL; CD44;
					CDK1; CHUK; CRK;
					CRKL; EIF2AK2; FYN;

					HRAS; IFNAR1;
					IL6ST; IL7R; IRF1;
					IRS1; JAK1; JAK2;
					LCK; LYN; MAP2K1;
					MAP2K2; MAP2K4;
					MAP3K3; MAP3K7;
					MAP3K8; MAPK1;
					NFKB1; NFKB2;
					PELI1; PELI2; PIK3CB;
					PIK3CD; PIK3R1;
					PIK3R2; PLCG1;
					PRKACA; PRKCD;
					PTK2B; PTPN1;
					RAF1; SHC1; SOCS3;
					SOS1; STAT1; STAT3;
					STAT5B; TAB1;
					TAB3; TOLLIP;
					TRAF6; YWHAB;
					YWHAZ;
E2F transcription factor	5	5	2	0.012642	CCNE1; CDC25A;
network					CDK1; CDK2; SIRT1;
Interferon alpha/beta	5	5	2	0.012642	IFNAR1; IRF1; JAK1;
signaling					PTPN1; SOCS3;
S Phase	5	5	2	0.012642	CCND1; CCNE1;
					CDC25A; CDK2;
					CDK7;
Signaling by Interleukins	44	44	5	0.018475	BLNK; CASP1; CBL;
					CDK1; CHUK; CRK;
					CRKL; FYN; HRAS;
					IL6ST; IL7R; JAK1;
					JAK2; LCK; LYN;
					MAP2K1; MAP2K2;
					MAP2K4; MAP3K3;
					MAP3K7; MAP3K8;

					MAPK1; NFKB1;
					NFKB2; PELI1; PELI2;
					PIK3CB; PIK3CD;
					PIK3R1; PIK3R2;
					PRKACA; PTK2B;
					RAF1; SHC1; SOCS3;
					SOS1; STAT3;
					STAT5B; TAB1;
					TAB3; TOLLIP;
					TRAF6; YWHAB;
					YWHAZ;
Degradation of the	6	6	2	0.018538	CASP3; CD44; CTSB;
extracellular matrix					CTSL1; CTSS; MMP8;
ERK activation	6	6	2	0.018538	CDK1; JAK1; JAK2;
					MAP2K1; MAP2K2;
					MAPK1;
TRAF6 mediated IRF7	6	6	2	0.018538	EP300; IKBKE; IRF1;
activation					TBK1; TRAF2; TRAF6;
p73 transcription factor	6	6	2	0.018538	ABL1; CDK2; CDK6;
network					EP300; JAK1; SIRT1;
Cell cycle	16	16	3	0.018709	ABL1; CCND1;
					CCNE1; CDC25A;
					CDK1; CDK2; CDK6;
					CDK7; CHEK2;
					EP300; GADD45A;
					GSK3B; SMAD2;
					SMAD3; YWHAB;
					YWHAZ;
IFN-gamma pathway	17	17	3	0.022178	AKT1; CASP1; CBL;
					CEBPB; CRKL;
					DAPK1; IRF1; JAK1;
					JAK2; MAP2K1;
					MAP3K11; MAP3K1;
					MTOR; PIK3R1;

					PRKCD; STAT1;
					STAT3;
Caspase cascade in	7	7	2	0.025372	BIRC3; CASP1;
apoptosis					CASP3; CASP6;
					CASP8; PRF1;
					SREBF1;
Cell death signalling via	7	7	2	0.025372	CASP3; MAPK8;
NRAGE, NRIF and NADE					NGEF; NGFR; RAC1;
					SOS1; TRAF6;
Amyotrophic lateral	8	8	2	0.033073	CASP1; CASP3; CAT;
sclerosis (ALS)					MAP2K3; MAP3K5;
					MAPK14; RAB5A;
					RAC1;
FOXM1 transcription	8	8	2	0.033073	CCND1; CDK1; CDK2;
factor network					CHEK2; FOS; GSK3A;
					MAP2K1; NFATC3;
Retinoic acid receptors-	8	8	2	0.033073	AKT1; CDK1; CDK7;
mediated signaling					MAPK14; MAPK8;
					NCOA1; PRKACA;
					PRKCA;
MyD88 cascade initiated	35	35	4	0.035765	APP; ATF2; CDK1;
on plasma membrane					CHUK; CREB1;
					DUSP6; FOS; JAK1;
					JAK2; JUN; MAP2K1;
					MAP2K2; MAP2K3;
					MAP2K4; MAP3K1;
					MAP3K7; MAPK1;
					MAPK14; MAPK8;
					MAPKAPK2;
					MAPKAPK3; NFKB1;
					NFKB2; NFKBIA;
					PELI1; PELI2;
					PPP2CA; PPP2R5D;
					RPS6KA1; RPS6KA3;

					RPS6KA5; TAB1;
					TAB3; TLR5; TRAF6;
Toll Like Receptor 10	35	35	4	0.035765	APP; ATF2; CDK1;
(TLR10) Cascade					CHUK; CREB1;
					DUSP6; FOS; JAK1;
					JAK2; JUN; MAP2K1;
					MAP2K2; MAP2K3;
					MAP2K4; MAP3K1;
					MAP3K7; MAPK1;
					MAPK14; MAPK8;
					MAPKAPK2;
					MAPKAPK3; NFKB1;
					NFKB2; NFKBIA;
					PELI1; PELI2;
					PPP2CA; PPP2R5D;
					RPS6KA1; RPS6KA3;
					RPS6KA5; TAB1;
					TAB3; TLR5; TRAF6;
Toll Like Receptor 5 (TLR5)	35	35	4	0.035765	APP; ATF2; CDK1;
Cascade					CHUK; CREB1;
					DUSP6; FOS; JAK1;
					JAK2; JUN; MAP2K1;
					MAP2K2; MAP2K3;
					MAP2K4; MAP3K1;
					MAP3K7; MAPK1;
					MAPK14; MAPK8;
					MAPKAPK2;
					MAPKAPK3; NFKB1;
					NFKB2; NFKBIA;
					PELI1; PELI2;
					PPP2CA; PPP2R5D;
					RPS6KA1; RPS6KA3;
					RPS6KA5; TAB1;
					TAB3; TLR5; TRAF6;

MyD88 dependent cascade	36	36	4	0.039263	APP; ATF2; CDK1;
initiated on endosome					CHUK; CREB1;
					DUSP6; FOS; JAK1;
					JAK2; JUN; MAP2K1;
					MAP2K2; MAP2K3;
					MAP2K4; MAP3K1;
					MAP3K7; MAPK1;
					MAPK14; MAPK8;
					MAPKAPK2;
					MAPKAPK3; NFKB1;
					NFKB2; NFKBIA;
					PELI1; PELI2;
					PPP2CA; PPP2R5D;
					RPS6KA1; RPS6KA3;
					RPS6KA5; TAB1;
					TAB3; TLR7; TLR8;
					TRAF6;
TRAF6 mediated induction	36	36	4	0.039263	APP; ATF2; CDK1;
of NFkB and MAP kinases					CHUK; CREB1;
upon TLR7/8 or 9					DUSP6; FOS; JAK1;
activation					JAK2; JUN; MAP2K1;
					MAP2K2; MAP2K3;
					MAP2K4; MAP3K1;
					MAP3K7; MAPK1;
					MAPK14; MAPK8;
					ΜΑΡΚΑΡΚ2;
					MAPKAPK3; NFKB1;
					NFKB2; NFKBIA;
					PELI1; PELI2;
					PPP2CA; PPP2R5D;
					RPS6KA1; RPS6KA3;
					RPS6KA5; TAB1;
					TAB3; TLR7; TLR8;
					TRAF6;

Toll Like Receptor 7/8	36	36	4	0.039263	APP; ATF2; CDK1;
(TLR7/8) Cascade					CHUK; CREB1;
					DUSP6; FOS; JAK1;
					JAK2; JUN; MAP2K1;
					MAP2K2; MAP2K3;
					MAP2K4; MAP3K1;
					MAP3K7; MAPK1;
					MAPK14; MAPK8;
					MAPKAPK2;
					MAPKAPK3; NFKB1;
					NFKB2; NFKBIA;
					PELI1; PELI2;
					PPP2CA; PPP2R5D;
					RPS6KA1; RPS6KA3;
					RPS6KA5; TAB1;
					TAB3; TLR7; TLR8;
					TRAF6;
Cell cycle: g1/s check point	9	9	2	0.041573	ABL1; CCND1;
					CCNE1; CDC25A;
					CDK1; CDK2; CDK6;
					GSK3B; SMAD3;
RAF/MAP kinase cascade	9	9	2	0.041573	CDK1; HRAS; JAK1;
					JAK2; MAP2K1;
					MAP2K2; MAPK1;
					RAF1; YWHAB;
Androgen Receptor	37	37	4	0.042958	AKT1; ATF2; CASP1;
					CASP3; CASP8;
					CAV1; CCND1;
					CCNE1; CDC25A;
					CDC37; CDK1; CDK7;
					CDK9; CREB1;
					CTNNB1; EGFR;
					EP300; GAPDH;
					GSK3B; HSP90B1;

					HSPA4; HSPA5;
					HSPA8; HSPB1;
					IL6ST; JUN; NCOA1;
					PIK3R1; PIK3R2;
					PTEN; PTK2; PXN;
					SIRT1; SMAD3; SRC;
					STAT3; STUB1;
MyD88:Mal cascade	37	37	4	0.042958	APP; ATF2; BTK;
initiated on plasma					CDK1; CHUK; CREB1;
membrane					DUSP6; FOS; JAK1;
					JAK2; JUN; MAP2K1;
					MAP2K2; MAP2K3;
					MAP2K4; MAP3K1;
					MAP3K7; MAPK1;
					MAPK14; MAPK8;
					МАРКАРК2;
					MAPKAPK3; NFKB1;
					NFKB2; NFKBIA;
					PELI1; PELI2;
					PPP2CA; PPP2R5D;
					RPS6KA1; RPS6KA3;
					RPS6KA5; TAB1;
					TAB3; TIRAP; TLR6;
					TRAF6;
Toll Like Receptor 2 (TLR2)	37	37	4	0.042958	APP; ATF2; BTK;
Cascade					CDK1; CHUK; CREB1;
					DUSP6; FOS; JAK1;
					JAK2; JUN; MAP2K1;
					MAP2K2; MAP2K3;
					MAP2K4; MAP3K1;
					MAP3K7; MAPK1;
					MAPK14; MAPK8;
					MAPKAPK2;
					MAPKAPK3; NFKB1;

					NFKB2; NFKBIA;
					PELI1; PELI2;
					PPP2CA; PPP2R5D;
					RPS6KA1; RPS6KA3;
					RPS6KA5; TAB1;
					TAB3; TIRAP; TLR6;
					TRAF6;
Toll Like Receptor 9 (TLR9)	37	37	4	0.042958	APP; ATF2; CDK1;
Cascade					CHUK; CREB1;
					DUSP6; EEA1; FOS;
					JAK1; JAK2; JUN;
					MAP2K1; MAP2K2;
					MAP2K3; MAP2K4;
					MAP3K1; MAP3K7;
					MAPK1; MAPK14;
					MAPK8; MAPKAPK2;
					MAPKAPK3; NFKB1;
					NFKB2; NFKBIA;
					PELI1; PELI2;
					PPP2CA; PPP2R5D;
					RPS6KA1; RPS6KA3;
					RPS6KA5; TAB1;
					TAB3; TLR7; TLR8;
					TRAF6;
Toll Like Receptor	37	37	4	0.042958	APP; ATF2; BTK;
TLR1:TLR2 Cascade					CDK1; CHUK; CREB1;
					DUSP6; FOS; JAK1;
					JAK2; JUN; MAP2K1;
					MAP2K2; MAP2K3;
					MAP2K4; MAP3K1;
					MAP3K7; MAPK1;
					MAPK14; MAPK8;
					МАРКАРК2;
					MAPKAPK3; NFKB1;

					NFKB2; NFKBIA;
					PELI1; PELI2;
					PPP2CA; PPP2R5D;
					RPS6KA1; RPS6KA3;
					RPS6KA5; TAB1;
					TAB3; TIRAP; TLR6;
					TRAF6;
Toll Like Receptor	37	37	4	0.042958	APP; ATF2; BTK;
TLR6:TLR2 Cascade					CDK1; CHUK; CREB1;
					DUSP6; FOS; JAK1;
					JAK2; JUN; MAP2K1;
					MAP2K2; MAP2K3;
					MAP2K4; MAP3K1;
					MAP3K7; MAPK1;
					MAPK14; MAPK8;
					MAPKAPK2;
					MAPKAPK3; NFKB1;
					NFKB2; NFKBIA;
					PELI1; PELI2;
					PPP2CA; PPP2R5D;
					RPS6KA1; RPS6KA3;
					RPS6KA5; TAB1;
					TAB3; TIRAP; TLR6;
					TRAF6;
Cell Cycle	22	22	3	0.044538	CCND1; CCNE1;
					CDC25A; CDK1;
					CDK2; CDK6; CDK7;
					CSNK1D; CSNK1E;
					CSNK2A1; CSNK2A2;
					EP300; LPIN1; LPIN2;
					LPIN3; MAPK1;
					PPP1R12A; PPP2CA;
					PPP2R5D; PRKACA;
					PRKCA; TAOK1;

Cell Cycle, Mitotic	22	22	3	0.044538	CCND1; CCNE1;
					CDC25A; CDK1;
					CDK2; CDK6; CDK7;
					CSNK1D; CSNK1E;
					CSNK2A1; CSNK2A2;
					EP300; LPIN1; LPIN2;
					LPIN3; MAPK1;
					PPP1R12A; PPP2CA;
					PPP2R5D; PRKACA;
					PRKCA; TAOK1;

Table S3: Upregulated signaling pathways in pH1N1-infected alveolar epithelial cells at the alveolar-capillary barrier as determined by temporal kinome analysis. Pathways represent those that were found to be activated in pH1N1 infected cells as compared to mock-infected controls at 24 h post-MRSA addition. Thresholds for pathways over-representation analysis were fold-change ≥ 1.5 , p-value ≤ 0.05 .

Pathway Name	Pathway uploaded	Genes in	Pathway up-	Pathway up-regulated p-	Gene Symbols
	proteins	InnateDB for	regulated genes	value	
		this entity	count		
IFN-gamma pathway	17	17	4	4.66E-04	AKT1; CASP1; CBL;
					CEBPB; CRKL;
					DAPK1; IRF1; JAK1;
					JAK2; MAP2K1;
					MAP3K11; MAP3K1;
					MTOR; PIK3R1;
					PRKCD; STAT1;
					STAT3;
D4gdi signaling pathway	4	4	2	0.003405	CASP1; CASP3; JUN;
					RHOA;
Internal ribosome entry	4	4	2	0.003405	CASP1; CASP3;
pathway					CASP6; CASP8;
Cytokine Signaling in	56	56	5	0.007846	BLNK; CAMK2A;
Immune system					CAMK2D; CAMK2G;
					CASP1; CBL; CD44;
					CDK1; CHUK; CRK;
					CRKL; EIF2AK2; FYN;
					HRAS; IFNAR1;
					IL6ST; IL7R; IRF1;
					IRS1; JAK1; JAK2;
					LCK; LYN; MAP2K1;
					MAP2K2; MAP2K4;
					MAP3K3; MAP3K7;
					MAP3K8; MAPK1;
					NFKB1; NFKB2;
					PELI1; PELI2;
					PIK3CB; PIK3CD;

					PIK3R1; PIK3R2;
					PLCG1; PRKACA;
					PRKCD; PTK2B;
					PTPN1; RAF1; SHC1;
					SOCS3; SOS1;
					STAT1; STAT3;
					STAT5B; TAB1;
					TAB3; TOLLIP;
					TRAF6; YWHAB;
					YWHAZ;
Caspase cascade in	7	7	2	0.011422	BIRC3; CASP1;
apoptosis					CASP3; CASP6;
					CASP8; PRF1;
					SREBF1;
Amyotrophic lateral	8	8	2	0.015016	CASP1; CASP3; CAT;
sclerosis (ALS)					MAP2K3; MAP3K5;
					MAPK14; RAB5A;
					RAC1;
Signaling by FGFR1	9	9	2	0.019035	BCR; FGF20; FGFR1;
mutants					FGFR1OP2; PIK3R1;
					PLCG1; STAT1;
					STAT3; STAT5B;
Oncostatin M	27	27	3	0.025447	AKT1; CASP3; CDK2;
					CEBPB; EP300; FOS;
					GRB2; HRAS; IL6ST;
					IRS1; JAK1; JAK2;
					MAPK1; MTOR;
					NFKB1; NFKBIA;
					PIK3R1; PTK2B; PXN;
					RAF1; SHC1; SOCS3;
					SOS1; SRC; STAT1;
					STAT3; STAT5B;
Factors involved in	11	11	2	0.02827	ABL1; CDK2; DOCK6;
megakaryocyte					EP300; IRF1; JAK2;

development and platelet					KIF15; PRKACA;
production					PRKAR1B; RAB5A;
					RAC1;
Pathways in cancer	77	77	5	0.030483	ABL1; AKT1; AKT3;
					BCR; BIRC3; BRAF;
					CASP3; CASP8; CBL;
					CCND1; CCNE1;
					CDK2; CDK6; CHUK;
					CKS2; CRK; CRKL;
					CSF1R; CTNNB1;
					DAPK1; EGFR;
					EP300; ETS1; FGF20;
					FGFR1; FGFR2;
					FGFR3; FLT3; FOS;
					FZD1; GRB2; GSK3B;
					HIF1A; HRAS;
					HSP90AB1;
					HSP90B1; ITGA6;
					JAK1; JUN; KIT; LEF1;
					MAP2K1; MAP2K2;
					MAPK1; MAPK8;
					MET; MTOR; NFKB1;
					NFKB2; NFKBIA;
					NOS2; PDGFRA;
					PDGFRB; PIK3CB;
					PIK3CD; PIK3CG;
					PIK3R1; PIK3R2;
					PLCG1; PLCG2;
					PPARG; PRKCA;
					PTEN; PTK2; RAC1;
					RAF1; RASSF5;
					RHOA; SMAD2;
					SMAD3; SOS1;
					STAT1; STAT3;

					STAT5B; TGFBR1;
					TRAF2; TRAF6;
Glucocorticoid receptor	12	12	2	0.033448	AKT1; CREB1;
regulatory network					FKBP5; FOS; GSK3B;
					IRF1; JUN; MAPK8;
					NCOA1; NFATC1;
					NFKB1; STAT1;
p53 signaling pathway	12	12	2	0.033448	CASP3; CASP8;
					CCND1; CCNE1;
					CDK1; CDK2; CDK6;
					CHEK2; GADD45A;
					IGFBP3; PTEN;
					THBS1;
Interferon Signaling	14	14	2	0.044833	CAMK2A; CAMK2D;
					CAMK2G; CD44;
					EIF2AK2; IFNAR1;
					IRF1; JAK1; JAK2;
					PLCG1; PRKCD;
					PTPN1; SOCS3;
					STAT1;

Table S4: Upregulated signaling pathways in MRSA-infected alveolar epithelial cells at the alveolar-capillary barrier. Pathways represent those that were found to be activated in MRSA infected cells as compared to mock-infected controls at 24 h post-MRSA addition. Thresholds for pathways over-representation analysis were fold-change \geq 1.5, p-value \leq 0.05.

Pathway Name	Pathway uploaded proteins	Genes in InnateDB for this entity	Pathway up- regulated genes count	Pathway up-regulated p- value	Gene Symbols
Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor	4	4	2	1.59E-04	IGFBP1; IGFBP2; IGFBP3; IGFBP5;
Binding Proteins (IGFBPs)					
Metabolism of proteins	20	20	2	0.004914	ACO2; ATP5B; CS; EIF2AK3; EIF4EBP1; GSK3A; HSP90B1; HSPA5; HSPA9; HSPD1; IGFBP1; IGFBP2; IGFBP3; IGFBP5; PDIA3; PGM3; PROS1; RPLP2; SHC1; THBS1;
IGF1 signaling pathway	22	22	2	0.005958	AKT1; AKT3; BRAF; GRB2; HRAS; IGFBP1; IGFBP2; IGFBP3; IGFBP5; IRS1; MAP2K1; MAP2K2; MAPK1; PDPK1; PIK3CB; PIK3CD; PIK3R1; PIK3R2; RAF1; SHC1; SHC3; SOS1;
Interleukin-1 processing	3	3	1	0.018828	CASP1; NFKB1; NFKB2;

PERK regulates gene expression	3	3	1	0.018828	EIF2AK3; HSPA5;
D4gdi signaling pathway	4	4	1	0.025051	CASP1: CASP3: IUN:
8			-		RHOA;
Internal ribosome entry	4	4	1	0.025051	CASP1; CASP3;
pathway					CASP6; CASP8;
Cellular roles of Anthrax	5	5	1	0.031248	CASP1; MAP2K1;
toxin					MAP2K2; MAP2K3;
					MAP2K4;
Inflammasomes	5	5	1	0.031248	APP; CASP1;
					HSP90AB1; NLRP3;
					PSTPIP1;
The NLRP3 inflammasome	5	5	1	0.031248	APP; CASP1;
					HSP90AB1; NLRP3;
					PSTPIP1;
Cytosolic DNA-sensing	6	6	1	0.037418	CASP1; CHUK;
pathway					IKBKE; NFKB1;
					NFKBIA; TBK1;
Unfolded Protein Response	6	6	1	0.037418	EIF2AK3; GSK3A;
(UPR)					HSP90B1; HSPA5;
					IGFBP1; SHC1;
Caspase cascade in	7	7	1	0.043562	BIRC3; CASP1;
apoptosis					CASP3; CASP6;
					CASP8; PRF1;
					SREBF1;
FOXA2 and FOXA3	7	7	1	0.043562	ACADM; AKT1;
transcription factor					ALDOB; CREB1;
networks					HADH; IGFBP1;
					PKLR;
Amyotrophic lateral	8	8	1	0.04968	CASP1; CASP3; CAT;
sclerosis (ALS)					MAP2K3; MAP3K5;
					MAPK14; RAB5A;
					RAC1;

Table S5: Upregulated signaling pathways in pH1N1-MRSA-infected pulmonary endothelial cells at the alveolar-capillary barrier. Pathways represent those that were found to be activated in pH1N1-MRSA co-infected endothelial cells as compared to mock-infected controls at 24 h post-MRSA addition. Thresholds for pathway over-representation analysis were fold-change \geq 1.5, p-value \leq 0.05.

Pathway Name	Pathway uploaded proteins	Genes in InnateDB for this entity	Pathway up- regulated genes count	Pathway up-regulated p- value	Gene Symbols
Hedgehog 'off' state	4	4	3	7.05E-04	CSNK1A1; GSK3B;
					PRKACA; PRKAR1B;
Signaling by Hedgehog	4	4	3	7.05E-04	CSNK1A1; GSK3B;
					PRKACA; PRKAR1B;
Hedgehog signaling pathway	6	6	3	0.003249	CSNK1A1; CSNK1D;
					CSNK1E; CSNK1G1;
					GSK3B; PRKACA;
Class I MHC mediated antigen	8	8	3	0.008394	CTSL1; CTSS;
processing & presentation					HSPA5; NCF1;
					PDIA3; SOCS3;
					STUB1; TRIM36;
Degradation of GLI2 by the	3	3	2	0.009664	CSNK1A1; GSK3B;
proteasome					PRKACA;
GLI3 is processed to GLI3R by	3	3	2	0.009664	CSNK1A1; GSK3B;
the proteasome					PRKACA;
Transcription factor creb and	17	17	4	0.013452	AKT1; CAMK2A;
its extracellular signals					CAMK2D;
					CAMK2G; CREB1;
					GRB2; HRAS;
					MAPK1; MAPK14;
					PDPK1; PIK3R1;
					PRKARIB; PRKCA;
					KPSOKAS; SHUI;
Cellular responses to stress	36	26	۲. ۲	0.013505	<u>сомира,</u>
	50	50	0	0.015505	CAMK2A, CAMK2D;

					CAMK2G; CAT;
					CCNE1; CDK2;
					CDK6; CEBPB;
					EP300; ETS1; FOS;
					GSK3B; HIF1A;
					HSP90AB1; HSPA8;
					IGFBP7; JUN;
					MAP2K3; MAP2K4;
					MAP3K5; MAPK1;
					MAPK14; MAPK8;
					ΜΑΡΚΑΡΚ2;
					МАРКАРКЗ;
					ΜΑΡΚΑΡΚ5;
					MLST8; MTOR;
					NFKB1; PRDX2;
					RPS6KA1;
					RPS6KA3; RPTOR;
					SIRT1; STAT3;
					TNIK;
VEGFR3 signaling in lymphatic	10	10	3	0.016598	AKT1; CREB1; CRK;
endothelium					FLT4; GRB2;
					MAP2K4; PIK3R1;
					RPS6KA1; SHC1;
					SOS1;
Antigen processing-cross	4	4	2	0.018624	CTSL1; CTSS; NCF1;
presentation					PDIA3;
Beta-catenin phosphorylation	4	4	2	0.018624	CSNK1A1; GSK3B;
cascade					PPP2CA; PPP2R5D;
Circadian Clock	11	11	3	0.021926	ATF2; CPT1A;
					CREB1; CSNK1D;
					CSNK1E; EP300;
					HIF1A; NCOA1;
					PPARA;

					PPARGC1A;
					SREBF1;
Factors involved in	11	11	3	0.021926	ABL1; CDK2;
megakaryocyte development					DOCK6; EP300;
and platelet production					IRF1; JAK2; KIF15;
					PRKACA; PRKAR1B;
					RAB5A; RAC1;
CREB phosphorylation	5	5	2	0.029912	CREB1;
					MAPKAPK2;
					RPS6KA1;
					RPS6KA3;
					RPS6KA5;
Tnfr1 signaling pathway	5	5	2	0.029912	BIRC3; CASP3;
					CASP8; MAP2K4;
					TRAF2;
Role of Calcineurin-dependent	13	13	3	0.035082	CASP3; CSNK1A1;
NFAT signaling in lymphocytes					CSNK2A1; GSK3B;
					MAP3K1; MAP3K8;
					MAPK14; MAPK8;
					NFATC1; NFATC2;
					NFATC3; PIM1;
					PRKACA;
Signaling by Wnt	23	23	4	0.039044	AKT1; AP2M1;
					ARRB2; CAMK2A;
					CAV1; CSNK1A1;
					CSNK1E; CSNK2A1;
					CSNK2A2;
					CTNNB1; EP300;
					FZD1; GSK3B; LEF1;
					MAP3K7; NFATC1;
					PLCB1; PPP2CA;
					PPP2R5D; PRKCA;
					RAC1; RHOA;
					YWHAZ;

MAPK targets/ Nuclear events	14	14	3	0.042903	ATF2; CREB1;
mediated by MAP kinases					DUSP6; FOS; JUN;
					MAPK1; MAPK14;
					MAPK8;
					ΜΑΡΚΑΡΚ2;
					PPP2CA; PPP2R5D;
					RPS6KA1;
					RPS6KA3;
					RPS6KA5;
P38 mapk signaling pathway	14	14	3	0.042903	ATF2; CREB1;
					HRAS; HSPB1;
					MAP2K4; MAP3K1;
					MAP3K5; MAPK14;
					МАРКАРК2;
					МАРКАРК5;
					MKNK1; RAC1;
					RPS6KA5; STAT1;
RNF mutants show enhanced	14	14	3	0.042903	AKT1; CAV1;
WNT signaling and					CSNK1A1; CSNK1E;
proliferation					CSNK2A1;
					CSNK2A2;
					CTNNB1; EP300;
					FZD1; GSK3B; LEF1;
					PPP2CA; PPP2R5D;
					YWHAZ;
Signaling by WNT in cancer	14	14	3	0.042903	AKT1; CAV1;
					CSNK1A1; CSNK1E;
					CSNK2A1;
					CSNK2A2;
					CTNNB1; EP300;
					FZD1; GSK3B; LEF1;
					PPP2CA; PPP2R5D;
					YWHAZ;

TCF dependent signaling in response to WNT 14 14 3 0.042903 AKT1; CAV1; CSNK2A1; CSNK2A2; CSNK2A2; CSNK2A2; CTNNB1; FP300; FZD1; GSX3B; LF1; PPP2CA; PPP2R5D; VWHA2; Stabilizing AXIN XAV939 inhibits tankyrase, stabilizing AXIN 14 14 3 0.042903 AKT1; CAV1; CSNK2A2; CTNNB1; FP300; FZD1; GSX3B; LF11; PPP2CA; PPP2R5D; VWHA2; CSNK1A1; CSNK1E; CSNK2A2; CTNNB1; FP300; FZD1; GSX3B; FZD1; GSX3B; LF12; PPP2CA; PPP2R5D; VWHA2; misspliced LRP5 mutants have enhanced beta-catenin- dependent signaling 14 3 0.042903 AKT1; CAV1; CSNK2A2; CSNK2						
response to WNTCSNK1A1; CSNK12, CSNK2A2; CTNNB1; EP300; FZD1; GSK38; LEF1; PPP2CA; PPP2SD; PPP2CA; PPP2SD; PPP2CA; PPP2SD; PPP2CA; PPP2SD; PPP2CA; PPP2SD; PPP2CA; PPP2SD; PPP2CA; PPP2SD; PPP2CA; PPP2SD; CTNNB1; EP300; FZD1; GSK38; LEF1; PPP2CA; PPP2SD; CTNNB1; GSK38; LEF1; PPP2CA; PPP2SD; APC truncation mutants have enal content of the deta- content of the deta- 	TCF dependent signaling in	14	14	3	0.042903	AKT1; CAV1;
X4V939 inhibits tankyrase, stabilizing XIN141430.042903AKT1; CAV1; CTINB1; EP300; FZD1; GSX83; LEF1; PPP2CA; PPP2R50; CTINB1; EP300; FZD1; GSX83; LEF1; PPP2CA; PPP2R50; PPP2CA; PPP2R50; PPP2	response to WNT					CSNK1A1; CSNK1E;
AMER1 mutants destabilize the destruction complexCCCCCCCCCNNACNNAACNNAAACNAA <t< td=""><td></td><td></td><td></td><td></td><td></td><td>CSNK2A1;</td></t<>						CSNK2A1;
AV939 inhibits tankyrase, stabilizing AXIN141430.042903AKT1; CAV1; CSNK1A1; CSNK1E; CSNK2A2; CTNNB1; FP300; FZD1; GSK38; LEF1; PP2CA; PP2R5D; CSNK2A2; CTNNB1; FP300; FZD1; GSK38; LEF1; PP2CA; PP2R5D; PP2CA; PP2CA; PP2CA; PP2CA; PP2CA; PP2R5D; PP2CA; PP2R5D; PP2CA; PP2CA; PP2CA; PP2CA; PP2R5D; PP2CA; PP2CA; PP2R5D; PP2CA; PP2CA; PP2CA; PP2CA; PP2CA; PP2CA; PP2C						CSNK2A2;
XAV939 inhibits tankyrase, stabilizing XXIN141430.042903AKT1; CAV1; CSNK1E; CSNK1A1; CSNK1E; CSNK2A1; CSNK2A1; CSNK2A1; CSNK2A1; CSNK2A1; CSNK2A1; CSNK2A1; CSNK2A1; CSNK2A1; CSNK2A1; CSNK2A1; CSNK2A1; CSNK2A1; CSNK2A1; CSNK2A1; CSNK2A1; CSNK2A2; CSNK						CTNNB1; EP300;
XAV939 inhibits tankyrase, stabilizing XXIN141430.042903AKT1; CAV1; CSNK12; CSNK2A1; CSNK2A2; CSNK2A2; CSNK2A2; CTNNB1; EP300; FZD1; GSX38; LEF1; PP2CA; PP2RSD; WHA2;misspliced LRP5 mutants have enhanced beta-catenin- dependent signaling141430.042903AKT1; CAV1; CSNK2A2; CSNK2A2; CSNK2A2; CSNK2A2; CSNK2A2; PP2RSD; WHA2;MER1 mutants destabilize the destruction mutants are not K63 polyubiquitinated6620.043243CSNK1A1; CSNK1A1; CSNK1A1; CSNK1A1; CSNK1A1; CSNK2A2; CSNK2A2; CSNK2A2; CSNK2A2; CSNK2A2; CSNK2A2; CSNK2A2; CSNK2A2; CSNK2A1; CSNK2A1; CSNK2A1; CSNK2A2; CSNK2A; <b< td=""><td></td><td></td><td></td><td></td><td></td><td>FZD1; GSK3B; LEF1;</td></b<>						FZD1; GSK3B; LEF1;
XAV939 inhibits tankyrase, stabilizing AXIN141430.042903AKT1; CAN1; CSNK11; CAN1; SSNK12; CSNK141; CSNK12; CSNK243; CSNK243; <td></td> <td></td> <td></td> <td></td> <td></td> <td>PPP2CA; PPP2R5D;</td>						PPP2CA; PPP2R5D;
XAV939 inhibits tankyrase, stabilizing AXIN141430.042903AKT1; CAV1; CSNK1A1; CSNK1E; CSNK2A2; 						YWHAZ;
stabilizing AXINStabilizing AXINCSNK1A1; CSNK1E; CSNK2A2; CSNK2A2; CTNNB1; EP300; FZD1; GSK3B; LEF1; PPP2CA; PP2R5D; YWHA2;misspliced LRP5 mutants have enhanced beta-catenin- dependent signaling141430.042903AKT1; CAV1; CSNK1A1; CSNK1E; CSNK2A2; YWHA2; CSNK1A1; CSNK1E; CSNK1A1; CSNK1E; CSNK2A2; CSNK1A1; CSNK1E; CSNK2A2; CSNK2A2; CSNK2A2; CSNK2A2; CSNK2A2; CSNK2A2; CSNK2A2; CSNK2A2; CSNK2A2; CSNK2A2; CSNK2A2; CSNK2A2; CSNK2A2; CSNK2A2; CSNK2A2; CSNK1A1; CSNK1E; PP2CA; PPP2CA; PPP2CA; PPP2CA; PPP2CA; PP2R5D; CSNK1A1	XAV939 inhibits tankyrase,	14	14	3	0.042903	AKT1; CAV1;
APC truncation mutants have not K63 polyubiquitinated6620.0043243 CSNK2A2; PPP2CA; PP2CA; PPP2CA; PPP2CA; PPP2CA; <td>stabilizing AXIN</td> <td></td> <td></td> <td></td> <td></td> <td>CSNK1A1; CSNK1E;</td>	stabilizing AXIN					CSNK1A1; CSNK1E;
Image: constraint of the section of						CSNK2A1;
AMER1 mutants destabilize the destruction complex6620.043243CSNK1A1; CSNK1A1; CSNK1A1; CSNK1A1; 						CSNK2A2;
Image: space s						CTNNB1; EP300;
Image: constraint of the second sec						FZD1; GSK3B; LEF1;
Image: constraint of the symbol of the sym						PPP2CA; PPP2R5D;
misspliced LRP5 mutants have enhanced beta-catenin- dependent signaling141430.042903AKT1; CAV1; CSNK1A1; CSNK1E; CSNK2A1; CSNK2A2; CSNK2A2; CTNNB1; EP300; FZD1; GSK3B; LEF1; PPP2CA; PPP						YWHAZ;
enhanced beta-catenin- dependent signalingenhanced beta-catenin- dependent signalingCSNK1A1; CSNK1E; CSNK2A1; CSNK2A2; CTNNB1; EP300; FZD1; GSK3B; LEF1; PPP2CA; PPP2R5D; VPP2R5D; VPP2CA; PPP2R5D; VPP2CA; PPP2R5D; VPP2CA; PPP2R5D; VPP2CA; PP	misspliced LRP5 mutants have	14	14	3	0.042903	AKT1; CAV1;
dependent signalingImage: Signal	enhanced beta-catenin-					CSNK1A1; CSNK1E;
AMER1 mutants destabilize the destruction complexGGGCCCCCCCCCCNDDD <thd< th="">DDD<th< td=""><td>dependent signaling</td><td></td><td></td><td></td><td></td><td>CSNK2A1;</td></th<></thd<>	dependent signaling					CSNK2A1;
AMER1 mutants destabilize the destruction complexCCCCCCCCNNN <t< td=""><td></td><td></td><td></td><td></td><td></td><td>CSNK2A2;</td></t<>						CSNK2A2;
AMER1 mutants destabilize the destruction complexGGGCCON43243CSNK1A1; OCTNNB1; GSK3B; LEF1; PPP2CA; PPP2R5D; APC truncation mutants are not K63 polyubiquitinatedGGCCCPPP2R5D; PPP2R5D; CTNNB1; GSK3B; LEF1; PPP2CA; PPP2R5D; CTNNB1; GSK3B; LEF1; PPP2CA; PPP2R5D;APC truncation mutants have impaired AXIN bindingGGC0.043243CSNK1A1; CTNNB1; GSK3B; LEF1; PPP2CA; PPP2R5D;APC truncation mutants have impaired AXIN bindingGGC0.043243CSNK1A1; CTNNB1; GSK3B; CTNNB1; GSK3B;						CTNNB1; EP300;
AMER1 mutants destabilize the destruction complexCSNK1A1; AMER1 mutants destabilize the destruction complexCSNK1A1; CTNNB1; GSK3B; LEF1; PPP2CA; PPP2R5D;APC truncation mutants are not K63 polyubiquitinatedCC0.043243CSNK1A1; CTNNB1; GSK3B; LEF1; PPP2CA; PPP2R5D;APC truncation mutants have impaired AXIN bindingCC0.043243CSNK1A1; CTNNB1; GSK3B; CTNNB1; GSK3B; CTNNB1; GSK3B; CTNNB1; GSK3B; CTNNB1; GSK3B; CTNNB1; GSK3B; CTNNB1; GSK3B; CTNNB1; GSK3B;						FZD1; GSK3B; LEF1;
AMER1 mutants destabilize the destruction complexImage: Comple						PPP2CA; PPP2R5D;
AMER1 mutants destabilize the destruction complex6620.043243CSNK1A1; GSK3B; LEF1; PPP2CA; PPP2R5D;APC truncation mutants are not K63 polyubiquitinated6620.043243CSNK1A1; PPP2R5D;APC truncation mutants have impaired AXIN binding6620.043243CSNK1A1; PPP2R5D;						YWHAZ;
destruction complexendendendCTNNB1; GSK3B; LEF1; PPP2CA; PPP2R5D;APC truncation mutants are not K63 polyubiquitinated6620.043243CSNK1A1; CTNNB1; GSK3B; LEF1; PPP2CA; PPP2R5D;APC truncation mutants have impaired AXIN binding6620.043243CSNK1A1; CTNNB1; GSK3B; LEF1; PPP2CA; PPP2R5D;	AMER1 mutants destabilize the	6	6	2	0.043243	CSNK1A1;
APC truncation mutants are not K63 polyubiquitinated6620.043243CSNK1A1; CTNNB1; GSK3B; LEF1; PPP2CA; PPP2R5D;APC truncation mutants have impaired AXIN binding6620.043243CSNK1A1; CTNNB1; GSK3B; CTNNB1; GSK3B; CTNNB1; GSK3B; CTNNB1; GSK3B; CTNNB1; GSK3B;	destruction complex					CTNNB1; GSK3B;
APC truncation mutants are not K63 polyubiquitinated6620.043243CSNK1A1;APC truncation mutants have impaired AXIN binding6620.043243CSNK1A1;APC truncation mutants have impaired AXIN binding6620.043243CSNK1A1;						LEF1; PPP2CA;
APC truncation mutants are not K63 polyubiquitinated6620.043243CSNK1A1; CTNNB1; GSK3B; LEF1; PPP2CA; PPP2R5D;APC truncation mutants have impaired AXIN binding6620.043243CSNK1A1; CTNNB1; GSK3B; CTNNB1; GSK3B; CTNNB1; GSK3B; CTNNB1; GSK3B;						PPP2R5D;
not K63 polyubiquitinated Implies (CTNNB1; GSK3B; CTNNB1; CTNNB1; GSK3B; CTNNB1; C	APC truncation mutants are	6	6	2	0.043243	CSNK1A1;
APC truncation mutants have impaired AXIN binding 6 6 2 0.043243 CSNK1A1; CTNNB1; GSK3B; CTNNB1; GSK3B;	not K63 polyubiquitinated					CTNNB1; GSK3B;
APC truncation mutants have impaired AXIN binding6620.043243CSNK1A1;CTNNB1; GSK3B;						LEF1; PPP2CA;
APC truncation mutants have impaired AXIN binding 6 6 2 0.043243 CSNK1A1; CTNNB1; GSK3B; CTNNB1; Market impaired AXIN binding CTNNB1; Market impaired impaire						PPP2R5D;
impaired AXIN binding CTNNB1; GSK3B;	APC truncation mutants have	6	6	2	0.043243	CSNK1A1;
	impaired AXIN binding					CTNNB1; GSK3B;

					LEF1; PPP2CA;
					PPP2R5D;
AXIN missense mutants	6	6	2	0.043243	CSNK1A1;
destabilize the destruction					CTNNB1; GSK3B;
complex					LEF1; PPP2CA;
					PPP2R5D;
AXIN mutants destabilize the	6	6	2	0.043243	CSNK1A1;
destruction complex, activating					CTNNB1; GSK3B;
WNT signaling					LEF1; PPP2CA;
					PPP2R5D;
Degradation of beta-catenin by	6	6	2	0.043243	CSNK1A1;
the destruction complex					CTNNB1; GSK3B;
					LEF1; PPP2CA;
					PPP2R5D;
Degradation of the	6	6	2	0.043243	CASP3; CD44;
extracellular matrix					CTSB; CTSL1; CTSS;
					MMP8;
S33 mutants of beta-catenin	6	6	2	0.043243	CSNK1A1;
aren't phosphorylated					CTNNB1; GSK3B;
					LEF1; PPP2CA;
					PPP2R5D;
S37 mutants of beta-catenin	6	6	2	0.043243	CSNK1A1;
aren't phosphorylated					CTNNB1; GSK3B;
					LEF1; PPP2CA;
					PPP2R5D;
S45 mutants of beta-catenin	6	6	2	0.043243	CSNK1A1;
aren't phosphorylated					CTNNB1; GSK3B;
					LEF1; PPP2CA;
					PPP2R5D;
Stathmin and breast cancer	6	6	2	0.043243	CAMK2A;
resistance to antimicrotubule					CAMK2D;
agents					CAMK2G; CDK1;
					PRKAR1B; STMN1;

T41 mutants of beta-catenin	6	6	2	0.043243	CSNK1A1;
aren't phosphorylated					CTNNB1; GSK3B;
					LEF1; PPP2CA;
					PPP2R5D;
TCF7L2 mutants don't bind	6	6	2	0.043243	CSNK1A1;
СТВР					CTNNB1; GSK3B;
					LEF1; PPP2CA;
					PPP2R5D;
deletions in the AMER1 gene	6	6	2	0.043243	CSNK1A1;
destabilize the destruction					CTNNB1; GSK3B;
complex					LEF1; PPP2CA;
					PPP2R5D;
deletions in the AXIN genes in	6	6	2	0.043243	CSNK1A1;
hepatocellular carcinoma					CTNNB1; GSK3B;
result in elevated WNT					LEF1; PPP2CA;
signaling					PPP2R5D;
misspliced GSK3beta mutants	6	6	2	0.043243	CSNK1A1;
stabilize beta-catenin					CTNNB1; GSK3B;
					LEF1; PPP2CA;
					PPP2R5D;
phosphorylation site mutants	6	6	2	0.043243	CSNK1A1;
of CTNNB1 are not targeted to					CTNNB1; GSK3B;
the proteasome by the					LEF1; PPP2CA;
destruction complex					PPP2R5D;
truncated APC mutants	6	6	2	0.043243	CSNK1A1;
destabilize the destruction					CTNNB1; GSK3B;
complex					LEF1; PPP2CA;
					PPP2R5D;
truncations of AMER1	6	6	2	0.043243	CSNK1A1;
destabilize the destruction					CTNNB1; GSK3B;
complex					LEF1; PPP2CA;
					PPP2R5D;

Table S6: Upregulated signaling pathways in pH1N1-infected pulmonary endothelial cells at the alveolar-capillary barrier. Pathways represent those that were found to be activated in pH1N1 infected endothelial cells as compared to mock-infected controls at 24 h post-MRSA addition. Thresholds for pathway over-representation analysis were fold-change \geq 1.5, p-value \leq 0.05.

Pathway Name	Pathway uploaded proteins	Genes in InnateDB for this entity	Pathway up- regulated genes count	Pathway up-regulated p- value	Gene Symbols
Pyruvate metabolism	4	4	2	0.007759	LDHA; LDHB;
					PDK1; PDK4;

Table S7: Upregulated signaling pathways in MRSA-infected pulmonary endothelial cells at the alveolar-capillary barrier. Pathways represent those that were found to be activated in MRSA infected endothelial cells as compared to mock-infected controls at 24 h post-MRSA addition. Thresholds for pathway over-representation analysis were fold-change \geq 1.5, p-value \leq 0.05.

Pathway Name	Pathway uploaded proteins	Genes in InnateDB for this entity	Pathway up- regulated genes count	Pathway up-regulated p- value	Gene Symbols
Hedgehog signaling pathway	6	6	4	1.78E-04	CSNK1A1; CSNK1D;
					CSNK1E; CSNK1G1;
					GSK3B; PRKACA;
Hedgehog 'off' state	4	4	3	8.70E-04	CSNK1A1; GSK3B;
					PRKACA; PRKAR1B;
Signaling by Hedgehog	4	4	3	8.70E-04	CSNK1A1; GSK3B;
					PRKACA; PRKAR1B;
Degradation of GLI2 by the	3	3	2	0.011089	CSNK1A1; GSK3B;
proteasome					PRKACA;
GLI3 is processed to GLI3R by	3	3	2	0.011089	CSNK1A1; GSK3B;
the proteasome					PRKACA;
Metabolism of lipids and lipoproteins	3	3	2	0.011089	Dgat1; Fdx1; Ptgs2;
PKA-mediated phosphorylation	3	3	2	0.011089	CREB1; PRKACA;
of CREB					PRKAR1B;
Transcription regulation by	3	3	2	0.011089	CREB1; EP300;
methyltransferase of carm1					PRKAR1B;
Beta-catenin phosphorylation	4	4	2	0.021308	CSNK1A1; GSK3B;
cascade					PPP2CA; PPP2R5D;
CREB phosphorylation through	4	4	2	0.021308	CAMK2A;
the activation of CaMKII					CAMK2D;
					CAMK2G; CREB1;
CRMPs in Sema3A signaling	4	4	2	0.021308	DPYSL2; DPYSL3;
					FYN; GSK3B;
GPCR Dopamine D1like	4	4	2	0.021308	CREB1; PPP2R5D;
receptor signaling pathway					PRKACA; PRKAR1B;

Metabolism	4	4	2	0.021308	Dgat1; Fdx1;
					Pfkfb1; Ptgs2;
Presenilin action in Notch and	12	12	3	0.033806	CCND1; CSNK1A1;
Wnt signaling					CSNK2A1;
					CTNNB1; FOS;
					FZD1; GSK3B; JUN;
					MAP3K7; MAPK1;
					PPP2R5D; TAB1;
Repression of pain sensation	5	5	2	0.034124	CREB1; PRKACA;
by the transcriptional regulator					PRKAR1B; PRKCA;
dream					PRKCD;
Vasopressin-regulated water	5	5	2	0.034124	CREB1; PRKACA;
reabsorption					PRKAR1B; PRKCA;
					PRKCD;
AMER1 mutants destabilize the	6	6	2	0.049193	CREB1; FOS; JUN;
destruction complex					PRKAR1B;
					RPS6KA3;
APC truncation mutants are	6	6	2	0.049193	CREB1; DYNC1LI1;
not K63 polyubiquitinated					PRKACA; RAB11A;
					RAB5A;
APC truncation mutants have	6	6	3	0.049193	AKT1; CAMK2A;
impaired AXIN binding					CCND1; CREB1;
					GRB2; GSK3B;
					PDPK1; PIK3R1;
					PLCG1; PRKCD;
					SHC1; SOS1; SRC;
AXIN missense mutants	6	6	4	0.049193	AKT1; AP2M1;
destabilize the destruction					ARRB2; CAMK2A;
complex					CAV1; CSNK1A1;
					CSNK1E; CSNK2A1;
					CSNK2A2;
					CTNNB1; EP300;
					FZD1; GSK3B; LEF1;
					MAP3K7; NFATC1;

					PLCB1; PPP2CA;
					PPP2R5D; PRKCA;
					RAC1; RHOA;
					YWHAZ;
AXIN mutants destabilize the	6	6	2	0.049193	CSNK1A1;
destruction complex, activating					CTNNB1; GSK3B;
WNT signaling					LEF1; PPP2CA;
					PPP2R5D;
Ca-calmodulin-dependent	6	6	2	0.049193	CSNK1A1;
protein kinase activation					CTNNB1; GSK3B;
					LEF1; PPP2CA;
					PPP2R5D;
Degradation of beta-catenin by	6	6	2	0.049193	CSNK1A1;
the destruction complex					CTNNB1; GSK3B;
					LEF1; PPP2CA;
					PPP2R5D;
S33 mutants of beta-catenin	6	6	2	0.049193	CSNK1A1;
aren't phosphorylated					CTNNB1; GSK3B;
					LEF1; PPP2CA;
					PPP2R5D;
S37 mutants of beta-catenin	6	6	2	0.049193	CSNK1A1;
aren't phosphorylated					CTNNB1; GSK3B;
					LEF1; PPP2CA;
					PPP2R5D;
S45 mutants of beta-catenin	6	6	2	0.049193	CAMK2A;
aren't phosphorylated					CAMK2D;
					CAMK2G;
					CAMKK1; CAMKK2;
					CREB1;
Stathmin and breast cancer	6	6	2	0.049193	CSNK1A1;
resistance to antimicrotubule					CTNNB1; GSK3B;
agents					LEF1; PPP2CA;
					PPP2R5D;

T41 mutants of beta-catenin	6	6	2	0.049193	CSNK1A1;
aren't phosphorylated					CTNNB1; GSK3B;
					LEF1; PPP2CA;
					PPP2R5D;
TCF7L2 mutants don't bind	6	6	2	0.049193	CSNK1A1;
СТВР					CTNNB1; GSK3B;
					LEF1; PPP2CA;
					PPP2R5D;
Deletions in the AMER1 gene	6	6	2	0.049193	CSNK1A1;
destabilize the destruction					CTNNB1; GSK3B;
complex					LEF1; PPP2CA;
					PPP2R5D;
Deletions in the AXIN genes in	6	6	2	0.049193	CAMK2A;
hepatocellular carcinoma					CAMK2D;
result in elevated WNT					CAMK2G; CDK1;
signaling					PRKAR1B; STMN1;
Misspliced GSK3beta mutants	6	6	2	0.049193	CSNK1A1;
stabilize beta-catenin					CTNNB1; GSK3B;
					LEF1; PPP2CA;
					PPP2R5D;
Phosphorylation site mutants	6	6	2	0.049193	CSNK1A1;
of CTNNB1 are not targeted to					CTNNB1; GSK3B;
the proteasome by the					LEF1; PPP2CA;
destruction complex					PPP2R5D;
Truncated APC mutants	6	6	2	0.049193	CSNK1A1;
destabilize the destruction					CTNNB1; GSK3B;
complex					LEF1; PPP2CA;
					PPP2R5D;
Truncations of AMER1	6	6	2	0.049193	CSNK1A1;
destabilize the destruction					CTNNB1; GSK3B;
complex					LEF1; PPP2CA;
					PPP2R5D;