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Supplementary Table 1. Transcription factors associated with development of the pancreas. 

Gene Aliases Developmental 
Stage Function Ref. 

SOX17 SRY-Box Transcription Factor 
17 

DE, PFE, PSE Directs the primitive endoderm 
specification. 

[1] 

FOXA2 Forkhead Box A2; Hepatocyte 
Nuclear Factor 3-β 

DE, PFE, PSE, 
PMPs, EPs, 

Mature β-cells 

Establishes lineage-specific 
transcriptional programs which leads 
to proper differentiation of stem cells 
into pancreatic progenitors. Regulates 
expression of PDX1 gene and aids in 

maturation of β-cells 

[2] 

SHH 
Sonic Hedgehog Signaling 

Molecule DE 

A pleiotropic developmental gene 
which regulates growth, and 

differentiation of several organs. 
Repression of SHH expression is vital 

for pancreas differentiation and 
development 

[3] 

CXCR4 

C-X-C Motif Chemokine 
Receptor 4; Stromal Cell-

Derived Factor 1 Receptor; 
Neuropeptide Y3 Receptor 

DE 

Promotes cell differentiation, 
proliferation, and survival. Controls 
the spatiotemporal migration of the 
angioblasts towards pre-pancreatic 
endodermal region which aids the 

induction of PDX1 expression giving 
rise to common pancreatic progenitors 

[4] 

HNF1B HNF1 Homeobox B 
Hepatocyte Nuclear Factor 1-β PFE, PSE, PMPs 

Crucial for generation of pancreatic 
multipotent progenitor cells and 

NGN3+ endocrine progenitors 
[5] 

PDX1 

Pancreatic and Duodenal 
Homeobox 1; Insulin Promoter 

Factor 1; Homeodomain 
Transcription Factor 

PSE, PMPs, EPs, 
Mature β-cells 

Master regulator of pancreatic 
organogenesis. Induces differentiation 

from definitive endoderm to 
pancreatic progenitors. Regulates 
expression of Foxa2, Gata4, Hnf1β, 
Ptf1a, Neurog3, Nkx6.1, Pax6 etc. 

Activates several key β-cell genes, 
including Ins1, MafA, Glut-2, Gck, and 

Iapp 

[6] 

GATA4 GATA Binding Protein 4 PSE, PMPs 

Expressed in the pancreatic 
progenitors whereby at later stages of 
development its expression becomes 

restricted to mature acinar cells 

[7] 
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SOX9 SRY-Box Transcription Factor 9 PSE, PMPs, EPs 

All pancreatic cell lineages are derived 
from SOX9+. Protects MPCs from 

apoptosis. Regulates expression of 
Hnf1b, Hnf6, Onecut1 and Foxa2. 

Participates in activating Ngn3 and 
Pdx1 expression 

[8] 

NEURO
G3 

Neurogenin 3; NGN3; Class A 
Basic Helix-Loop-Helix Protein 

7; Atoh5; Relax 
PMPs, EPs 

Activates downstream targets such as 
Nkx2.2, Nkx6.1, Arx, Pax4, Isl1 and 

Neurod1; is a master switch required 
for the development of pancreatic 

endocrine progenitors and successive 
generation of mono-hormonal 

endocrine cells 

[6,9] 

NKX6.1 NK6 Homeobox 1 
PMPs, EPs, 

Mature β-cells 

Necessary for generation of mature β-
cells and maintaining insulin secretion 
process. Specific to the pancreas and 
becomes restricted to β-cells later in 

the development process 

[10–12] 

PTF1A Pancreas Associated 
Transcription Factor 1a 

PMPs 

Required for pancreas specification 
from the foregut endoderm and 

regulates the expansion of MPCs. 
Activates exocrine/acinar cell 
compartment of the pancreas. 

[13,14] 

GLIS3 GLIS Family Zinc Finger 3 
PMPs, EPs, 

Mature β-cells 

Is mainly expressed in preductal and 
Neurog3+ endocrine progenitors. 
Regulates expression of Neurog3. 

Participates in insulin gene 
transcription as well as insulin 

secretion process 

[15,16] 

RFX6 Regulatory Factor X6 
PMPs, EPs, 

Mature α- and 
β-cells 

Functions in both endoderm 
development and islet cell 

differentiation. Directs differentiation 
of four out of the five islet cells types 
excluding PP cells. Regulates genes 

crucial for maturation and function of 
β-cells 

[17–19] 

NEURO
D1 

Neuronal Differentiation 1; 
Neurogenic Helix-Loop-Helix 

Protein NEUROD; β-Cell E-Box 
Transactivator 2 

EPs, Mature α- 
and β-cells 

Acts as a transactivator of genes 
crucial for β-cell function and 
maturation, like insulin gene 

transcription 

[20,21] 

NKX2.2 NK2 Homeobox 2 EPs, Mature α- 
and β-cells 

Crucial for α- and β-cell fate 
specification and also for maintenance 
of mature β-cell function by regulating 

expression of MAFA and GLUT2 

[22,23] 

PAX4 Paired Box Protein Pax-4 EPs, Mature β-
cells 

Required to maintain expression of 
PDX1, MNX1, and INS in β-cell 

precursors. Mis-expression of PAX4 in 
α-cells transdifferentiates them into β-

like cells 

[24–26] 

PAX6 Paired Box Protein Pax-6 EPs, Mature α- 
and β-cells 

Critical for α-cell development and 
regulates transcription of key genes 

such as MAFB, cMAF and NEUROD1. 
Regulates glucose-regulated ATP 

synthesis, Ca2+ dynamics, and β-cell 
genes 

[27–29] 



ISL1 
ISL LIM Homeobox 1; ISLET1; 
Insulin Gene Enhancer Protein 

ISL-1 

EPs, Mature α- 
and β-cells 

Crucial for early pancreas 
morphogenesis, induction of hormone 

production, survival, and 
maintenance of physiological 

responses in endocrine cells. Regulates 
expression of Ins, Gcg, Glut2, Pdx1, 

MafA, and Arx etc 

[30–32] 

ARX 
Aristaless Related Homeobox; 

Homeobox Protein ARX; 
Cancer/Testis Antigen 121 

EPs, Mature α-
cells 

Crucial for formation of α, PP and β-
cells, but later during development it 
is restricted in specifying α-cell. Arx 
inhibition in mouse α-cells generates 
β-like cells or its misexpression in β-
cells transdifferentiate them into cells 

exhibiting α or PP-like cells 
characteristics 

[33–35] 

RFX3 Regulatory Factor X3 
EPs, Mature α- 

and β-cells 

Aids in development and maturation 
of endocrine cells. Regulates 

expression of insulin, Glut2, and Gck.  
[36,37] 

MAFB 

MAF BZIP Transcription Factor 
B; V-Maf Avian 

Musculoaponeurotic 
Fibrosarcoma Oncogene 

Homolog B 

Embryonic and 
Mature α- & β-

cells 

Expressed in both embryonic and 
adult α- and β-cells. Crucial for 

induction of hormone genes during 
terminal differentiation and further 
provides functional maturation to 

both the cell types 

[38–41] 

MAFA 

MAF BZIP Transcription Factor 
A; V-Maf Avian 

Musculoaponeurotic 
Fibrosarcoma Oncogene 

Homolog A; RIPE3b1 

Mature β-cells 

β-cell specific transcription factor. 
Acts as a transactivator of Ins gene 

transcription in cooperation with Pdx1 
and NeuroD1. Regulates genes critical 
for β-cell function such as Pdx1, Glut2, 

Neurod1, Nkx6.1, Slc30a8, and G6pc2 

[6,40,42–
47] 

MNX1 Motor Neuron And Pancreas 
Homeobox 1; HLXB9 

Mature β-cells 

Crucial for dorsal pancreas 
specification, β-cell fate determination, 

maintenance of β-cell identity and 
inhibition of other endocrine-lineage 

programs 

[48–51] 

LDB1 LIM Domain Binding 1 Mature β-cells 

Acts as a scaffold to interact with LIM 
domain factors like ISL1 to form 
complexes at promotor/enhancer 

regions to regulate gene expression for 
successful β-cell terminal 

differentiation and maturation 
processes. Regulates expression of 
MafA, Glp1R, Arx, Mnx1 and Glut2 

[32,52,53] 

DE, Definitive Endoderm; PFE, Posterior Foregut Endoderm; PSE, Pancreatic-specified endoderm; 
PMPs, Pancreatic multipotent progenitors; EPs, Endocrine Progenitors. 
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