

Article

Conditional Ablation of Myeloid TNF Improves Functional Outcome and Decreases Lesion Size after Spinal Cord Injury in Mice

Ditte Gry Ellman ^{1,†}, Minna Christiansen Lund ^{1,†}, Maiken Nissen ¹, Pernille Sveistrup Nielsen ¹, Charlotte Sørensen ¹, Emilie Boye Lester ¹, Estrid Thougaard ¹, Louise Helskov Jørgensen ², Sergei A. Nedospasov ³, Ditte Caroline Andersen ^{2,4,5}, Jane Stubbe ⁶, Roberta Brambilla ^{1,7}, Matilda Degn ⁸, and Kate Lykke Lambertsen ^{1,9,10,*}

- ¹ Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; dellman@health.sdu.dk (D.G.E.); mclund@health.sdu.dk (M.C.L.); maiken92@live.dk (M.N.); Pernillesveistrup@hotmail.com (P.S.N.); serensencs@gmail.com (C.S.); emilie@lester.dk (E.B.L.); etpedersen@health.sdu.dk (E.T.); RBrambilla@med.miami.edu (R.B.)
- ² Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark; LHJorgensen@health.sdu.dk (L.H.J.); DAndersen@health.sdu.dk (D.C.A.)
- ³ Engelhardt Institute of Molecular Biology, Russian Academy of Sciences and Lomonosov Moscow State University, 119991 Moscow, Russia; sergei.nedospasov@googlemail.com
- ⁴ Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital,5000 Odense, Denmark
- ⁵ Danish Center for Regenerative Medicine, Odense University Hospital, 5000 Odense Denmark,
- ⁶ Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; jstubbe@health.sdu.dk
- ⁷ The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- ⁸ Pediatric Oncology Laboratory, Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, 2100 Copenhagen, Denmark; matildadegn@gmail.com
- ⁹ Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
- ¹⁰ BRIGDE-Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
- [†] These authors contributed equally to this work.
- * Correspondence: klambertsen@health.sdu.dk; Tel.: +45 6550 3806

Supplemental Figure 1. Baseline and post-SCI behavior in *Tnf*^{*fl*/*fl*} **and** *LysM*^{Cre}*Tnf*^{*fl*/*fl*} **mice. (A-C)** Elevated plus maze test showed that naïve *Tnf*^{*fl*/*fl*} and *LysM*^{Cre}*Tnf*^{*fl*/*fl*} mice travelled a similar total distance during the trial (A) but that *LysM*^{Cre}*Tnf*^{*fl*/*fl*} mice spent significantly more time in the open arm (B) and less time in the closed arm (C) compared to *Tnf*^{*fl*/*fl*} mice. Student's t-test, n=8/group. (D) Weight changes after SCI were comparable between genotypes, however, both groups changed their weight over time (two-way RM ANOVA, SCI: p<0.001, F_{7,189}=98.3; Genotype: p=0.81, F_{1,27}=0.01; Interaction: p=0.07, F_{7,189}=1.9), n=14-15/group. (E) Thermal stimulation using the Hargreave's test showed no differences in latency time to withdraw paws between genotypes. Both groups decreased latency to remove their hind paws over time after SCI (two-way RM ANOVA, SCI: p<0.0001, F_{2.38,35.8}=35.02; Genotype: p=0.85, F_{1,15}=0.04; Interaction: p=0.82, F_{3,45}=0.31), n=7-10/group. (F) Rung walk analysis showed that both groups of mice increased their number of mistakes after SCI but no differences between genotypes were observed (two-way RM ANOVA, SCI: p<0.0001, F_{3,66}=86.2; Genotype: p=0.90, F_{1,22}=0.02; Interaction: p=0.85, F_{3,66}=0.26), n=11-13/group. Data are presented as mean ± SEM.* *p<0.05, ***p<0.001, ****p<0.001.

Supplemental Table 1. Baseline and post-SCI behavior in $LysM^{Cre}Tnf^{11/f1}$ and $Tnf^{11/f1}$ mice and in $Cx3cr1^{CreER}Tnf^{11/f1}$ and $Tnf^{11/f1}$ mice. Student's t-test. Results are presented as mean ± SEM.

Open field baseline $1,42 \pm 1.68, n=6$ $24.36 \pm 3.05, n=4$ $p=0.39$ Time to first rear (sec) $27.52 \pm 6.02, n=6$ $32.04 \pm 5.31, n=4$ $p=0.61$ Center/perimeter ratio $0.16 \pm 0.02, n=6$ $0.17 \pm 0.05, n=10$ $p=0.95$ Grooming (n) $3.7 \pm 0.8, n=6$ $5.5 \pm 0.9, n=10$ $p=0.18$ Center rear (n) $4.2 \pm 1.9, n=6$ $2.7 \pm 1.3, n=10$ $p=0.53$ Wall rear (n) $22.7 \pm 3.4, n=6$ $14.3 \pm 3.7, n=10$ $p=0.15$ Urinations (n) $1.2 \pm 0.2, n=6$ $0.8 \pm 0.2 n=10$ $p=0.23$	
Total distance travelled (m) 21.42 ± 1.68 , n=6 24.36 ± 3.05 , n=4p=0.39Time to first rear (sec) 27.52 ± 6.02 , n=6 32.04 ± 5.31 , n=4p=0.61Center/perimeter ratio 0.16 ± 0.02 , n=6 0.17 ± 0.05 , n=10p=0.95Grooming (n) 3.7 ± 0.8 , n=6 5.5 ± 0.9 , n=10p=0.18Center rear (n) 4.2 ± 1.9 , n=6 2.7 ± 1.3 , n=10p=0.53Wall rear (n) 22.7 ± 3.4 , n=6 14.3 ± 3.7 , n=10p=0.15Urinations (n) 1.2 ± 0.2 , n=6 0.8 ± 0.2 n=10p=0.23	
Time to first rear (sec) 27.52 ± 6.02 , n=6 32.04 ± 5.31 , n=4p=0.61Center/perimeter ratio 0.16 ± 0.02 , n=6 0.17 ± 0.05 , n=10p=0.95Grooming (n) 3.7 ± 0.8 , n=6 5.5 ± 0.9 , n=10p=0.18Center rear (n) 4.2 ± 1.9 , n=6 2.7 ± 1.3 , n=10p=0.53Wall rear (n) 22.7 ± 3.4 , n=6 14.3 ± 3.7 , n=10p=0.15Urinations (n) 1.2 ± 0.2 , n=6 0.8 ± 0.2 n=10n=0.23	
Center/perimeter ratio 0.16 ± 0.02 , n=6 0.17 ± 0.05 , n=10p=0.95Grooming (n) 3.7 ± 0.8 , n=6 5.5 ± 0.9 , n=10p=0.18Center rear (n) 4.2 ± 1.9 , n=6 2.7 ± 1.3 , n=10p=0.53Wall rear (n) 22.7 ± 3.4 , n=6 14.3 ± 3.7 , n=10p=0.15Urinations (n) 1.2 ± 0.2 , n=6 0.8 ± 0.2 n=10n=0.23	
Grooming (n) 3.7 ± 0.8 , $n=6$ 5.5 ± 0.9 , $n=10$ $p=0.18$ Center rear (n) 4.2 ± 1.9 , $n=6$ 2.7 ± 1.3 , $n=10$ $p=0.53$ Wall rear (n) 22.7 ± 3.4 , $n=6$ 14.3 ± 3.7 , $n=10$ $p=0.15$ Urinations (n) 1.2 ± 0.2 , $n=6$ 0.8 ± 0.2 , $n=10$ $n=0.23$	
Center rear (n) 4.2 ± 1.9 , n=6 2.7 ± 1.3 , n=10p=0.53Wall rear (n) 22.7 ± 3.4 , n=6 14.3 ± 3.7 , n=10p=0.15Urinations (n) 1.2 ± 0.2 , n=6 0.8 ± 0.2 n=10n=0.23	
Wall rear (n) 22.7 ± 3.4, n=6 14.3 ± 3.7, n=10 p=0.15 Urinations (n) 1.2 ± 0.2, n=6 0.8 ± 0.2 n=10 n=0.23	
Urinations (n) 1.2 + 0.2, n=6 0.8 + 0.2 n=10 n=0.23	
Droppings (n) 2.0 ± 0.4 , n=6 4.1 ± 0.9 , n=10 p=0.11	
Digging (n) 0.5 ± 0.3, n=6 0.9 ± 0.5, n=10 p=0.60	
Jumping (n) 0.0 ± 0.0, n=6 0.7 ± 0.7, n=10 p=0.46	
Zone changes (n) 126.0 ± 3.0, n=6 87.8 ± 15.4, n=10 p=0.08	
Y maze baseline	
Y-maze entries (n) 51.35 ± 7.13, n=14 41.00 ± 4.33, n=12 p=0.25	
Alternation (%) 51.50 ± 2.87, n=14 52.92 ± 2.19, n=12 p=0.71	
Hargreaves baseline	
Latency (sec) 4.92 ± 0.58, n=6 4.08 ± 0.34, n=4 p=0.31	
Open field 35 days post-SCI	
Total distance travelled (m) 3.03 ± 1.26, n=10 2.39 ± 0.70, n=7 p=0.70	
Center/perimeter ratio 0.06 ± 0.03, n=10 0.10 ± 0.03, n=7 p=0.33	
Grooming (n) 1.6 ± 0.5, n=10 1.9 ± 0.3, n=7 p=0.68	
Wall rear (n) 0.0 ± 0.0, n=10 1.14 ± 1.14, n=7 p=0.24	
Urinations (n) 1.2 ± 0.2, n=10 1.1 ± 0.4, n=7 p=0.89	
Droppings (n) 2.2 ± 0.4, n=10 1.6 ± 0.6, n=7 p=0.38	
Digging (n) 0.1 ± 0.1 , n=10 0.0 ± 0.0 , n=7 p=0.42	
Zone changes (n) 26.3 ± 8.3 , n=10 50.6 ± 14.0 , n=7 p=0.13	
Th ^{j(y)} Cx3cr1 ^{(reex} Th ^{j(y)} P-value	
Weight	
Before tamoxifen treatment 19.36 ± 0.37, n=9 18.66 ± 0.49, n=8 p=0.27	
After tamoxifen treatment 20.06 ± 0.35, n=9 19.48 ± 0.43, n=8 p=0.31	
Total distance travelled (m) 32.79 ± 5.59, n=13 33.36 ± 1.40, n=15 p=0.84	
Time to first rear (sec) 143.2 ± 28.75, n=13 122.2 ± 32.16, n=15 p=0.64	
Center/perimeter ratio 0.07 ± 0.02 , n=13 0.10 ± 0.02 , n=15 p=0.21	
Grooming (n) 2.69±0.29, n=13 3.53±0.41, n=15 p=0.12	
Center rear (n) 0.34±0.24, n=13 0.67±0.21, n=15 p=0.69	
Wairrear (n) 11.38 ± 1.57, n=13 13.87 ± 2.13, n=15 p=0.37	
$U(n)$ $U(2 \pm 0.14)$ (n) $U(2 \pm 0.14)$ $(n = 13)$ $U(4 \pm 0.13)$ $(n = 15)$ $p = 0.27$	
Droppings (n) 3.7/±0.72, n=13 2.53±0.35, n=15 p=0.12	
$D(gring (n)) = 0.00 \pm 0.00, n=13 = 0.27 \pm 0.18, n=15 = p=0.18$	
Jumping (n) 0.00 ± 0.00, n=13 0.00 ± 0.00, n=15 -	
Zone changes (n) 92.00 ± 15.77, n=15 69.51 ± 17.64, n=15 p=0.91	
Encoded plus muze baseline Total distance travelled (m) 1 100 + 95 7 p=12 1 100 + 95 4 p=15 p=1 00	
Time spent in closed and (sec) 174.0 ± 27.4 , $1-15$ 151.2 ± 24.7 , $1-15$ $p=0.55$	
$\frac{11112}{2} = \frac{1111}{2} = \frac{1111}{2} = \frac{1111}{2} = \frac{1111}{2} = \frac{11112}{2} = \frac{1112}{2} = \frac{1112}{2} = \frac{1112}{2} = \frac{1112}{2} = \frac{1112}{$	
Timuze Dasenine Y many ontring (n) 27.72 ± 2.65 n=15 22.19 ± 2.00 n=11 n=0.27	
$\frac{1}{1} \frac{1}{1} \frac{1}$	
Alternation (76) 53.27 ± 2.04, II-13 50.55 ± 3.55, II-11 P-0.55	
$\frac{1}{12} \frac{1}{12} \frac$	
Chen field 35 days nost-SCI	
Total distance travelled (m) 24.54 ± 1.44 n=12 30.06 ± 3.36 n=13 n=0.16	
Center/nerimeter ratio 0.01 ± 0.00 n=12 0.01 ± 0.00 n=13 n=0.66	
Grooming (n) 217 ± 0.20 , $n=12$ 0.01 ± 0.00 , $n=13$ $p=0.00$	
Wall rear (n) 0.00 ± 0.23 , $n=12$ 2.00 ± 0.23 , $n=13$ $p=0.04$	
$0.00 \pm 0.00, 1-12 = 0.00, 1-13 = -$	
Dronnings (n) 2.58 ± 0.26 n=12 0.34 ± 0.10 , ii=13 p=0.03 Dronnings (n) 2.58 ± 0.26 n=12 2.08 ± 0.40 n=12 n=0.26	
Displaying (n) 0.00 ± 0.00 , $n=12$ 2.00 ± 0.40 , $n=13$ $p=0.30$	
Zone changes (n) 18.67 + 7.38. n=12 21.85 + 7.72 n=13 n=0.77	

Supplemental Figure 2. Post-SCI behavior in $Tnf^{p1/p1}$ and $Cx3cr1^{CreER}Tnf^{p1/p1}$ mice. (A) Thermal stimulation using the Hargreave's test showed no differences in latency time to withdraw paws between genotypes. Both groups decreased latency to remove their hind paws over time after SCI (two-way RM ANOVA, SCI: p<0.0001, F_{2.89,66.55}=29.80; Genotype: p=0.62, F_{1.26}=0.25; Interaction: p=0.69, F_{5.115}=0.61), n=12-16/group. (B) Rung walk analysis showed that both groups of mice increased their number of mistakes after SCI but no differences between genotypes were observed (two-way RM ANOVA, SCI: p<0.0001, F_{1.44,33.1}=47.53; Genotype: p=0.69, F_{1.23}=0.16; Interaction: p=0.99, F_{5.115}=0.12), n=12-13/group. Data are presented as mean ± SEM.****p<0.0001.

Supplemental Table 2. Protein levels in *Tnf*^{1/f1} **and** *Cx3cr1*^{CreER}*Tnf*^{1/f1} **mice 3 hours post-SCI.** Data are presented as mean ± SEM, n = 5-6 mice/group. Concentrations are given as pg/mg.

CYTOKINES	TIME	GROU	UPS	TWO-WAY ANOVA
		TNF ^{fl/fl}	Cx3cr1 ^{CreER} TNF ^{fl/fl}	
TNFR1	Naïve 3 hours post-SCI	$\begin{array}{c} 104.85 \pm 4.65 \\ 101.86 \pm 5.28 \end{array}$	$\begin{array}{c} 113.69 \pm 4.47 \\ 116.82 \pm 7.93 \end{array}$	SCI: p=0.99, F _{1,17} =0.0002 Genotype: p=0.05 F _{1,17} =4.42 Interaction: p=0.60, F _{1,17} =0.29
TNFR2	Naïve 3 hours post-SCI	$\begin{array}{c} 77.08 \pm 4.00 \\ 130.70 \pm 11.81 \end{array}$	$\begin{array}{c} 95.46 \pm 6.67 \\ 115.46 \pm 8.34 \end{array}$	SCI: p=0.0003, F_{1,17}=20.59 Genotype: p=0.85 F _{1,17} =0.04 Interaction: p=0.05, F _{1,17} =4.30
IL-1β	Naïve 3 hours post-SCI	$\begin{array}{c} 0.09 \pm 0.01 \\ 3.20 \pm 0.94 \end{array}$	$\begin{array}{c} 0.14 \pm 0.03 \\ 2.75 \pm 0.67 \end{array}$	SCI: p<0.0001, F _{1,17} =27.21 Genotype: p=0.72 F _{1,17} =0.13 Interaction: p=0.65, F _{1,17} =0.21
IL-6	Naïve 3 hours post-SCI	$\begin{array}{c} 6.57 \pm 0.55 \\ 175.81 \pm 61.44 \end{array}$	$\begin{array}{c} 9.81 \pm 2.40 \\ 143.72 \pm 44.62 \end{array}$	SCI: p=0.0006, F_{1,17}=17.64 Genotype: p=0.69 F _{1,17} =0.16 Interaction: p=0.63, F _{1,17} =0.24
IL-10	Naïve 3 hours post-SCI	$\begin{array}{c} 0.26 \pm 0.01 \\ 0.82 \pm 0.09 \end{array}$	$\begin{array}{c} 0.31 \pm 0.05 \\ 0.88 \pm 0.08 \end{array}$	SCI: p<0.0001, F _{1,17} =77.92 Genotype: p=0.39 F _{1,17} =0.79 Interaction: p=0.99, F _{1,17} =0.0002
CXCL1	Naïve 3 hours post-SCI	$\begin{array}{c} 1.02 \pm 0.12 \\ 60.33 \pm 15.75 \end{array}$	$\begin{array}{c} 1.89 \pm 0.50 \\ 34.15 \pm 8.23 \end{array}$	SCI: p<0.0001, F _{1,17} =29.40 Genotype: p=0.15 F _{1,17} =2.25 Interaction: p=0.13, F _{1,17} =2.57
ΙΓΝγ	Naïve 3 hours post-SCI	$\begin{array}{c} 0.01 \pm 0.00 \\ 0.02 \pm 0.00 \end{array}$	$\begin{array}{c} 0.02 \pm 0.00 \\ 0.04 \pm 0.02 \end{array}$	SCI: p=0.13, F _{1,17} =2.57 Genotype: p=0.19 F _{1,17} =1.85 Interaction: p=0.30, F _{1,17} =1.15

Supplemental Table 3. Changes in ERK-STAT signaling cascade protein levels in naïve <i>Tnf</i> ^{1/fl} and
<i>LysM^{Cre}Tnf^{I/fl}</i> mice and 6 hours post-SCI. Data are presented as mean ± SEM, n=5 mice/group.

PROTEIN	TIME	GROU	TWO-WAY ANOVA	
		TNF ^{fl/fl}	LysM ^{Cre} TNF ^{fl/fl}	
PHOSPHO-	Naïve	23,317±6,095 RLU/mg	21,629±1,793 RLU/mg	SCI: p=0.02, F _{1,16} =6.22
MEK1/2	6 hours post-SCI	25,914±3,113 RLU/mg	27,681±2,535 RLU/mg	Genotype:p=0.98, F _{1,16} =0.0006
				Interaction: p=0.32, F _{1,16} =1.06
PHOSPHO-	Naïve	9,062±1,837 RLU/mg	9,152±849 RLU/mg	SCI: p<0.0001, F _{1,16} =184.2
ERK1/2	6 hours post-SCI	29,089±5,604 RLU/mg	27,895±2,301 RLU/mg	Genotype: p=0.70, F _{1,16} =0.16
				Interaction: p=0.66, F _{1,16} =0.20
PHOSPHO-	Naïve	17,864±4,408 RLU/mg	18,079±1,758 RLU/mg	SCI: p<0.0001, F _{1,16} =718.2
STAT3	6 hours post-SCI	92,706±9,523 RLU/mg	103,134±8,048 RLU/mg	Genotype: p=0.09, F _{1,16} =3.18
				Interaction: p=0.11, F _{1,16} =2.93

Supplemental Figure 3. Uncropped SAPK/JNK Western blots. Uncropped Western blotting gels for SAPK/JNK (54 kDa/46 kDa) and phosphorylated-SAPK/JNK (54 kDa/46 kDa) in naïve $Tnf^{pl/p}$ and $LysM^{Cre}Tnf^{pl/p}$ mice and in $Tnf^{pl/p}$ and $LysM^{Cre}Tnf^{pl/p}$ mice with one- and six-hours post-SCI survival. TFIIB (32 kDa) was used as loading control. Data are presented in main manuscript as Figure 5A.

Supplemental Figure 4. Uncropped STAT5a,b Western blots. Uncropped Western blotting gels for STAT5a,b (90 kDa) in naïve Tnf^{μ} and $LysM^{Cre}Tnf^{\mu}$ mice and in Tnf^{μ} and $LysM^{Cre}Tnf^{\mu}$ mice with oneand six-hours post-SCI survival. β -actin (43 kDa) was used as loading control. Data are presented in main manuscript as Figure 5G. Bcl-XL

β-Actin

Supplemental Figure 5. Uncropped Bcl-XL Western blots. Uncropped Western blotting gels for Bcl-XL (26 kDa) in naïve Tnf^{μ} and $LysM^{Cre}Tnf^{\mu}$ mice and in Tnf^{μ} and $LysM^{Cre}Tnf^{\mu}$ mice with one- and six-hours post-SCI survival. β -actin (43 kDa) was used as loading control. Data are presented in main manuscript as Figure 5O.

Supplemental Figure 6. Uncropped EPO Western blots. Uncropped Western blotting gels for EPO (28 kDa) in naïve $Tnf^{pl/p}$ and $LysM^{Cre}Tnf^{pl/p}$ mice and in $Tnf^{pl/p}$ and $LysM^{Cre}Tnf^{pl/p}$ mice with one- and sixhours post-SCI survival. β -actin (43 kDa) was used as loading control. Data are presented in main manuscript as Figure 5R.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).