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Abstract: The spliceosome consists of accessory proteins and small nuclear ribonucleoproteins
(snRNPs) that remove introns from RNA. As splicing defects are associated with degenerative
conditions, a better understanding of spliceosome formation and function is essential. We provide
insight into the role of a spliceosome protein U4/U6.U5 tri-snRNP-associated protein 1, or Squamous
cell carcinoma antigen recognized by T-cells (Sart1). Sart1 recruits the U4.U6/U5 tri-snRNP complex to
nuclear RNA. The complex then associates with U1 and U2 snRNPs to form the spliceosome. A forward
genetic screen identifying defects in choroid plexus development and whole-exome sequencing
(WES) identified a point mutation in exon 12 of sart1 in Danio rerio (zebrafish). This mutation caused
an up-regulation of sart1. Using RNA-Seq analysis, we identified additional upregulated genes,
including those involved in apoptosis. We also observed increased activated caspase 3 in the brain and
eye and down-regulation of vision-related genes. Although splicing occurs in numerous cells types,
sart1 expression in zebrafish was restricted to the brain. By identifying sart1 expression in the
brain and cell death within the central nervous system (CNS), we provide additional insights into
the role of sart1 in specific tissues. We also characterized sart1’s involvement in cell death and
vision-related pathways.
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1. Introduction

Although the splicing process was discovered more than 30 years ago [1], the mechanisms of
spliceosome assembly and splicing regulation are not well understood. To date, over 100 proteins
that regulate spliceosome assembly and function have been identified [2]. Understanding the role of
these proteins in splicing is important because several disorders such as retinitis pigmentosa (RP) [3],
amyotrophic lateral sclerosis, spinal muscular atrophy [4], and chronic lymphocytic leukemia [5]
are caused by mutations in splicing factors.

We have characterized one of these genes, sart1, which was isolated from an N-ethyl-N-nitrosourea
(ENU) mutagenesis forward genetic screen in the enhancer trap zebrafish line Et(cp:EGFP)sj2 to identify
mutants in choroid plexus (CP) development [6]. In this genetic screen, zebrafish larvae were observed
at 4 days postfertilization (dpf) to look for phenotypes in the CP. The green fluorescent protein (GFP),
was expressed in CP epithelia so mutants in CP development could be easily observed under a
fluorescent microscope. Mutants identified from the screen were classified based on intensity of GFP
expression in the CP, localization of epithelial cells, and overall CP size. Previously referred to as cp27.5,
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this line with a mutation in sart1 had variable GFP expression, small epithelial aggregates, and an
expanded CP. The mutants also had expanded ventricles, small eyes, and increased CNS barrier
permeability. Mutants were embryonic lethal by late day 4. Using bulked segregant analysis, we were
able to map the mutation to chromosome 21. In our current study, we identified the mutation in sart1
using exome sequencing, which has been utilized as an effective and time-efficient strategy to identify
mutations from lines discovered in zebrafish forward genetic screens [7].

Sart1, also known as U4/U6.U5 tri-snRNP-associated protein 1, squamous cell carcinoma antigen
recognized by T-cells, HAF in mice, and Snu66 in yeast, is a complex protein involved in U4/U6.U5
tri-sRNP recruitment to the spliceosome [8]. There are two protein isoforms of Sart1, one is an
800 amino acid sequence located in the nucleus of proliferating cells and contains a leucine zipper
motif suggesting it may bind to DNA [9]. Another 259 amino acid protein is synthesized by a frame
shift in an internal ribosomal entry site that has been shown to be expressed in the cytosol in squamous
cell carcinomas [9].

While splicing genes are thought to be ubiquitously expressed, recent evidence suggests that certain
components of the spliceosome may be temporally or spatially regulated. Studies have identified
spliceosome components such as U2 that have high RNA levels, specifically in the cerebellum,
and mutations in U2 result in neurodegeneration [10]. In zebrafish, we observed that sart1 is expressed
specifically in the brain and upregulated in cp27.5 mutants. This provides further evidence that splicing
components may be regulated or expressed in specific tissues resulting in tissue-specific phenotypes.

In addition, we have demonstrated that this mutation results in up or downregulation of numerous
gene classes. Using RNA-Seq analysis, we identified that sart1 is upregulated in mutants. It also
results in upregulation of genes essential to the apoptotic pathway such as tumor protein 53 (tp53) and
the proto-oncogene mdm2. Conversely, this mutation causes genes regulating eye development and
function to be downregulated. This analysis confirmed our observations of retinal lamination loss
and increased cell death in the eyes of cp27.5 mutants. We also observed an upregulation of other
spliceosome components such as sm-like 7 (lsm7) and pre-mRNA processing factor 31 (prpf31) which may
indicate a compensation mechanism due to defects in sart1 function. While previous studies have
identified the major role of Sart1 as recruiting the U4/U5/U6 tri-sRNP to the spliceosome, we provide
evidence that it may directly affect specific classes of genes such as those involved in apoptosis along
with eye formation and maintenance. Understanding Sart1 regulation of gene expression will reveal
how spliceosome components not only play a role in splicing, but also other cellular processes, such as
apoptosis, and pathological conditions, such as degeneration and cancer.

2. Materials and Methods

2.1. Isolating cp27.5 Mutants

cp27.5 mutants were previously identified from an ENU mutagenesis screen identifying mutants in
CP development. CP morphology and function of cp27.5 mutants were characterized by Henson et al. [6].

2.2. Fish Lines and Maintenance

Zebrafish were maintained in accordance with established protocols and all experiments were
approved by the St. Jude Children’s Research Hospital Institutional Animal Care and Use Committee.
Zebrafish were maintained at 28.5 ◦C on a 14 h light/dark cycle. Embryos used for imaging were
collected in egg water (0.03% Instant Ocean) and treated at 24 h postfertilization (hpf) with 0.003%
1-phenyl-2-thiourea (PTU) (Sigma) to prevent pigment formation. Fish strains used for this study
include Et(cp:EGFP)sj2, cp27.5, and TL.

2.3. WES and Analysis

cp27.5 wild-type and mutant larvae (20 each) were collected in MeOH at 3 dpf. The 20 larvae
were generated from 3 different heterozygous parents. DNA was extracted using the MagAttract
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High Molecular Weight (HMW) DNA kit (Qiagen Sciences LLC, Germanton, MD, USA) following the
manufacturer’s instructions. Values for DNA concentration and purity were obtained by a ND-1000
NanoDrop Spectrophotometer and Qubit assay (Invitrogen, Carlsbad, CA, USA). Concentration was
adjusted to the required 3 µg/120 µL for sequence capture. Sequence capture and sequencing was done
by the Genome Sequencing Facility Hartwell Center for Bioinformatics and Biotechnology at St. Jude
Children’s Research Hospital. Paired end 100 cycle sequencing was run on a HiSeq 2500 using TruSeq
SBS v3 chemistry according to the manufacturer’s instructions (Illumina, San Diego, CA, USA).

From the raw sequencing data, the quality control, read mapping, and variant calling were performed
using CLC Genomic Workbench v6.5 (CLC Bio, Aarhus, Denmark). In brief, the reads were trimmed
against the sequencing adapters, and only reads with a sequencing quality greater than 20 and a read
length greater than 50 bp were retained. The filtered reads were then aligned to the zebrafish reference
genome sequence (Zv9 assembly, 2010), and the lists of single-nucleotide variants (SNV) and indels were
generated. To identify the causative mutation responsible for the phenotype, we compared the variants of
mutant with those of wild type, and a region enriched with mutant-specific homozygosities was observed
at a peak of homozygosity scores defined by the percentage of mutant-specific homozygous variants
within a 1-Mb window across the genome. A candidate mutation was further pinpointed by screening
the region for nonsense and essential splice mutations. A diagram of whole-exome sequencing (WES)
workflow and analysis is represented in Figure 1.
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candidate mutation.

2.4. Reverse Transcriptase (RT) PCR

Larvae were collected on ice in 50 µL Trizol (Life Technologies, Carlsbad, CA, USA) and stored at
−80 ◦C until use. Samples were homogenized and a phenol-chloroform extraction was used to isolate
RNA. After the RNA precipitation using isopropanol, the SuperScript® III Reverse Transcriptase kit
(Life Technologies, Carlsbad, CA, USA) was used according to the manufacturer’s instructions to
prepare cDNA. cDNA was diluted 1:5 in water for PCR. RT-PCR was done using the AccuPrime
Taq DNA Polymerase System (Invitrogen, Carlsbad, CA, USA). Samples were analyzed on a 1%
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agarose gel. Primer sequences included: sart1F1: 5′-CGTTTTTAAGCCAAAGTCTGTGCTG-3′; sart1R1:
5′-CACCTCCTTCTTTCTCGTCATCCTT-3′.

2.5. sart1 mRNA Rescue

cDNA from 3 dpf wild-type larvae was amplified using the AccuPrime Taq DNA Polymerase
System to produce a ~2.5 kb fragment of sart1 open reading frame (ORF). The sart1 fragment
was cloned into the PCRII TOPO vector using the PCRII TOPO TA cloning kit dual promoter
(Life Technologies, Carlsbad, CA, USA) and transformed into TOP 10F’ chemically competent
Escherichia coli (Invitrogen, Carlsbad, CA, USA). Plasmid DNA was purified using the DNA Miniprep
kit (Qiagen Sciences LLC, Germantown, MD, USA). The plasmid was then cut using EcoRV and
Spe1 restriction enzymes (New England BioLabs, Ipswich, MA, USA) to release the sart1 fragment.
The PCS2+ vector was cut using SnaB1 and Xba1 and a ligation reaction was performed to insert sart1
into the PCS2+ vector. After molecular cloning of PCS2+:sart1, DNA was purified using the DNA
Miniprep Kit (Qiagen Sciences LLC, Germantown, MD, USA). Purified DNA was linearized using
Not1 (New England BioLabs) and RNase A was added to the reaction.

Following the protocols as outlined in the mMessage machine kit (Ambion, Life Technologies,
Austin, TX, USA), transcription-quality plasmid DNA was prepared and RNA was synthesized from
the linearized DNA plasmid. For the rescue, approximately 150 pg of sart1 mRNA was injected into
single-celled embryos produced from cp27.5 heterozygous parents. Embryos were observed daily to
look for rescue of the mutant phenotype. A scoring system based on the phenotype at 4 dpf was used
to determine the rescue efficiency. Larvae were scored as wild-type, mutant, or abnormal. Embryos
were considered abnormal if there was an observable defect that did not resemble a wild-type or
mutant phenotype. After scoring the larvae based on phenotype, samples were also collected and
genotyped using PCR and Sanger DNA sequencing to determine how many mutant larvae were
rescued. The percentage rescued was based on the number of mutants (based on genotype) that had
wild-type phenotypes. Abnormal phenotypes for mutants were considered a partial rescue since most
“abnormalities” were minor compared to phenotypes of uninjected mutants, such as reduced head size
or slight heart edema.

2.6. Whole Mount In Situ Hybridization

The RNA probe was synthesized from the PCRII TOPO vector containing the 2.5 kb sart1 fragment
as mentioned above using the DIG RNA Labeling Kit (SP6/T7) (Roche, Basel, Switzerland). A probe for
deltaC was also synthesized to use as a control. The probes were purified using the illustra Probe Quant
G-50 micro columns (GE Healthcare, Chicago, IL, USA) and resuspended in 80 µL hybridization buffer.
Hybridization buffer was prepared as described in Thisse and Thisse [11]. Probes were analyzed on a
1% agarose gel to determine the quality of the RNA. cp27.5 wild-type and mutant larvae were collected
at 3 dpf, anesthetized in 0.02% tricaine, and fixed in 4% paraformaldehyde (PFA) (Electron Microscopy
Sciences, Hatfield, PA, USA). Larvae were stored at 4 ◦C for 16 h overnight. The whole mount in situ
hybridization protocol was performed as previously described in Thisse and Thisse [11].

2.7. Immunohistochemistry (IHC)

Larvae were anesthetized in 0.02% tricaine and fixed in 4% PFA at 4 ◦C overnight and washed
the next day in 1× phosphate buffered serum (PBS) (Calbiochem, San Diego, CA, USA). Samples
were sunk in 30% sucrose/PBS at 4 ◦C overnight and embedded in Tissue-Tek Optimal Cutting
Temperature (O.C.T.) Compound (Sakura-Finetek, Torrance, CA, USA), frozen on dry ice, and stored
at −80 ◦C. Tissue sections were washed in PBS and PBST [PBS/0.03% Triton X-100 (Sigma-Aldrich,
St. Louis, MO, USA)] and incubated in blocking buffer (PBST with 5% goat serum (Gibco, Dublin,
Ireland) and 1% BSA (Sigma-Aldrich, St. Louis, MO, USA)). Primary antibodies were incubated at 4 ◦C
overnight followed by secondary antibody incubation for 2 h at room temperature. Primary antibodies
included rabbit antiactivated Caspase 3 (1:200; Cell Signaling Technology, Danvers, MA, USA),
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rabbit anti-Glut1 (1:200, Novus Biologicals, Littleton, CO, USA), mouse anti-SV2 (1:300 Developmental
Studies Hybridoma Bank, Iowa City, IA, USA), mouse anti-Zpr1 (1:100; ZIRC, Eugene, OR, USA),
mouse anti-HuC/HuD neuronal protein (1:500; Life Technologies, Carlsbad, CA, USA), and rabbit
anti-S100β (1:1000; Dako, Carpinteria, CA, USA). Secondary antibodies included Alexa Fluor goat
antirabbit 488 (1:200; Invitrogen, Carlsbad, CA, USA) and Alexa Fluor goat antimouse 555 (1:200;
Invitrogen, Carlsbad, CA, USA). Sections were counterstained with 1 µg/mL DAPI (Roche, Basel,
Switzerland). Images were taken on a Nikon E800 microscope and analyzed using NIS-Elements AR
Version 3.2.14 software.

2.8. Whole Mount IHC

Embryos were incubated in egg water with 0.003% PTU to prevent pigment formation. Larvae were
anesthetized in 0.02% tricaine and fixed in 4% PFA overnight. Samples were washed in 1× PBS followed
by 1× PBST and treated with 20 µg/mL Proteinase K (New England Biolabs, Ipswich, MA, USA). The
reaction was stopped by adding 10% lamb serum (Gibco, Dublin, Ireland) followed by additional
washes in PBST. Samples were blocked with 10% lamb serum for 1–4 h and incubated in primary
antibodies followed by secondary antibodies. Antibodies used included rabbit anti-GFP (1:100;
Invitrogen, Carlsbad, CA, USA), rabbit anti-activated Caspase-3 (1:100; Cell Signaling Technology,
Danvers, MA, USA), mouse anti-Zpr1 (1:50; ZIRC, Eugene, OR, USA), and mouse anti-Cldn5 (1:100;
Invitrogen, Carlsbad, CA, USA), Alexa Fluor goat anti-rabbit 488 (1:200; Invitrogen, Carlsbad, CA, USA)
and Alexa Fluor goat anti-mouse 555 (1:200; Invitrogen, Carlsbad, CA, USA). Samples were imaged on
Nikon C1Si laser scanning confocal microscope. Z-stacks were compiled to create maximum intensity
projection images using Nikon NIS-Elements Version 3.1 imaging software.

2.9. Western Blot

An equal number of wild-type and mutant larvae were each collected in homogenization buffer
(2×) (Mini Complete tablet, Roche, Basel, Switzerland) containing 0.002% DNase (Ambion Life
Technologies, Austin, TX, USA). After homogenization, SDS/gel loading buffer containing DTT was
added to the homogenate. Samples were then placed in boiling water for 5 min. Samples and the
Precision Plus Kaleidoscope Protein Standard ladder (BioRad, Hercules, CA, USA) were run on a
4–15% polyacrylamide gel (BioRad, Hercules, CA, USA). Proteins were transferred to a nitrocellulose
membrane using the Trans-Blot Turbo Transfer System (BioRad, Hercules, CA, USA). Following protein
transfer, the nitrocellulose membrane was blocked in 5% milk. Membranes were incubated in primary
antibody at 4 ◦C overnight. The membrane was then washed in 1× Tris-buffered saline/0.1% Tween
(TBST) at RT and incubated in secondary antibody for 1 h at RT. After incubation, the membranes were
washed in 1× TBST and imaged using LI-COR Odyssey 1393 and Odyssey Infrared Imaging System
Version 3.0. Primary antibodies included rabbit anti-p53 (1:500; GeneTex, Irvine, CA, USA) and mouse
anti-actin (1:1000; Sigma-Aldrich, St. Louis, MO, USA). Secondary antibodies included goat anti-rabbit
IRDye ® 680 (1:20,000; LI-COR Biosciences, Lincoln, NE, USA) and goat anti-mouse IRDye ® 800 CW
(1:15,000; LI-COR Biosciences, Lincoln, NE, USA).

2.10. Doxycycline Treatment

cp27.5 wild-type and mutant larvae were treated at 24 hpf with 50 µg/mL doxycycline (ClonTech
Mountain View, CA, USA). Larvae were observed at 3 dpf to look for GFP expression in the CNS
and imaged using a Nikon SMZ1500 epifluorescence stereoscope and Nikon NIS-Elements Version
3.1 software.

2.11. Fluorescent Tracer Injections

Wild-type and mutant cp27.5 larvae were anesthetized in 0.02% tricaine and coinjected
intravenously into the common cardinal vein with approximately 1.8 nL of 10 mg/mL 3-kDa Cascade
blue dextran, 10-kDa rhodamine dextran, and a 40-kDa anionic fluorescein dextran (Invitrogen,
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Carlsbad, CA, USA). Injections were performed using a micromanipulator and a pneumatic picopump
(World Precision Instruments, Sarasota County, FL, USA). Immediately after injection, larvae were
embedded in 1.2% low-melting-point agarose (Invitrogen, Carlsbad, CA, USA) made in egg water.
Larvae were imaged within 30 min postinjection on a Nikon C1Si confocal microscope and analyzed
using Nikon EZC1 Version 3.91 software.

2.12. RNA-Seq Analysis

RNA was extracted as described before previously (see Section 2.4) from wild-type and mutant
cp27.5 larvae at 72 hpf. Samples were submitted to the Genome Sequencing Facility Hartwell Center
for Bioinformatics and Biotechnology at St. Jude Children’s Research Hospital for Quality Control
(QC) and quantification analysis and sequencing. Approximately 500 ng total RNA was used to
generate libraries with the TruSeq RNA v2 kit according to the manufacturer’s instructions (Illumina,
San Diego, CA). PolyA-selected RNAs from wild-type and mutant zebrafish were sequenced using
Illumina HiSeq 2500. The raw 100-bp pair end reads were mapped to zebrafish genome (Zv9) using
Spliced Transcripts Alignment to a Reference (STAR) [12]. Duplicated reads were marked using Picard
(http://picard.sourceforge.net/command-line-overview.shtml). The detailed mapping statistics are
listed in Table 1.

Table 1. Mapping statistics of RNA-Seq data.

Sample Reads Mapped NonDupMapped Mpd% 1 Dup% 2

cp27.5 Wild-type 61515460 58536062 45999884 95.16 21.42
cp27.5 Mutant 99288072 94481824 74744636 95.16 20.89

1 percentage of reads mapped; 2 percentage of nonduplicate reads mapped.

Considering genome duplication, FPKM (fragments per kilobase of exon per million fragments
mapped) for each RefSeq gene was calculated as follows: first fragments mapped to each exon region
of a gene, regardless of their genomic location, were marked and summed up as the gene counts.
The final FPKM value for the gene was calculated as:

FPKM = Fgene × 1000 × 1,000,000/(Fallexon × Lgene)

where Fgene is the total fragments mapped to a gene, Fallexon is total fragments mapped to exonic region
in Zv9, and Lgene is size of unique exonic bases for the gene. Differential expression analysis was
done using purely fold change between the mutant and wild-type cells. Gene Ontology (GO) analysis
was done using the Database for Annotation, Visualization and Integrated Discovery (DAVID) [13],
with differentially expressed genes that have moderate expression level (FPKM > 0.1).

2.13. Quantitative Real Time PCR (qRT-PCR)

RNA was extracted from 9 cp27.5 wild-type and 9 cp27.5 mutant larvae and cDNA was synthesized
using the same method as described in previously (see Section 2.4). RNA concentrations were
normalized between wild-type and mutant. Samples were treated with DNAse I (Ambion Life
Technologies, Austin, TX, USA) followed by treatment with 25 mM EDTA (Ambion). 20 ng of cDNA
was used per reaction for quantitative real-time PCR (qRT-PCR). qRT-PCR was performed using SYBR®

Green PCR Master Mix (Life Technologies, Carlsbad, CA, USA) on a 7500 Fast Real Time PCR machine
(Applied Biosystems, Foster City, CA, USA) and analyzed using 7500 Software v2.0.6. Relative gene
expression was calculated using the Delta Delta CT (ddCt) method relative to the reference gene β-actin.
Error bars were based on the mean of 3 rounds of qRT-PCR using standard error. The primer templates
used for each gene are listed in Table 2.

http://picard.sourceforge.net/command-line-overview.shtml
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Table 2. Primer sequences for qRT-PCR.

Gene Primer Primer Sequence (5’–3’) Tm GC% Product
Length

sart1
Forward GTCGCAAACTCGCCAAAGAG 60.1 55

127Reverse TATGCTTGCCGCTTCTCCTG 60.5 55

p53 Forward CTCTCCCACCAACATCCACT 59.0 55
178Reverse ACGTCCACCACCATTTGAAC 58.7 50

mdm2
Forward AACCGAGGCAGACTACTGGA 60.3 55

105Reverse TCTGGAAGCCAATCAGCTCG 60.1 55

clu
Forward ACACCTCAAGTCTGCTCGAC 59.7 55

115Reverse CCTTTGGACATCACTGCCTG 58.8 55

cldn5a
Forward ATGCTGTCTGGCTGACCAAA 59.9 50

190Reverse CTTTCTGTTTTCGACGCGCT 59.8 50

mmp9 Forward AGACTTGGAGTCCTGGCGTT 61.1 55
147Reverse ACGCTTCAGATACTCATCCGCTA 61.3 48

lsm7
Forward ACATGCGAGATCCTGATGACC 59.9 52

84Reverse CAACAGACGTCCCTCGACAA 60.0 55

prpf31 Forward GTCAAGCAGGTCAAGCCTCT 60.0 55
221Reverse GCTTGTCTGACTCTGCCACT 60.0 55

pde6h Forward GACCACTCGCACCTTCAAGA 60.0 55
99Reverse ACAGTGATGTCTGTGCCGAG 60.0 55

opn1sw1 Forward CGATTGCAGGTCTTGTGACG 59.6 55
195Reverse GACCCTCGGGAATGTATCTGC 60.3 57

crx Forward CCATTATGCTGTGAACGGGT 58.3 50
84Reverse CTCGGAGTGGCTGGGTA 57.5 65

actb1
Forward TGAATCCCAAAGCCAACAGAG 58.5 48

150Reverse TCACACCATCACCAGAGTCC 59.0 55

2.14. Identification of Novel Junctions in cp27.5 Mutants

From the RNA-Seq data, tp53 and mdm2 were analyzed to identify novel junctions or alternative
splice sites in cp27.5 mutants. Junctions were identified using a CompBio pipeline. From there, the low
count junctions were filtered and normalized using Limma-Voom. The criteria for selecting differential
exon junctions included the average intensity (log2 RPM) > 2 and a log2ratio > 2. The reads mapped
to exon junctions were extracted and normalized to counts per million (RPM). Different usage of
each junction between the wild type and mutant sample was evaluated and candidate junctions were
selected with fold change greater than 4 and average RPM of the 2 samples more than 4.

2.15. Data Availability

The strains available upon request included Et(cp:EGFP)sj2 which express GFP in the CP. The cp27.5
strain was no longer available. Supplementary Files are available at FigShare. Supplementary File S1
contains the list of genes with at least 1 read observed in either one of the samples (wild type or mutant),
genes expressed where the FPKM > 0.1 in both samples, gene ontology for biological processes and
molecular function, the Kyoto Encyclopedia of Genes and Genomes (KEGG), and a list of upregulated
spliceosome-related genes.. The data is deposited at Figshare: https://doi.org/10.6084/m9.figshare.
12980063.v1. Code and software used to generate the whole exome sequencing and RNA-Seq data can
be found at:

https://www.qiagenbioinformatics.com/product-downloads/;
https://academic.oup.com/bioinformatics/article/29/1/15/272537;
http://picard.sourceforge.net/command-line-overview.shtml;

https://doi.org/10.6084/m9.figshare.12980063.v1
https://doi.org/10.6084/m9.figshare.12980063.v1
https://www.qiagenbioinformatics.com/product-downloads/
https://academic.oup.com/bioinformatics/article/29/1/15/272537
http://picard.sourceforge.net/command-line-overview.shtml
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https://david.ncifcrf.gov/https://gsajournals.figshare.com/s/1fdefac9d4dd482f5e4f.

Supplementary File S2 contains the analysis of novel junctions for tp53 and mdm2 which is
deposited at Figshare: https://doi.org/10.6084/m9.figshare.12980069.v1.

3. Results

3.1. Exome Sequencing and mRNA Rescue Identifies and Confirms Mutation in sart1

We previously performed a forward genetic screen to identify mutants in CP development.
From this screen we identified a line, cp27.5, and mapped the mutation to Chromosome 21 (Figure 2A).
To identify the gene and type of mutation, we performed WES on cp27.5 mutants and their wild-type
siblings. We identified a point mutation in sart1 containing a G to A transition at the donor site of
exon 12 (Figure 2B). Upon sequencing mutant cDNA, we identified the retention of intron 12 containing
a TAA premature stop codon (Figure 2C,D).
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mutation in sart1. (A) A critical interval was defined on Chromosome 21 using positional cloning.
For bulked segregant analysis, the polymorphic marker z9233 demonstrated linkage having zero
recombinants identified out of 450 meiotic events. Additional markers were analyzed both proximal
and distal to z9233 to define a critical interval of approximately 0.4 Mb. The numbers of recombinants
on the proximal side are shown in regular type and those distal to z9233 are shown in bold italic font.
sart1 lies within the contig sequence BX530031.5. In (B), the blue peak is representative of the highest
homozygosity score where mutants are homozygous within this defined loci along Chromosome 21.
This finding is further demonstrated in the panel below where the reference genome contains a guanine
(G) (in orange) at this position and all mutants have an adenine (A) (in green). An adenine is present
in a portion of the wild-type sequence due to the fact that wild-type siblings may be heterozygous
for the mutation. (C) shows that sart1 contains a point mutation at the end of exon 12 (red asterisk).
(D) DNA Sanger Sequencing of cp27.5 wild-type and mutant cDNA confirms the G→ A transition and
reveals the retention of intron 12 and introduction of a premature stop codon (TAA).

https://david.ncifcrf.gov/https://gsajournals.figshare.com/s/1fdefac9d4dd482f5e4f
https://doi.org/10.6084/m9.figshare.12980069.v1
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To verify sart1 as the causative gene in cp27.5 mutants, a rescue experiment was done by injecting
sart1 mRNA into single-celled embryos. We screened 462 uninjected and 375 sart1 mRNA injected
larvae at 4 dpf to look for rescue. While overexpression of sart1 mRNA in wild-type embryos did not
cause any overt phenotype, sart1 mRNA was able to rescue defects observed in the mutants such as
abnormal choroid plexus development, heart edema, curved body, and larvae survived past 4 dpf
(Figure 3A). Some survived as late as 8 dpf. From this screen, we quantified the results and found that,
based strictly on phenotype, the number of mutants for uninjected controls was 23.3%, while mutant
larvae from a spawn injected with sart1 mRNA was 1.5% (Table 3).
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Figure 3. sart1 rescues mutant phenotypes. (A) Images show three uninjected wild-type, three uninjected
mutant, and three sart1 injected mutants in the top, middle, and bottom panels, respectively. The left
panel for all conditions is a bright field image showing the lateral view of zebrafish larvae at 4 dpf.
The right panel for all conditions is a fluorescent image showing the dorsal view of zebrafish larvae at
4 dpf. The arrowhead represents the diencephalic choroid plexus (dCP) while the arrow represents the
myelencephalic choroid plexus (mCP). Injection of sart1 mRNA resulted in mutants with phenotypes
similar to wild-type larvae. The three rescued mutants represent a range of phenotypes observed after
sart1 mRNA injection. Scale bars are 100 µm for bright field images at 3×magnifications and 50 µm for
fluorescent images acquired at 9×magnifications. (B) Sequencing a total of 90 cp27.5 wild-type and
mutant larvae identified 20% with a mutant genotype. Error bars are based on the mean of 3 rounds of
injections using standard error.



Cells 2020, 9, 2340 10 of 25

Table 3. sart1 mRNA rescues mutant phenotypes.

Samples Total Number Screened Morphologically Mutant (%)

No Injection Control 462 23.3%
sart1 mRNA 375 1.5%

To confirm that cp27.5 mutants were among those rescued, we collected uninjected cp27.5 wild-type
and mutant larvae, and sart1 mRNA-injected larvae and sequenced individual DNA. We sequenced a
total of 90 larvae with 20% of those having a mutant genotype. Not surprisingly, we identified mutants
with wild-type phenotypes as represented in Figure 3A. Some mutants appear to have complete
rescue as shown in the lower right-hand panel, while others had slight heart edema, smaller head
size, and somewhat larger CP compared to wild-type (presented in two upper panels under Rescue in
Figure 3A). Sequencing results are quantified in Figure 3B. Based on the sequencing data, we identified
10% of mutants we scored as having a wild-type phenotype. The other 10% we scored as abnormal or
having only a partial rescue. However, even partially rescued mutants were far more phenotypically
normal compared to uninjected mutants (Figure 3A).

3.2. sart1 mRNA Is Maternaly Derived and Expressed in the Zebrafish Brain

To determine when sart1 is expressed, we performed RT-PCR using cDNA from 2 hpf to 120 hpf
wild-type samples. We observed sart1 expression for each timepoint and also established that sart1
is maternally derived based on its expression at 2 hpf (Figure 4A). These RT-PCR results confirmed
whole-mount in situ hybridization data performed by Thisse and Thisse (2004) which presented sart1
expression throughout the entire embryo during early cleavage [14]. As we observed phenotypes
primarily within the head and eye region in cp27.5 mutants, we wanted to determine whether sart1
is spatially or temporally regulated within these regions or ubiquitously expressed. We looked at
three developmental timepoints to determine sart1 expression: 48 hpf when we begin to observe
mutant phenotypes, 72 hpf, and 96 hpf when mutants begin to deteriorate. Using whole-mount in
situ hybridization, we observed sart1 localized in the head at 48 hpf (Figure 4B). This expression was
consistent throughout development, although it appeared to become less prominent in this region by
96 hpf (Figure 4B). We also wanted to determine whether there were differences in expression between
cp27.5 wild-type and mutant. While sart1 was expressed in the head at 72 hpf for both wild-type and
mutant, sart1 was more highly expressed in mutants compared to wild-type (Figure 4C). We did not
contribute increased expression to increased permeability of the probe in mutants since the positive
control, deltaC, was not intensified (Figure S1). Interestingly, deltaC expression, which is normally
localized in the brain and eyes, was disordered and reduced in cp27.5 mutants.

3.3. sart1 Mutants Have Altered Protein Expression in the Brain and Eye Along with Increased Activated Caspase 3

Because sart1 expression was localized to the brain, we wanted to determine if other proteins in
this region might be affected by sart1 upregulation. Using IHC, we looked at Zinc Finger Protein (Zpr1),
a marker that labels the pineal gland and photoreceptors in the retina. cp27.5 mutants had little to
no Zpr1 expression in the photoreceptors (Figure 5 Row 1). Counterstaining with DAPI revealed
that retinal lamination was also absent. However, Zpr1 expression was present in the pineal gland
in mutants indicating that not all Zpr1 expression was affected by the sart1mutation (Figure 6A,B).
Another protein, Synaptic Vesicle Protein (SV2), which labels synaptic vesicles in the brain and eye,
was also affected. Mutants had no SV2 expression in the eye (Figure 5 Row 2). However, SV2 was
present in the brain and appeared to be slightly increased compared to wild-type.
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Figure 4. RT PCR and whole mount in situ hybridization identifies sart1 expression. (A) RT-PCR
shows sart1 expression from 2 hpf to 120 hpf in zebrafish larvae including a water negative control (-).
(B) Whole mount in situ hybridization shows sart1 expression localized to the brain at 48 hpf, 72 hpf,
and 96 hpf. (C) Whole mount in situ hybridization shows localization and relative expression levels
of sart1 in cp27.5 wild-type and mutant larvae at 72 hpf. Images are ordered as lateral view at low
magnification, lateral view at high magnification, and dorsal view at high magnification for both
antisense (left column) and sense (right column). Scale bars are 50 µm.

Since we did not detect expression of Zpr1 and SV2 in the eye, and because mutations in splicing
factors have previously been shown to contribute to retinal degeneration [15,16], we hypothesized that
the cells in the eye may be undergoing cell death. To test this, we used an activated Caspase-3 antibody.
While no activated Caspase-3 was detected in cp27.5 wild-type larvae, it was significantly expressed
throughout the eye of cp27.5 mutants (Figure 5 Row 3). Caspase-3 was also detected in the dorsal region
of the brain near the brain ventricle (Figure 5 Row 3 inset and Figure 6C–F). To determine if vasculature
was affected, we used an antibody for Glut1, a glucose transporter specifically expressed in the CNS
vasculature, to visualize blood vessels in the brain and eye. While mutants do have blood vessel
formation, they are not as numerous and extensive as those seen in wild-types (Figure 5 Row 4). We also
examined the neuronal marker HuC and S100 Calcium Binding Protein (S100β) which detect astrocytes.
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HuC could be detected in mutant brains, but little if any was present in the eye (Figure 5 Row 5). As the
original line from cp27.5 was generated using the Tetracycline-controlled transcriptional activation
(Tet)-On system containing a neuron-specific promoter (HuC) driving GFP expression, we confirmed
these results by treating wild-type and mutant larvae with doxycycline to induce neuron-specific GFP
expression. As seen with the HuC antibody, the brain and spinal cord contain HuC expression in
wild-type and mutant, but there is little to no expression in the eye of mutants (Figure 6G–J). For S100 β,
we detected expression in the brain and eye of wild-type larvae, but detected little if any expression in
mutants (Figure 5 Row 6).
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Figure 5. IHC characterizes cp27.5 mutants. IHC identifies additional abnormalities in protein
expression in cp27.5 mutants at 3 dpf. All sections are counterstained with DAPI (blue) (middle columns
for wild-type and mutant). Row 1: Zpr1 (red) labels photoreceptors in the retina which are present
in wildtype, but not in mutant. Row 2: SV2 labels synaptic vesicles within the brain and within the
inner plexiform layer of the retina in wild-type. SV2 is present in the brain, but absent in the retina
in mutants. Row 3: Caspase 3 is not expressed in wild-type, but is prominent in the eyes in mutants.
Mutant brains also contain punctate Caspase 3 expression (inset). Row 4: Glut1 is noticeably expressed
in brain and eye vasculature in wild-type, but mutants have faint Glut1 expression in brain vasculature
and eye. Row 5: HuC is expressed in neurons throughout the brain and eye in wild-type. HuC is
expressed in the brain in mutants; however, it is not as organized as wild-type and only remnants of
HuC are detected in mutant eye. Row 6: S100β labels astrocytes in the brain and eyes in wild-type,
but is greatly reduced and sporadic in the brain and eyes of mutants. Scale bars are 50 µm.
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injected fluorescent tracers of different molecular weights intravenously into wild-type and mutant 

Figure 6. cp27.5 mutants express Zpr1 in the pineal gland, activated Caspase 3 in brain ventricle
and eyes, and HuC in brain and spinal cord. (A) Wild-type cp27.5 larvae at 4 dpf with GFP (green)
in the dCP (open arrowhead), and mCP (arrow) and Zpr1 expression (purple) in the pineal gland
(filled arrowhead) and eyes. (B) Mutant cp27.5 larvae at 4 dpf with GFP (green) in the dCP (open
arrowhead), and mCP (arrow) and Zpr1 expression (purple) in the pineal gland (filled arrowhead).
Mutants have no Zpr1 expression in the eye. dCP, diencephalic choroid plexus; mCP, myelencephalic
choroid plexus. (C,D) Dorsal confocal image with activated Caspase 3 antibody reveals expression
in the dorsal midline in cp27.5 mutants, but not in cp27.5 wild-type. (E,F) Lateral confocal image
with activated Caspase 3 antibody reveals expression on the brain ventricle surface (arrow) and eye
(arrowhead) in cp27.5 mutants, but not in cp27.5 wild-type. cp27.5 larvae treated with doxycycline
induces the TetON system using the HuC promoter resulting in GFP expression throughout the CNS.
(G,H) Brightfield DIC images show wild-type larvae (top) and mutant larvae (bottom). (I) Wild-type
larvae (top) treated with doxycycline express GFP eyes, while mutant larvae have no GFP expression
in the eyes (arrows). (J) Wild-type larvae (top) and mutant larvae (bottom) treated with doxycycline
both have GFP expression in the spinal cord (arrows). Scale bars are 50 µm.

3.4. sart1 Mutants Have Increased Permeability in the Brain Ventricle

Although there appeared to be a reduced number of blood vessels in the brain, we wanted to
examine whether reduced vasculature led to increased permeability throughout the larva. We injected
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fluorescent tracers of different molecular weights intravenously into wild-type and mutant at 2 dpf
to look for leakage. Because the increased permeability may be size-selective, we coinjected a
3-kDa cascade blue, a 10-kDa rhodamine, and a 40-kDa fluorescein dextran. While the 3-kDa and
10-kDa tracers leaked into the brain ventricle in wild-type, it did not penetrate into the brain itself
or surrounding areas. In mutants, these tracers entered the brain ventricle, and leaked into nearby
tissues (Figure 7A–D). In wild-type, the 40-kDa tracer was retained within the vasculature (Figure 7E,F).
Because this tracer remained within the blood vessels, we were able to observe reduced vasculature
throughout the brain and abnormal vascular patterning around the eye in cp27.5 mutants. However,
this phenotype was restricted only to these regions. Vascular patterning and permeability along the
tail was normal (Figure 7G,H).
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Figure 7. cp27.5 mutants express Zpr1 in the pineal gland, activated Caspase 3 in brain ventricle and
eyes, and HuC in brain and spinal cord. cp27.5 wild-type and mutant larvae were intravenously injected
with a mixture of a 3-kDa Cascade blue dextran, 10-kDa Rhodamine dextran, and 40-kDa Fluorescein
dextran at 2 dpf. (A) The 3-kDa Cascade blue dextran is permeable to the brain ventricle in wild-type
(arrow), but is restricted from the brain and eye (asterisks). (B) The 3-kDa Cascade blue dextran is
retained in the brain ventricle (arrow), but also leaks into the surrounding tissue (asterisks) in mutants.
(C) The 10-kDa Rhodamine dextran is permeable to the brain ventricle (arrow), but is also restricted
from the brain and eye (asterisks) in wild-type. However, the 10-kDa Rhodamine dextran is more
restricted to the brain vasculature compared to the 3-kDa Cascade blue (arrowhead). (D) The 10-kDa
Rhodamine dextran is permeable to the brain ventricle (arrow), but also leaks into the surrounding
tissue (asterisks) and is not restricted to the brain vasculature in mutants (arrowhead). (E) The 40-kDa
Fluorescein dextran has little to no tracer leakage into the brain ventricle (arrow) and is restricted
from entering the brain and eye (asterisk) in wild-type. The tracer is also retained within the brain
vasculature (arrowhead). (F) In mutants, the 40-kDa Fluorescein dextran is slightly permeable to the
brain ventricle (arrow), but not as severe compared to the 3-kDa Cascade blue and 10-kDa Rhodamine
dextran. The tracer does not appear to leak into the brain, eye, or surrounding tissue as severely as
the smaller tracers; however, there is still absence of the tracer retained within the brain vasculature
(arrowhead). (G) Merged image of wild-type larvae coinjected with all three tracers. (H) Merged
image of mutant larvae coinjected with all three tracers. Tracers are retained within the peripheral tail
vasculature in mutants comparable to wild-type (arrowheads). Scale bars are 50 µm.
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3.5. RNA-Seq Analysis Identifies Upregulated Apoptotic Genes

To determine what genes are affected by mutated sart1, we performed an RNA-Seq analysis
to detect an up or downregulation of genes throughout the zebrafish genome by comparing cp27.5
wild-type and mutant RNA expression levels. The complete analysis is found in Supporting Information
in File S1. Because sart1 is involved in spliceosome assembly, a process that occurs ubiquitously in all
cell types, we expected to identify dysregulation of genes involved in a number of processes. Because
the entire RNA-Seq data is too extensive to be described here, we have reported in the following
paragraphs only the genes we confirmed to be up or downregulated by qRT-PCR (Table 4). The fold
change normalized to β-actin for each gene is found in Figure 8A. Table 5 contains a more widespread
look at the genes analyzed by RNA-Seq and their relative expression.

Table 4. Upregulated and downregulated genes confirmed by qRT-PCR.

Gene Accession
Number

log2(MUT-WT)
from RNA-Seq

Fold Increase from
qRT-PCR

Normalized for
qRT-PCR

sart1 NM_001002673 3.35 1.64 0.64
tp53 NM_131327 4.22 3.14 2.14

mdm2 NM_131364 4.07 2.99 1.99
clu NM_200802 3.76 3.61 2.62

cldn5a NM_213274 3.42 1.20 0.20
mmp9 NM_213123 8.38 61.99 61.01
prpf31 NM_200504 3.71 2.75 1.76
lsm7 NM_001048006 3.71 3.22 2.23
pde6h NM_200785 −16.92 0.00 −1.00

opn1sw1 NM_131319 −7.29 0.00 −1.00
crx NM_152940 −1.71 0.05 −0.95

actb1 NM131031 0.71 1.00 0.00

From the RNA-Seq analysis and qRT-PCR, we identified upregulation of sart1 in mutants,
thus confirming the whole mount in situ hybridization data showing elevated sart1 expression in the
brain compared to wild-type. As mentioned previously, Sart1 has been demonstrated to be involved in
apoptosis where it appears to play a dual role by inducing cell cycle arrest [17], but also aiding in drug
resistance in cancer cells [18]. Because of this, we also analyzed genes involved in cell cycle regulation.
One of the more highly upregulated genes was tp53. While the tp53 transcript was upregulated,
we were also interested to see whether p53 protein was increased. By performing western blot analysis,
we observed that both wild-type and mutant had a faint band at the predicted protein size of 42 kDa.
However, in cp27.5 mutants, a larger and more highly expressed band was detected closer to 50 kDa, and
another band, while not as prominent, was detected to be greater than 50 kDa. These bands are faintly
present in wild-type samples (Figure 8B). We also observed an increase expression in mdm2, which acts
as an inhibitor of tp53 by ubiquitinating p53 and targeting it for degradation. Further analysis of tp53
and mdm2 revealed novel junctions for both genes indicating that mutated sart1 does affect splicing of
apoptotic genes (Figure 9 and Figure S2, and Supplementary Data S2).
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genes are upregulated including sart1, apoptotic genes (tp53, mdm2, clu), tight junctions (cldn5a), 
extracellular matrix enzymes (mmp9), and spliceosome factors (lsm7, prpf31), while vision-related 
genes are downregulated (pde6h, opn1sw1, crx). Error bars are expressed as mean ± SE (standard error) 
for n = 3 from mutant samples. (B) Both cp27.5 wild-type and mutant express p53 with a protein size 
of 42 kDa (red). However, cp27.5 mutants also highly express a p53 protein that is absent in wild-type 
(arrow). Protein levels were normalized to β-actin (green). (C) Whole mount IHC was performed on 
cp27.5 wild-type and mutant larvae at 3 dpf. In wild-type, the dCP (arrowhead) and mCP (arrow) 
express GFP (green). Claudin 5 (purple) is localized to the surface vasculature and co-localizes with 
the CP epithelia (yellow). In mutant, the dCP is absent and the mCP consists of individual sporadic 
GFP positive cells (arrow). Claudin 5 is expressed throughout the brain ventricle and surrounds CP 
epithelia, but does not colocalize with the cells as seen in wild-type. Scale bar is 50 µm. 

  

Figure 8. Multiple genes are upregulated or downregulated in cp27.5 mutants along with abnormal
expression of p53 and claudin 5 proteins. (A) RNA-Seq analysis was confirmed using qRT-PCR.
Fold changes were normalized to β-actin which was set to zero. Positive values represent upregulated
expression while negative values represent a downregulation of gene expression. The majority of
genes are upregulated including sart1, apoptotic genes (tp53, mdm2, clu), tight junctions (cldn5a),
extracellular matrix enzymes (mmp9), and spliceosome factors (lsm7, prpf31), while vision-related genes
are downregulated (pde6h, opn1sw1, crx). Error bars are expressed as mean ± SE (standard error) for
n = 3 from mutant samples. (B) Both cp27.5 wild-type and mutant express p53 with a protein size of
42 kDa (red). However, cp27.5 mutants also highly express a p53 protein that is absent in wild-type
(arrow). Protein levels were normalized to β-actin (green). (C) Whole mount IHC was performed on
cp27.5 wild-type and mutant larvae at 3 dpf. In wild-type, the dCP (arrowhead) and mCP (arrow)
express GFP (green). Claudin 5 (purple) is localized to the surface vasculature and co-localizes with
the CP epithelia (yellow). In mutant, the dCP is absent and the mCP consists of individual sporadic
GFP positive cells (arrow). Claudin 5 is expressed throughout the brain ventricle and surrounds CP
epithelia, but does not colocalize with the cells as seen in wild-type. Scale bar is 50 µm.
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Table 5. Top 10 upregulated and downregulated genes from RNA-Seq with FPKM > 0.1 in both samples.

Name Gene Chromosome log2(MUT-WT)

fibronectin 1b fn1b 1 4.6840

TIMP metallopeptidase inhibitor 2b timp2b 3 4.6815

jun B proto-oncogene b junbb 3 4.5556

nuclear factor of kappa light polypeptide gene
enhancer in B-cells inhibitor, alpha a nfkbiaa 20 4.5268

insulin-like growth factor binding protein 1a igfbp1a 20 4.4076

CCAAT/enhancer binding protein (C/EBP), delta cebpd 24 4.2910

tumor protein p53 tp53 5 4.2233

hepcidin antimicrobial peptide hamp 16 4.1544

MDM2 oncogene, E3 ubiquitin protein ligase mdm2 4 4.0737

clusterin clu 20 3.7648

fibroblast growth factor binding protein 2b fgfbp2b 1 −2.3904

parvalbumin 8 pvalb8 3 −2.5884

transcobalamin like tcnl 5 −2.7405

guanine nucleotide binding protein (G protein),
gamma transducing activity polypeptide 1 gngt1 19 −2.7876

actinodin4 and4 14 −3.0036

creatine kinase, mitochondrial 2a (sarcomeric) ckmt2a 10 −3.1316
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In addition, we detected increased expression of clusterin (clu). Studies in zebrafish have observed
clu expression specifically within the CP [19]. CLU has be associated with an increased risk of
Alzheimer’s disease and plays a role in the clearance of amyloid (Aβ) peptide [20,21].

3.6. RNA-Seq Analysis Identifies Upregulated Spliceosome Components

Previous studies have identified increased expression of spliceosome transcripts when another
component of the spliceosome itself, or a protein involved in spliceosome assembly is defective [10,15].
Because Sart1 is involved in the recruitment of U4/U6.U5 tri-snRNP to the spliceosome, we wanted to
observe whether additional factors involved in spliceosome assembly were also defective or upregulated
in order to compensate for possible defects in Sart1 function. The first gene confirmed by qRT-PCR
was prpf31. This gene is a member of the precursor RNA processing (PRP) genes and, similar to sart1,
plays a role in recruiting U4/U6.U5 tri-snRNP to the spliceosome [22]. Interestingly, mutations of prpf31
are found in patients with RP, a degenerative disease of photoreceptors in the eye [22]. We determined
that prpf31 was upregulated in cp27.5 mutants. We also observed upregulation of lsm7, a gene from
another class of spliceosome components. Lsm7, which binds to U6 in the spliceosome, is a member of
a family of proteins that are also involved in assembling major spliceosome factors [23].
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known junctions and red represents novel junctions. Bottom panel: Junction read counts at tp53
locus displayed in UCSC genome browser. Green represents known junctions and red represents
novel junctions.
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3.7. RNA-Seq Analysis Identifies Upregulated Claudin 5a and Matrix Metalloproteinase Protein (MMP9)

In characterizing cp27.5 mutants, we also observed defects in Claudin 5 (Cldn5) protein expression.
Whole mount IHC showed Cldn5 expression on the surface of the brain ventricle in mutants, however,
we did not observe co-localization with the CP as seen in wild-type larvae (Figure 8C). The results also
suggested increased Cldn5 protein in mutants. Based on RNA-Seq and qRT-PCR data, we observed
increased expression of cldn5a transcript in mutants, indicating that protein expression in the brain
ventricle may also be upregulated. In a recent study, the enzyme MMP9 was suggested to lead to
Cldn5 degradation at the blood-cerebrospinal fluid barrier (BCSFB) allowing for leukocytes entry
into the cerebrospinal fluid [24]. MMP9 is also said to be upregulated in the CP in the presence of
inflammation [25]. We observed a significant increase in mmp9 expression in cp27.5 mutants; however,
whether upregulation is specific to the BCSFB requires further investigation.

3.8. RNA-Seq Analysis Identifies Downregulation of Vision-Related Genes

The final class of genes confirmed by qRT-PCR were those specific to the eye. Because retinal
degeneration has been associated with splicing defects or mutations in spliceosome components [3,15],
we were interested to see if mutations in sart1 led to decreased expression of vision-related genes.
Cone-rod homeobox (CRX) is a transcription factor found in photoreceptor cells and mutations have
been associated with cone-rod dystrophy [26]. We observed a dramatic decrease in crx expression,
which is not surprising due to our IHC data showing a loss of photoreceptors in cp27.5 mutants.
We also looked at phosphodiesterase 6H (pde6h), a gene that encodes for the γ (gamma) subunit of a
cyclic guanosine monophosphate phosphodiesterase specific to cone photoreceptors. Mutations in this
gene have been associated with achromatopsia, which is an inherited retinal dystrophy [27]. pde6h
was also downregulated in cp27.5 mutants. The final gene analyzed was opsin-1, short-wave-sensitive 1
(opn1sw1), a gene specific to zebrafish expressed in ultraviolet cone photoreceptors [28]. Again, due to
its specific expression in the retina, opn1sw1 was downregulated in cp27.5 mutants. While we provide
a brief overview of specific genes identified from the RNA-Seq analysis and their response to the sart1
mutation, future studies will examine a more in depth the role of Sart1 in regulating the expression
levels and patterning of these genes. Suggested roles for Sart1 are described below.

4. Discussion

The current study describes a zebrafish mutant with a point mutation in sart1 that results in
abnormal CP development [6] in addition to defects throughout the brain and eye. In addition to
splicing, Sart1 has been implicated in a number of different processes such as cell cycle arrest and
apoptosis and has been suggested as a target for gene therapy due to its role as an antigen recognized
by cytotoxic T-lymphocytes (CTLs) in certain types of cancer [17]. More recently, Sart1 has been shown
to contribute to drug resistance in cancer cells [18,29]. While the goal of this study was to characterize
sart1 and identify other genes affected by this mutation, future experiments plan to discover the role of
Sart1 in overall cellular processes such as cell death; in addition to better understanding its traditional
role in splicing.

In our study, we identified the point mutation in sart1 using WES. We were able to validate
along with previously published studies [7,30] that WES is a suitable method for identifying genes
in zebrafish. WES allowed us to effectively identify what gene contained the mutation and that the
mutation was a transition. In future genetic mapping experiments, we plan to use WES as our main
method for identifying the map position and type of mutation. Studies have cited that more than
9000 mutants have been discovered as a result of forward genetic screens in zebrafish, but many of
the mutants have not been further studied and 62% of them are not cloned. This is due to limitations
involved in positional cloning including the time, money, and effort to identify the gene [31]. Therefore,
we propose that WES provides a more efficient method than positional cloning to identify mutants
generated from forward genetic screens.
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Additional validation to show that the phenotypes were due to a mutation in sart1 was done by
performing mRNA rescue experiments. sart1 mRNA prevented forebrain necrosis at 48 hpf, which is
the earliest detectable phenotype in cp27.5 mutants. We were able to rescue phenotypes that began
at 3–4 dpf such as heart edema, small head and eyes, reduced heartbeat, and circulation. From this
analysis, a number of wild-type larvae were scored as abnormal. This could be due to a dominant
negative effect of the sart1 mutation. However, in Figure 2B representing the whole exome sequencing
data, we have shown that the zebrafish larvae screened as “wild-type” are heterozygous because some
of the fish in the sample had the G→ A transition. We believe that if a dominant-negative mutation
was present, the heterozygous fish would have similar phenotypes if not the same phenotypes, as the
homozygous mutants because the phenotypes can be observed quite easily and at early developmental
time points. We suggest that abnormal phenotypes for wild-type larvae may be due to off target effects
from the injection process. When sequencing wild-type and mutant DNA from sart1 mRNA injections,
we identified only 20% as mutant rather than 25% according to Mendelian genetics. We attributed the
decreased percentage due to damaged embryos from microinjection that may not have survived past
early development. For uninjected samples, we observed between 23 and 25% mutant.

Prior to 48 hpf, mutants were undistinguishable from wild-type. The maternally derived transcript
as identified by RT-PCR was present shortly after fertilization which may explain why we were unable
to isolate mutant embryos prior to 48 hpf because of maternal contribution. Previous studies performed
by Thisse and Thisse have also identified sart1 expression shortly after fertilization during early
cleavage thereby also confirming that the transcripts are maternal [14]. Interestingly, by whole mount
in situ hybridization and RNA-Seq analysis, we determined that the point mutation in sart1 results in
upregulation of the transcript. Upregulation of mutated splicing genes have been demonstrated in
other studies such as prpf4, which interacts with the U4/U6 di-snRNP and stabilizes the complex [15].
A mutation from a proline to leucine in prpf4 led to its increased expression and also upregulation of
other splicing factors including sart1. Similar to our study, they detected a loss of photoreceptors in the
zebrafish eye and a downregulation of vision related genes such as opn1lw1, another opsin gene [15].

Additionally, the loss of expression in other vision-related proteins, such as Zpr1, SV2, HuC,
and S100β, is not surprising due to previous studies showing that mutations in splicing factors can
result in photoreceptor degeneration in diseases such as RP [15] where the most noticeable phenotype
is a loss of photoreceptor cells [32]. Interestingly, for proteins expressed throughout the CNS, such as
Zpr1 and SV2, there were differences in expression between the brain and eye suggesting that sart1
may be regulating expression of certain genes in a tissue-specific manner. A recent study cited six
genes related to splicing that have mutations in patients with RP including PRPF31, PRPF8, PRPF3,
PAP-1, SNRNP200, and PRPF6. These mutations are responsible for autosomal dominant RP in more
than 12% of cases [33]. Of these genes, three including PRPF8, PRPF31, and PRPF3 are involved
in forming and recruiting the U4/U6.U5 tri-snRNP to the spliceosome [32]. The exact cause of how
mutations in splicing genes result in RP is still unknown, however, several models or hypothesis have
been suggested by Mordes et al. [32]. Jia et al. also proposed a hypothesis where mis-splicing due
to mutations in U2, a major spliceosome component, results in a buildup of mis-spliced mRNA that
translates into dysfunctional proteins. Another hypothesis by Jia et al. proposes that introns retained
within the mRNA sequence cause the spliceosome to remain at the intron rather than be released,
resulting in alternative splicing and a toxic feedback loop where mRNA continues to be mis-spliced
and cell death occurs [10].

In addition to splicing factors, mutations in other genes such as crx encoding a transcription factor,
and pde genes involved in phototransduction, both of which were downregulated in cp27.5 mutants,
also contribute to RP [32]. We have to consider that perhaps the downregulation of vision-related
genes is simply due to a developmental delay in these mutants. However, we do not believe that
developmental delay can be contributing to the downregulation of genes in cp27.5 mutants because the
expression of these genes is not downregulated in every tissue. For example, mutants lacked Zpr1
expression in the retina, although expression was present in the pineal gland (Figure 6A,B) and SV2
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exhibited similar expression in the brain between wild-type and mutants, but was decreased in the eye
in cp27.5 mutants. We would anticipate a decreased expression of these markers in all tissues had the
downregulation been due to developmental delay.

In cp27.5 mutants, we detected increased cell death within the eye as observed by activated
Caspase 3 antibody staining. From the RNA-Seq data, we also detected upregulation of tp53 and mdm2.
This is interesting because Mdm2 acts as an inhibitor of p53, so we did not expect that both would be
upregulated. While upregulation of tp53 explains the increased cell death found in the eye and brain,
increased expression of mdm2 may indicate that it is trying to compensate for increased tp53 expression.
However, in previous studies, a feedback loop has been shown to occur where p53 can activate
Mdm2 [34]. During cellular stress, the cell death pathway is initiated causing p53 levels to increase and
Mdm2 levels to decrease. As a result of decreased Mdm2, p53 initiates mdm2 transcription. As Mdm2
levels then increase, Mdm2 in turn acts to inhibit p53 [34]. Future studies will investigate whether
mdm2 is functional in inhibiting the p53 protein and whether p53 activates Mdm2 and forms a negative
feedback loop. We also believe that the mutated sart1 is affecting splicing of these apoptotic genes.
We have identified novel splice site junctions in p53 and mdm2 in cp27.5 mutants (Figure 9) suggesting
that these novel splice junctions result in new protein isoforms that cannot be properly regulated.
To confirm this hypothesis, a western blot analysis detected an alternative p53 protein synthesized in
cp27.5 mutants as identified by a prominent larger band for p53 than the predicted 43 kDa in mutant
samples. While this band was also detected in wild-type samples, expression was much less compared
to mutants. We believe this is due to heterozygous siblings present in the wild type sample. We suggest
from our data that alternative splicing due to mutated Sart1 causes additional p53 proteins to be
synthesized in cp27.5 mutants that cannot be inhibited by Mdm2 thereby resulting in increased cell
death (Figure 10). We also hypothesize that novel splice site junctions in mdm2 may result in a defective
protein that is unable to inhibit p53 function. As to why cell death is localized to the eye and brain has
yet to be determined, but it is possible that Sart1 is affecting splicing in a tissue specific manner.

cp27.5 was originally identified from a genetic screen isolating mutants with CP developmental
defects. Interestingly, one of the genes we identified from the RNA-Seq data was clu. This gene is
expressed specifically within the zebrafish CP in early development [19]. It acts as a chaperone and
is a prosurvival gene in its secreted form by binding to Bax and preventing Bax from traveling to
the mitochondria [35]. In its nuclear form, which originates from alternative splicing, it acts as a
prodeath gene by promoting cell death in a Caspase-3 independent manner [35,36]. This agrees with our
findings showing clu and Caspase-3 upregulation in cp27.5 mutants. Future studies will investigate
whether the nuclear form of clu is responsible for cell death in cp27.5 mutants and whether cell death is
specific to the CP. Upregulation of clu from the RNA-Seq analysis may be due to alternative splicing
of clu resulting in its overexpression and therefore increased cell death. Alternatively, as mentioned
previously, the secreted form of clu can act as a prosurvival protein [35]. If the secreted protein
is upregulated in mutants, it may act in competition with proapoptotic genes such as tp53 and
compensating for cell death in the CP. However, even though clu was found to be upregulated at the
transcript level, future studies will need to determine whether it is translated into a functional protein.

Another protein demonstrated in previous studies to be expressed in the CP is Cldn5 [6]. From the
RNA-Seq data, we determined that cldn5a is also slightly upregulated in cp27.5 mutants. While we
were able to detect Cldn5 expression in mutants by whole mount IHC, future experiments will need
to determine if it is functional. Cldn5 appeared to be mislocalized in mutants due to an absence of
co-expression with GFP. Tracer studies revealed abnormal vasculature in the CNS indicating that the
sart1 mutation may be strictly CNS specific and does not affect peripheral tight junctions or vasculature.
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genes such as tp53 and mdm2. Mdm2 inhibits p53 allowing for cell survival of photoreceptors. In 
mutants, while the Sart1 transcript is upregulated, altered Sart1 protein may result in defective 
recruitment of U4/U6.U5 to the spliceosome thereby causing alternative splicing of p53 and mdm2. 
Alternative splicing may result in altered proteins such as Mdm2 which can no longer function to 
inhibit p53 activity. In addition, alternatively spliced tp53 transcripts may result in proteins that can 
no longer be inhibited by Mdm2. This phenomenon may lead to up-regulation of p53 and increased 
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Figure 10. Schematic diagram for the hypothetical role of Sart1 in apoptosis. In wild-type, Sart1 acts to
recruit the U4/U6.U5 tri-snRNP to the spliceosome complex where U1 and U2 are already bound to
pre-mRNA at the 5′ splice site and branch point site, respectively. Once the spliceosome is assembled,
it processes pre-mRNA by removing introns and producing mature mRNA transcripts for genes such as
tp53 and mdm2. Mdm2 inhibits p53 allowing for cell survival of photoreceptors. In mutants, while the
Sart1 transcript is upregulated, altered Sart1 protein may result in defective recruitment of U4/U6.U5 to
the spliceosome thereby causing alternative splicing of p53 and mdm2. Alternative splicing may result
in altered proteins such as Mdm2 which can no longer function to inhibit p53 activity. In addition,
alternatively spliced tp53 transcripts may result in proteins that can no longer be inhibited by Mdm2.
This phenomenon may lead to up-regulation of p53 and increased cell death in photoreceptors.

While the genetic pathways downstream of Sart1 in cp27.5 mutants have yet to be determined,
the current study has revealed dysregulation of genes involved in apoptosis, splicing, vision,
tight junctions, and matrix metalloproteinases. RNA-Seq analysis has provided substantial insights
into genes and potential pathways regulated by Sart1. This study and others have demonstrated
that mutations in splicing machinery or proteins associated with the spliceosome have widespread
affects in other signaling processes in addition to splicing defects. Additionally, differences between
phenotypes observed in the CNS versus the periphery may suggest that Sart1 regulates the expression
of certain genes in a tissue-specific manner.
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Figure S1: deltaC expression is disordered in cp27.5 mutants; Figure S2: Scatter plot of log2 ratio of exon
junction differential usage vs. log2 RPM of exon junctions with differentially used exon junctions in red.
File S1: RNA-Seq analysis from a zebrafish mutant in the gene sart1 (https://figshare.com/articles/dataset/
Supplementary_Data_1_xlsx/12980063); File S2: Identification of novel exon junctions for tp53 and mdm2
(https://figshare.com/articles/dataset/Supplementary_Data_2/12980069).
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