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Abstract: Autophagy is a conserved bulk degradation and recycling process that plays important
roles in multiple biological functions, including inflammatory responses. As an important component
of the innate immune system, macrophages are involved in defending cells from invading pathogens,
clearing cellular debris, and regulating inflammatory responses. During the past two decades,
accumulated evidence has revealed the intrinsic connection between autophagy and macrophage
function. This review focuses on the role of autophagy, both as nonselective and selective forms,
in the regulation of the inflammatory and phagocytotic functions of macrophages. Specifically,
the roles of autophagy in pattern recognition, cytokine release, inflammasome activation, macrophage
polarization, LC3-associated phagocytosis, and xenophagy are comprehensively reviewed. The roles of
autophagy receptors in the macrophage function regulation are also summarized. Finally, the obstacles
and remaining questions regarding the molecular regulation mechanisms, disease association,
and therapeutic applications are discussed.
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1. Introduction

Autophagy is a highly conserved mechanism by which the cytoplasmic cargo is delivered to
the lysosomes for degradation. There are at least three forms of autophagy: chaperone-mediated
autophagy (CMA), microautophagy, and macroautophagy. Macroautophagy is the major autophagic
degradation form that maintains the cell homeostasis and organelle quality control in eukaryotic cells.
Macroautophagy (hereafter referred to as autophagy) plays crucial roles in various cellular physiological
processes, including cellular metabolism, residual cargo removal, renovation in cell differentiation
and development. Emerging evidence has revealed the implications of autophagy in numerous
diseases, including immunological diseases, cancer, neurodegenerative diseases, cardiovascular
disorders and aging [1]. One feature of autophagy is the formation of a double membrane structure
called autophagosome; this formation comprises four main steps: (1). autophagosome initiation,
(2) autophagosome elongation, (3) autophagosome closure, and (4) autophagosome fusion with
lysosome [2]. In the initiation stage, ULK1 complex (consisting of ULK1, FAK family interacting-protein
of 200 kDa (FIP200), ATG13 and ATG101) is activated and localizes in the ER [3]. Subsequently, class III
phosphoinositide 3-kinase (PI3K) complex (consisting of VPS34, VPS15, Beclin 1, ATG14L and NRBF2)
is activated by ULK1 to generate PI3P which recruits its binding proteins, WD repeat domain
phosphoinositide-interacting protein 2 (WIPI2), and zinc-finger FYVE domain-containing protein 1
(DFCP1) [4,5]. Then two ubiquitination-like systems are activated to elongate the autophagosome. In the
first system, ATG5 is covalently conjugated to ATG12, and then interacts with ATG16L1. In the second
system, ubiquitin E1-like enzyme ATG7, E2-like enzyme ATG3, and ATG5–ATG12 work together
to facilitate the conjugation of phosphatidylethanolamine (PE) to the autophagosome-associated
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protein ATG8/LC3 [6]. ATG8/LC3 changed from LC3-I form to LC3-II; form by conjugating with a
phosphoethanolamine during autophagy. The membrane-bound LC3-II; induces the growth and
closure of the autophagosome, which then fuses with lysosome via SNARE [7]. Recent studies have
revealed that Vps21 regulates the ESCRT recruitment to the autophagosome, catalyzing its closure via
working on a Rab5-controled Atg17-Snf7 interaction [8].

Macrophage is a type of white blood cell that professionally serves as phagocyte and
antigen-presenting cell (APC). Originally, macrophages can be derived from progenitors in bone
marrow and fetal precursors in the yolk sac. Macrophages originating from yolk sac-derived
erythromyeloid progenitors (EMPs) are distributed to different tissues, such as skin (Langerhans
cells), liver (Kupffer cells), brain (microglia), pancreas, lung and spleen (red pulp macrophage)
and kidney [9,10]. During the homeostatic adaptations, tissue resident macrophages can also be
refreshed via recruitment from monocytes in blood and bone marrow [11], or by local proliferation [12].
Macrophages are capable of clearing invading pathogen, triggering inflammatory signals and engulfing
dead cells. Emerging evidence has revealed that, macrophages are necessary for different tissue growth
and maintenance of metabolic homeostasis based on macrophagic phagocytosis and cytokine signaling
regulation. Macrophages are involved in bone remodeling [13], brain development [14], controlling
stem cell function [15,16], the regulation of angiogenesis [17,18], and remodeling of tissues [19,20].
In addition, macrophages regulate metabolic homeostasis of white and brown adipose tissues, liver and
pancreas [21]. Macrophages plays a dual role during injury and pathogen invasion. In many diseases,
such as cancer, inflammatory-related diseases and fibrosis, macrophages are regarded as contributing
more to the disease progression when inflammatory macrophages cannot be suppressed [22–25].
However, macrophages also contribute to inflammation resolution via engulfing dead cells, and being
triggered into M2-like macrophage state [26].

Accumulating evidence suggests that macrophage is one of the bridges connecting autophagy
and immunity [27,28]. Autophagy regulates cellular development of monocytes, resulting in the
disturbance of macrophage differentiation [29,30]. The activation of autophagy leads to the recycling of
cellular components and ATP, which are exactly what macrophages requires in their energy architecture,
especially during activation [31]. In addition, autophagy and phagocytosis in macrophage shared lots of
genes during the process, such as Beclin1, Vps34, and Atg5 [32]. In this review, we focus on the emerging
evidence and the roles of the autophagic genes or their coding proteins in regulating macrophage
function, highlighting how autophagy functions in inflammatory response and phagocytosis from
different aspects in the angle of macrophages.

2. Autophagy and Macrophage Pattern Recognition Receptors (PRRs)

As components of the innate immune system, macrophages and other immune cells utilize pattern
recognition receptors (PRRs) to identify invading pathogens by engaging pathogen-associated molecular
patterns (PAMPs). PRRs can be subdivided into two kinds: cell surface receptors, and intracellular
receptors. Toll-like receptors (TLRs), scavenger receptors, and lectins are cell surface receptors,
while NOD-like receptors (NLRs) and RIG-1-like receptors (RLRs) are intracellular receptors. Recently,
studies have revealed that autophagy can be regulated via activating PRRs.

3. Scavenger Receptors and C-Type Lectin Receptors

Scavenger receptors were initially thought to recognize modified low-density lipoprotein (LDL);
however, currently they are known to bind to a variety of proteins or pathogens. Class A scavenger
receptor (SR-A) and macrophage receptor with collagenous structure (MARCO) have been revealed
to be engaged in autophagy regulation. SR-A activated by fucoidan inhibited autophagy and
contributed to macrophage apoptosis [33]. MARCO, a receptor for recognition of un-opsonized or
environmental particles, can be internalized to incorporated by extracellular materials into cells via the
endocytosis–autophagy pathway [34]. C-type lectin was originally known to recognize carbohydrates
in a Ca2+-dependent manner [35], and later it was shown to bind with many ligands including
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lipids, protein, or other molecules [36,37]. Dectin-1 is a C-type lectin and has been proven to regulate
autophagy-dependent unconventional processes in macrophage, such as protein secretion [38] and
LC3 dependent-phagocytosis [39].

3.1. Toll-Like Receptors (TLRs)

TLRs are type 1 integral transmembrane proteins that form a horseshoe shaped structure
responsible for pathogen recognition. TLRs engagement leads to a ligand specific and TIR
domain-dependent recruitment of adaptors proteins including myeloid differentiation factor 88 (MyD88)
and TIR domain-containing adapter-inducing interferon-b (TRIF) [40]. Interestingly, many studies
found that many TLRs can regulate autophagy. TLR1, 2, 3, 4, 5 and 7 can induce autophagosome
formation during immune response [41–43]. Mechanistic study has revealed that MyD88 and TRIF
interact with Beclin 1 as a TLR signaling complex component to facilitate autophagy induction by
inhibiting the interaction between Beclin 1 and Bcl-2 [41]. Meanwhile, TRAF6, a key ubiquitin E3 ligase in
the TLR pathway, binds with Beclin 1 and regulates its lysine (K) 63-linked ubiquitination for autophagy
induction [44,45]. Therefore, Beclin 1 complex can be a mediator for the TLR-induced autophagy.
TLR-induced autophagy can also be selective. After treatment of macrophages with Escherichia
coli or lipopolysaccharide (LPS), TLR4 activated autophagy to selectively target aggresome-like
induced structures (ALIS) with the assistance of p62 [46]. Collectively, TLRs are key players in the
autophagosome formation during pathogen-invading, the real roles of TLR-induced autophagy in the
regulation of macrophage function, however, have not been well characterized.

3.2. NOD-Like Receptors (NLRs)

NLRs are the key components of surveillance systems for the detection of intracellular pathogens.
NOD1 and NOD2 are two well-described receptors in this family, which sense bacterial peptidoglycan
and initiate proinflammatory responses [47,48]. NOD1 and NOD2 have been shown to induce
autophagy initiation by interacting and recruiting ATG16L1 [49]. Coincidentally, polymorphisms in
both NOD2 and ATG16L1 genes are associated with Crohn’s disease [50,51], which underscores the
intrinsic connection between these two factors in biological function and human diseases. Moreover,
further study has revealed that ATG16L1 suppresses NOD1- and NOD2-induced cytokine response
via the induction RIP2 activation, but independent of autophagosome formation [52]. Therefore,
autophagy induced by NOD2 is distinct from RIP2 or NF-κB pathways.

The above evidence suggests that PRRs and autophagy closely interact with each other to regulate
macrophage function (Figure 1). PRRs normally initiate signaling at the earliest stage of pathogen
recognition. That is, they regulate autophagy mostly in the very beginning, for example, Beclin 1 directly
binds to the MyD88 and TRIF [41]. The inhibition of autophagy suppresses PRRs-related biological
functions, such as dectin-1-induced vesicle-mediated protein secretion [38], TLRs involved-bacterial
clearance [42], and IFN-α secretion [53]. However, the mechanisms by which autophagy is regulated by
PRRs and the consequences of autophagy induction for the anti-pathogenic function of macrophages
still needs further exploration.
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4. Autophagy and Inflammatory Pathways in Macrophages

4.1. Cytokines and Autophagy

Cytokines are secreted proteins produced mainly by macrophages and lymphocytes to mediate
an effective immune response by influencing the inflammatory microenvironment [54,55]. Although,
autophagy deficiency has been implicated in several inflammatory diseases, such as IBD [50,51],
systemic lupus erythematosus (SLE) [56,57], and arthritis [58,59], the role of autophagy in inflammatory
cytokine production is still not clear. The loss of Atg7 results in the increased production of IL-1β
and pyroptosisi after P. aeruginosa infection, however, IL-6 and TNF-α levels are not affected [60].
Administration of 3-methyladenine (3-MA) (an autophagy inhibitor) attenuated the sepsis symptoms as
well as the IL-6 and TNF-α production in a lethal model of murine sepsis [61]. Atg5fl/fl lysM−Cre+ mice
showed significantly increased IL-1α, IL-12, and CXCL1 in lung tissue after M. tuberculosis infection,
but the universal pro-inflammatory cytokines, such as IFN-γ, TNF-α, and IL-6 were not affected [62].
Therefore, the role of autophagy in cytokine production is not a consequence of general inflammatory
stimulation, but it involves more specific mechanisms.

4.2. NF-κB Pathway and Autophagy

NF-κB is a well-known transcription factor that regulates a large array of genes related to
inflammatory response [63]. In macrophages, both pathogen-associated molecular patterns (PAMPs)
and damaged-associated molecular patterns (DAMPs) can stimulate the NF-κB pathway to enhance
cell survival, proliferation, inflammatory response, and angiogenesis by activating the production of
multiple cytokines (IL-6, TNF-α, etc.), chemokines (MCP-1, IL-18, CXCL10, etc.), cell cycle regulators
(Bcl-2L1, Cyclin, etc.) and adhesion molecules (ICAM-1, VCAM-1, etc.) [64].

Autophagy has been shown to regulate the degradation of NF-κB-inducing kinase (NIK) and of
the essential activator of NF-κB, IκB kinase (IKK) under Hsp90 inhibition conditions [65,66]. In fact,
emerging evidence has confirmed that alteration of NF-κB pathway regulates autophagy level. In 2007,
Mojavaheri-Mergny., et al. found that the NF-κB pathway activation represses TNF-α-induced
autophagy in different cancer cell lines [67]. Later, a NF-κB binding site in the promoter of the BECN1
was identified, and NF-κB family member p65/RelA was shown to upregulate BECN1 mRNA expression
to activate autophagy [68]. Recently, the NF-κB factor Relish has been found to regulate autophagy
by modulating ATG1 expression, thereby facilitating salivary gland degradation in Drosophila [69].
Meanwhile, the NF-κB pathway requires the activation of autophagy to mediate the degradation of the
kinases involved in NF-κB activation to limit the inflammation cascades.



Cells 2020, 9, 70 5 of 25

4.3. RIG-1 or STING Sensing Pathways and Autophagy

RIG-1-MAVS and cGAS-STING are pathways to sense cytosolic RNAs or DNAs in pathogenic viral
genomes to induce innate immune responses. RIG-1 like receptors (RLRs) can detect single-stranded
and double-stranded RNAs that are generated after viral infection. This receptor family contains
three elements: RIG-1, melanoma differentiation associated gene 5 (MDA5), and laboratory of genetics
and physiology 2 (LGP2) [70]. In uninfected cells, RIG-1 binds to the adaptor protein MAVS on
the surface of mitochondria. Once RIG-1 is activated, the MAVS forms aggregates and converts its
structure into functional multimeric filaments, stimulating recruitment of numerous adaptor proteins
and kinases [71]. Eventually, RIG-1 signaling is cleaved into two molecular cascades: TANK binding
kinase-1 (TBK-1) and IκB kinase epsilon regulating the production of type 1 and type iii IFNs; the other
cascade is engagement of the IKKα/β/γ complex and activation of NF-κB [72].

Roles of autophagy in the RIG-1-MAVS sensing pathway has been reported in recent years,
but it’s difficult to figure out the process based on the different studies. In the early study,
ATG5-ATG12 conjugate was shown to regulate the RLR signaling. Replication of VSV virus was
inhibited in Atg5-deficienct MEFs, accompanied by increased IRF-3 activation and IFN-β transcription,
accumulation of dysfunctional mitochondria, increased ROS, and RLR signaling [73,74]. A later
study also revealed that ATG5, ATG12, and ATG7 are all required for the negative regulation of RLR
signaling, in which ATG5–ATG12 conjugate interacts with RIG1 and MAVS to inhibit RLR-dependent
antiviral signaling [75]. However, in a recent study, activation of the RIG-1 RNA sensing pathway
was appeared to trigger autophagy via the MAVS-TRAF6-Beclin-1 signaling Axis [76]. Collectively,
autophagy regulation in RIG-1-MAVS pathway is not consistent in different conditions, and these
inconsistencies may come from the distinct viruses studied or the different regulatory functions of
autophagy-related proteins.

CGAS-STING is a pathway to distinguish non-self DNA from pathogens and induce innate
immunity responses. cGAS is a central regulator of cytosolic DNA sensing [77]. When cGAS is
activated, cGAS stimulates generation of the second messenger, cGAMP. Subsequently, cGAMP
activates 2′-5′ phosphodiester linkages to bind with the downstream signaling molecule STING on
the ER membrane. Finally, STING binds to TBK1 to drive IRF3 activation, thereby inducing IFNβ

upregulation [78,79].
A study in 2012 revealed a link between DNA sensing and autophagy in macrophages infected

by Mycobacterium tuberculosis (Mtb). The recognition of bacterial DNA via the STING pathway
induced autophagy [80]. Further, cGAMP also induced the activation of autophagy kinase, ULK1, to
phosphorylate STING and prevent the downstream signaling [81]. Interestingly, STING pathway can
also be regulated by autophagy via TBK1-mediated p62 phosphorylation to drive STING ubiquitination
and autophagic degradation [82].

Later study found that cGAS DNA sensor was able to directly interact with Beclin-1 to halt
cGAMP production and enhance the degradation of cytosolic microbial DNAs via autophagy [83].
In addition, TRIM14, a E3 ligase, recruited USP14 to stabilize cGAS by cleaving the lysine 48-linked
ubiquitin and inhibiting the p62-mediated autophagic degradation of cGAS to increase type I interferon
signaling [84]. Most recently, STING was found to activate autophagy to eliminate DNA and viruses
in the cytosol [85]. STING-containing ER-golgi intermediate compartment (ERGIC) is a membrane
source for autophagic LC3 lipidation. The activated LC3 lipidation is dependent on WIPI2 and ATG5
but independent of ULK and the VPS34-beclin 1 complex. In summary, autophagy has diverse roles in
the entire SITNG pathway and restricted autophagy-related proteins are responsed in the pathway
(Figure 2).
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4.4. Inflammasome Pathway and Autophagy

Besides the NF-κB pathway, inflammasome formation is another mechanism to regulate innate
immunity in macrophages. Activation of inflammasome leads to maturation of the proinflammatory
cytokines IL-1β and IL-18 by activation of the proteolytic enzyme caspase-1 [86]. Similar to NF-κB,
inflammasomes can be triggered by a wide range of stimuli, including PAMPs and DAMPs [86].
Inflammasomes localize at cytoplasma and are assembled by multiple proteins [86].

In terms of components, inflammasomes contain a cytosolic sensor protein (which can be either
a nucleotide-binding oligomerization domain and leucine rich repeat-containing (NLRs) protein, or
an AIM2-like receptor (ALR) protein), an adaptor protein (apoptosis-associated speck-like (ASC)
protein that containing a caspase-recruitment domain (CARD)), and an effector pro-caspase-1 [87].
ASC is a protein that contains both N-terminal Pyrin domain (PYD) and a CARD. Until now,
several inflammasomes have been identified, including NLRP1, NLRP3, AIM2 and NLRC4. NLRP3
inflammasome is comprised of NRLP3, ASC, and pro-caspase-1. In NLRP1 inflammasome, NLRP1
protein already contains both PYD and CARD which can interact with pro-caspase-1 directly without
ASC. AIM2 inflammasome contains AIM2 protein, ASC and pro-caspase-1. NLRC4 inflammasome
contains a sensor protein with CARD domain and pro-caspase-1 without ASC.

In 2008, Tatsuya Saitoh et al., reported the relationships between autophagy and inflammasome.
They found that Atg16L1 deficient macrophage enhances IL-1β and IL-18 production but not
LPS-induced IL-6 or TNF-α production [88], leading to subsequent studies that uncovered the
underlying mechanisms. Mitochondrial-derived DAMPs are stimuli for inflammasome activations.
Autophagy has been shown to remove these DAMPs, thereby preventing inflammasome activation.
Disruption of autophagy exaggerated NLRP3 inflammasome activation in response to stimuli in
macrophage, accompanied by the increase in the ROS-producing mitochondria [89,90]. In addition,
the released mitochondrial DNA (mtDNA) is also responsible for stimulating NLRP3 inflammasome [71].
Autophagy is responsible for the supervision and efficient clearing of dysfunctional mitochondria,
preventing mitochondrial-derived DAMP-induced inflammasome activation.

P62 is a key receptor in the selective autophagical clearance of inflammasome and
dysfunctional mitochondria during inflammasome pathway activation. P62 is recruited to K63
(Lys63)-linked polyubiquitination of ASC, thereby inducing ASC-targeted autophagosome formation
and degradation [91]. AIM2 is associated with tripartite motif11, an E3 ubiquitin ligase, to facilitate p62
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recruitment for autophagic degradation [92]. As inflammasomes are platforms composed of multiple
proteins, autophagy plays a vital role in the degradation of these large protein complexes. Collectively,
autophagy regulates the inflammasome pathway primarily via mediating the degradation of either
the activator of or the components of inflammasome. Interestingly, Zhenyu Zhong et. al, reported
that NF-κB exerted anti-inflammatory activity by inducing p62 expression to accelerate mitophagy
and reduce inflammasome activation [93]. These findings revealed a complicated regulation network
between autophagy and inflammasome pathways (Figure 3).
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4.5. Macrophage Polarization

Macrophages are heterogeneous and can be polarized into divergent phenotypes in different tissue
microenvironments. Typically, macrophages can be divided into M1 phenotype (classically activated)
and M2 phenotype (alternatively activated). Interferon-γ and lipopolysaccharide (LPS) can induce the
M1 phenotype with increased pro-inflammatory cytokine production and cellular immunity, while IL-4
or IL-13 can activate the M2 phenotype to promote tissue repair and humoral immunity [94,95].

The role of autophagy in regulating macrophage polarization has been reported to be mediated by
different mechanisms including NF-κB degradation and the mTOR pathway [96–98]. Although NF-κB
can be activated after M1 polarization, in fact, activation of NF-κB is able to drive macrophages to
either M1 or M2 polarization especially in the tumor microenvironment [99–101]. In 2013, Chih-Peng
Chang et al. found that TLR2 signal induces NF-κB p65 cytosolic ubiquitination which results in its
degradation by p62-mediated autophagy. Meanwhile, NF-κB activity rescued by inhibiting autophagy
drove macrophages to the M2 phenotype [96,97]. Further, mTOR is the master controller of autophagy
and is involved in regulation of macrophage polarization. Previous studies found that mTOR pathway
activation induces macrophage polarization. Rapamycin, a well-known autophagy inducer which acts
via inhibiting the mTOR pathway has been shown to stimulate M1 phenotype of macrophages [98].
Blockage of the mTOR pathway by silencing TSC2 (tuberous sclerosis 2) produced the opposite
effect [98]. Besides NF-κB and mTOR pathways, there is accumulating evidence of other potential
relationships between autophagy and macrophage polarization. For example, CCL2 and IL-6 are
potent factors to induce autophagy in macrophages, and they can trigger the M2 phenotype [102].
Sorafenib, a multi-kinase inhibitor, has been shown to induce autophagy and suppress macrophage
activation via inhibiting the expression of macrophage surface antigens [103].

Inducible nitrogen oxidase (iNOS) and Arginase 1 are two enzymes that are the markers of
macrophage M1/M2 polarization. M1 macrophages express iNOS and metabolize arginine to nitric oxide
(NO) and citrulline, while M2 macrophages hydrolyze arginine to ornithine and urea. Some studies have
uncovered a potential relationship between autophagy and the expression of iNOS and arginase. Further,
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miR-326 overexpression inhibits iNOS expression and also promotes autophagy [104]. Antimicrobial
autophagy has been suppressed by glucocorticoids, accompanied by the enhancement of iNOS
expression and NO production [105]. Activation of autophagy in LPS-stimulated microglia suppresses
the iNOS expression [106]. Interestingly, recombinant human arginase induces autophagy [107].

Although autophagy has been shown to be involved in the regulation of macrophage polarization,
most evidence is not clear as to the mechanism by which autophagy regulates macrophage polarizations
(Figure 4). Whether an autophagy gene directly modulates the signaling pathways for macrophage
polarization, or whether autophagy regulates the degradation of key proteins involved in macrophage
polarization regulation, will need to be confirmed.
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4.6. Cytokine Secretory Pathway

Cytokines and chemokines act as messengers to orchestrate immunity when secreted out from
producing cells, such as macrophages. There are two types of cytokine release by secretion: conventional
secretion, and unconventional secretion. Conventionally, cytokines with an N-terminal signal peptide
enter the endoplasmic reticulum (ER) and follow a secretory pathway via the Golgi apparatus for
delivery to the extracellular space [108]. However, some cytokines lacking signal peptides cannot enter
the ER, and they rely on unconventional secretion pathways, including autophagy [109], for their release.

IL-1β, IL-18 and IL-15 are cytokines that lack signal peptide entering the ER [110]. Among them,
IL-1β has been extensively studied in recent years. Accumulating results show that IL-1β trafficking
is closely related to autophagy. For example, IL-1β can be sequestered into autophagosomes for
degradation, and induction of autophagy by rapamycin blocks mature cytokine secretion and activates
the pro-IL-1β degradation [111]. Following this discovery, TRIM16 was identified as the secretory
autophagy receptor for IL-1β that interacts with R-SNARE SEC22B to delivery IL-1β to the LC3-positive
sequestration membranes [112]. However, the autophagosome has also been shown as a mean to
promote IL-1β secretion in neutrophils [113]. In addition to IL-1β, but IFN-α production has also
been reported to rely on the LC3-associated phagocytosis in TLR9-related trafficking [53] (Figure 4).
Taken together, the roles of autophagy in regulating secretory pathways for cytokines are not fully
understood, and it seemed to be different in distinct cell types. Autophagy mediates IL-1β generation
by facilitating pro-IL-1β degradation. It is still challenging to figure out the key regulatory points that
connect autophagy and cytokine secretion.
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5. Autophagy and Macrophage Phagocytic Function

5.1. LC3-Associated Phagocytosis

Phagocytosis is defined as a pathway for the recognition and internalization of particles (>0.5
µm) by the professional phagocytes, such as macrophages or non-professional phagocytes, such as
epithelium cells [114] to maintain the cell homeostasis when threatened by invaders’ attacking [114].
In 2007, the Douglas R. Green Lab firstly reported that Beclin 1, LC3, Atg5 and Atg7 can be recruited to
the phagosome in macrophage during TLR pathway activation [115]. This process has been identified
as unconventional LC3-associated phagocytosis (LAP). The characteristics of the LAP molecular
requirements have been revealed. Rubicon is required for the activity of a Class III PI3K complex
containing Beclin-1, UVRAG, and Vps34 during LAP to generate PI (3) P without ATG14 and Ambral,
two conventional autophagy-related proteins. Further, ATG5, ATG3, ATG12, and ATG16L are all
necessary for the conjugation of LC3 to the LAPosome [32] (Figure 4).

Based on the biological functions of phagocytosis, LAP displayed various roles in immune
response (Figure 4). For example, LAP activation has been connected to innate immune recognition, or
the killing of pathogens. LAP promotes antigen presentation by MHC class II molecules to T cells [116]
and helps to clear pathogens via engulfment and phagosome acidification [32,115]. In terms of the
inflammatory response, LAP has been implicated in DNA-induced TLR9 pathway activation. LC3 and
kinase IKKα have been found to form a complex to be recruited to the endosome containing TLR9,
and these complex are further associated with TRAF3 and IRF7 with the help of ATG5 to promote type
1 interferon production [117]. In the tumor microenvironment, defects of LAP induced control of tumor
growth by tumor-associated macrophage (TAM) through triggering pro-inflammatory gene expression
and triggering a STING-mediated type I interferon response [118]. Since a series of autophagy-related
proteins are involved in LAP, LAP could be a major link between autophagy and innate immunity.

The role of LAP in dead cell clearance was reported in 2011 [119]. The study showed that LAP
can be evoked by incubating macrophages with apoptotic, necrotic and RIPK3-dependent necrotic
cells. Dead cells were efficiently degraded through LAP. As the defective clearance of dying cells is
associated with systemic lupus erythematosus (SLE), this study found mice with LAP pathway defects
displayed increased SLE-like symptoms after the repeated injection of apoptotic cells [120].

5.2. Selective Autophagy in Macrophage

Autophagy was initially regarded as a non-selective process, while recent studies revealed that
autophagy can also be selective. Selective autophagy is responsible for selectively removing of
specific cellular cargos, by a recognition mechanism involving autophagy receptors or adaptors [121].
According to different cargos, selective autophagy has been classified into different types, such as
aggrephagy (cargos: protein aggregtes), mitophagy (cargos: mitochondria), xenophagy (cargos:
pathogens); ER-phagy (cargos: endoplasmic reticulum), pexophagy (cargos: peroxisomes), and so on.

5.3. Xenophagy

Xenophagy is a form of selective autophagy which specifically targets invading pathogens.
Xenophagy in macrophage has been well characterized during Mycobacterium tuberculosis infection.
Specifically, the internalized phagosomal M. tuberculosis can be released into cytosol by damaging the
phagosomal membrane [80]. Escaped bacterial DNA was recognized by cytosolic sensor cGAS, which
induced xenophagy via activating ubiquitination by ubiquitin ligases Parkin and Smurf1 and recruiting
autophagy receptors or adaptors, such as p62 and NDP52 [122–124]. Not only the bacterial but also
damaged phagosomes containing bacteria can be targeted by the host glycan on the phagosomal
lumen [125,126]. Ultimately, bacteria were sent to the lysosome via the autophagosome for degradation.
In this process, autophagy also facilitated the host to kill bacteria via generating and delivering
antimicrobial peptides to the compartment [127,128]. In addition, NOD1 and NOD2 sensed invasive
bacterial and induced xenophagy by recruiting Atg16L1 to the site of bacterial entry [49]. The adaptors
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or receptors for xenophagy are not limited to p62 and NDP52, neighbors of the BRCA1 gene 1 (NBR1)
and optineurin can also serve the xenophagy process [129].

Even though xenophagy requires most of the molecular machinery involved in classical autophagy,
increased susceptibility to M. tuberculosis infection was only observed in the mice with Atg5 deficiency
in monocyte-derived cells and neutrophils, not those lacking Beclin-1 or Atg14 [62,80,130]. In some
cases, pathogens are able to develop various strategies to destroy autophagy for survival. For example
S. flexneri can escape from xenophagy by secreting IcsB, which can inhibit bacterial recruitment to
the phagophore via binding competitively to the surface protein VirG [131]. L. monocytogenes inhibits
xenophagy via recruiting the Arp2/3 complex and Ena/VASP to the bacterial surface, where it masks
the cell surface by binding to the cytoplasmic major vault protein (MVP) or blocking the lipidation
of LC3 [132–134]. Salmonnella typhimurium secrets more than 30 effector proteins, resulting in the
mTOR activation [135], deubiquitination of aggregates [136], and disrupting Rab1-A signal [137],
and ultimately, autophagy suppression. In their most recent study, Shao Feng’s lab found that a novel
protein, SopF, generated by Salmonella inhibit xenophagy by targeting the Gln124 of ATP6V0C in
the V-ATPase, resulting in disruption of V-ATPase-ATG16L1 axis in xenophagy initiation [138]. So,
xenophagy partially facilitates macrophage phagocytosis to clear invasive pathogens, especially when
the phagosome has been damaged (Figure 5). However, xenophagy can also be blocked by flexible
escape strategies developed by invaders.
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5.4. Autophagy Receptors in Macrophage

Autophagy receptors are adaptor proteins which recognize cargos and bind to LC3/GABARAP
on autophagosome [121]. The selectivity of cargos is mainly achieved by the specificity of autophagy
receptors in recognizing distinct cargos. As mentioned above, p62 is a key autophagy receptor involved
in the inflammasome pathway regulation. In addition, p62 and other receptors or adaptors also
regulate macrophage functions via modulating selective autophagy process.

Selective receptors are involved in the innate inflammation pathway. According to the multiplex
proteomic profiling, p62 and Tax1BP1 were identified to be the autophagy receptors that mediated the
turnover of innate adaptor TRIF and its downstream signaling in Atg16l1 deficient macrophages [139].
Knockdown of TAx1BP1 increased cytokines release, such as IFN-β and IL-1β [139]. TRIM20 and
TRIM21 are subsets of tripartite motif (TRIM) proteins, and they also acted as autophagic receptors
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to recognize inflammasome components or dimeric form of IRF3, delivering them for autophagic
degradation [140]. As above mentioned, cGAS could also be degraded via autophagy after being
recognized by p62. Conversely, p62-mediated autophagic degradation of cGAS enhanced the activation
of type interferon I signaling [84]. Under LPS-induced inflammation, p62 interacts with iNOS and
facilitates autophagic degradation of iNOS [141]. In cases of inflammasome pathway activation, p62
usually acted as an important receptor for inflammasome or related proteins degradation and so that
to regulate inflammation response [91,92]. Inflammasome pathway can be easily activated by released
mitochondrial DNA, and p62 has been reported to be involved in the inflammasome modulation
as a receptor of mitophagy. P62-dependent mitophagy dysfunction caused inflammasome-induced
IL-1β-dependent inflammation [93].

Several selective receptors are involved in xenophagy to mediate innate immunity response in
macrophage. P62 and NDP52 are two classic receptors implicated in xenophagy. P62 assembles on
the microbes as receptors once the cells were affected by pathogens, such as Salmonella [142] and
mycobacteria [143]. NDP52 can be recruited as xenophagy receptors for Salmonella [144]. NDP52 has
been proved to recruit ULK complex to the cytosol-invading bacteria and initiate autophagy [145].
Optineurin (OPTN) is another autophagy receptor that is implicated in xenophagy and controlling
of TNF, NF-κB, and IFN signaling in macrophage [146–148]. TBK1 regulates OPTN phosphorylation
to recognize cytosolic Salmonella enterica and trigger xenophagy [149,150]. During innate immunity
response, OPTN served as a negatively regulator of NF-κB by promoting the xenophagy [151,152].
Another autophagy receptor, NBR1, was found to bind with viral capsid protein and particles of
cauliflower mosaic virus (CaMV) for autophagic degradation [153]. TRIM5, a well-known retroviral
restriction factor, was proposed to be a selective autophagy receptor targeting HIV-1 capsids for
autophagic degradation [154]. Recently, V-ATPase was identified as the sensor of invading pathogen
to recruit ATG16L to initiate xenophagy [138].

5.5. Autophagy and Macrophagic Metabolism

Emerging studies have revealed the crucial role of metabolic reprogramming in macrophage
activation, which is known as immunometabolism [155]. For example, in amino acid metabolism,
arginine is converted to NO by iNOS in M1 macrophage, but metabolized by arginase-1 in M2
macrophage [156,157]. M1 macrophage shows enhanced glycolytic metabolism and impaired
mitochondrial oxidative phosphorylation (OXPHOS) [158,159]. In addition, the ATP produced
in M1 cells via glycolytic metabolism feeds the pentose phosphate pathway (PPP) [160]. Fatty acid
synthesis (FAS) organizes the plasma membranes under different inflammatory responses to regulate
the inflammatory signaling, adhesion, and migration of macrophages [161]. Fatty acid oxidation
(FAO) is needed for NLRP3 inflammasome activation [161]. These studies highlight the view that
macrophagic metabolism status is tightly associated with macrophage functions.

Autophagy is an important part of cellular metabolism system that can be activated to supply
materials and energy during nutrient deficiency. Therefore, the relationship between autophagy,
metabolism, and macrophage function is a hotspot being noticed and investigated. In 2018,
the “Autophagy, Inflammation, and Metabolism” (AIM) Center at the University of New Mexico has
been established to specifically study this topic (ref: Autophagy, Inflammation, and Metabolism (AIM)
Center of Biomedical Research Excellence). Further, mTOR functions as a key homeostatic regulator in
nutrient signals and metabolic processes for cell growth [162], and its inhibition induce autophagy. As
mentioned in the previous part, the mTOR pathway also regulates macrophage inflammatory pathway
and polarization, which could be a possible link between cellular metabolism and macrophage function.
AMP-activated protein kinase (AMPK) is a main sensor of cellular energy status and maintain metabolic
balance [163]. AMPK can control cell growth by inhibiting mTOR pathway via phosphorylation of
TSC2 or Raptor [164,165]. Therefore, AMPK can be involved into autophagy indirectly through acting
on mTOR pathway. In addition, AMPK can also phosphorylate ULK1 complex directly to activate
autophagy [166]. According to previous studies, AMPK is regarded as a suppressor of inflammation in
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immune cells including macrophage [167], indicating a potential connection among autophagy, cellular
metabolism and macrophage inflammation. Besides, growing evidence has revealed that autophagy
can regulate immune cell differentiation by alteration of metabolic states in immune cells [168].
Collectively, upon mTOR activation, immune cells show decreased autophagy, but increased cellular
glycolytic and pro-inflammatory response. However, AMPK induction induce autophagy, increase
cellular OXPHOS and anti-inflammatory response [168]. Moreover, increased lipophagy (autophagic
target on lipid specifically) has been proved to accelerate macrophage cholesterol efflux so that to
reduce macrophage foam cells in atherosclerosis [169]. Although lots of evidence is being uncovered,
the regulation network between autophagy, metabolism, and macrophage function has not been well
understood. The key metabolic products that link macrophage function and autophagy would be an
interesting topic to explore

6. Conclusions and Discussion

As an automatous system of cellular defense, autophagy is naturally involved in innate immunity.
An accumulation of evidence has revealed the intrinsic interaction between autophagy and macrophage
function: Autophagy is involved in almost all macrophage functions, from pathogen recognition
and phagocytosis to cytokine release and inflammatory responses (Table 1). However, there are still
many unanswered questions. Cellular metabolism status changes dramatically during macrophage
polarization. Autophagy is a cellular bulk metabolism mechanism. It would be interesting to examine
whether metabolism change is a general link between autophagy and macrophage polarization.
Autophagy is essential for LAP to degrade many cargos including bacterial, dead cells soluble ligands
and protein aggregates. However, it is still unclear how LC3 is recruited to the phagosomes and
which receptors are responsible for recognizing the different cargos. Selective autophagy, especially
xenophagy, facilitates macrophages to eliminate the cytosolic invaders after pathogenic DNA exposure
or phagocytic membrane damaged by pathogens [80,125,126]. Autophagy receptors have been reported
to mediate inflammatory signaling and xenophagy by specifically recognizing the cargos for autophagic
degradation. However, what are the signals on the cargos to recruit autophagy receptors? How are these
receptors regulated to recognize different cargos? Is there any unknown autophagy receptor involved
in inflammation regulation? Is autophagy defect associated with multiple inflammatory diseases,
such as IBD, SLE, and arthritis. However, the deficiency in different autophagy genes sometimes
generates quite different phenotypes in inflammatory response, raising the question of whether some
autophagy proteins function via their autophagy-independent activity, or whether different stages of
autophagy (or different groups of autophagy proteins) differentially regulate inflammatory responses.
A more important question is whether we can use knowledge of how to regulate autophagy function in
macrophages for diagnostic or therapeutic purposes, especially with regard to inflammatory conditions.
With the continued, dedicated exploration of the mechanistic regulation between autophagy and
macrophage function, hopefully, answers to the above-mentioned questions can be found.
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Table 1. The autophagy-related proteins involved in macrophage functions.

Category Functional Proteins
in Macrophages Autophagy-Related Proteins Mechanism or Relationships Reference

Macrophage Receptors

SR-A LC3 SR-A agonist inhibits autophagy by inhibiting LC3 [33]

MARCO LC3-ll/LC3-l MARCO is internalized as phagocytosis, accompanied by increased
LC3-ll/LC3-l [34]

Dectin-1
Atg3, Atg7, DAP1, GABRAPL2,

Optineurin, RGS9, P62
Autophagy process is activated and required in Dectin-1 induced
unconventional protein secretion pathway. [38]

LC3, Atg5 Dectin-1 directs LC3 and ATG5 recruitment around phagosomes to facilitate
MHC class ll into phagosome and help antigens presentation to T cells. [39]

TLRs

LC3,
Beclin 1

1. Interactions of Beclin 1 and Myd88 or Trif are increased after TLRs
activation, so as to reduce the binding of Beclin 1 and Bcl-2,
inducing autophagy.

2. TRAF6 ubiquitinates Lysine (K)-linked ubiquitination of Beclin 1 and
stimulates autophagy

[41–45]

P62 LPS-induced TLR activation generates aggresome-like induced structures
(ALIS), resulting in the recognition of p62 to induce autophagy [46]

NOD1, NOD2 Atg16L1 Interaction of NOD1 or NOD2 with Atg16L1 initiates autophagy [49]

NF-κB pathway

NF-κB Beclin 1
Atg1

1. NF-κB binding site is in the promoter of BECN1; p65/RelA upregulates
BECN1 mRNA to activate autophagy.

2. NF-κB factor Relish regulates autophagy by modulating Atg1
[68,69]

IκB kinase (IKK) Atg5
Autophagy mediates IKK protein degradation after inhibiting Hsp90 by
geldanamycin (GA).Inhibition of autophagy by knockout of Atg5 rescues IKK
from GA-induced IKK degradation.

[62]

NIK Atg5
Autophagy mediates NIK protein degradation after inhibiting Hsp90 by
geldanamycin (GA). Blockage of autophagy by knockout of Atg5 inhibits
GA-triggered NIK degradation.

[63]
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Table 1. Cont.

Category Functional Proteins
in Macrophages Autophagy-Related Proteins Mechanism or Relationships Reference

Inflammasome

NLRP3 ULK1, P62

1. Mitophagy is induced by knockout of Ripk2 by increasing the
phosphorylating ULK1, which activates NLRP3 inflammasome.

2. Palmitate induces the activation of NLRP3 inflammasome with increased
ULK1 dependent mitophagy.

3. NLRP3 inflammasome activation triggers autophagosome formation,
and it assembles inflammasomes undergo ubiquitination and
recruitment of p62 for delivery to autophagosomes.

4. NLRP3 inflammasome is inhibited by clearance of stimuli via increased
NF-κB-induced P62-dependent mitophagy.

[71,89,90,93]

ASC P62 P62 is recruited to K63-linked ubiquitination of ASC for inducing
ASC-targeted autophagosome formation and degradation. [91]

AIM2 P62 AIM2 interacts with E3 ubiquitin ligase to facilitate P62 recruitment of
autophagic degradation. [92]

IL-1β LC3

1. Pro-IL-1β is sequestered into autophagosome for autophagical
degradation, so that to inhibit mature IL-1β generation and secretion.

2. IL-1β works with TRIM16 and R-SNARE SEC22B and is delivered into
LC3-positive autophagic membranes for secretion.

3. IL-1β secretion is increased after autophagy activation with the
augmented colocalization of IL-1β and LC3, but it will be decreased
when autophagy is inhibited.

[111–113]

Polarization

iNOS LC3, Atg5

1. MiR-326 upregulation promotes autophagy and downregulates iNOS
expressioin in mice brain.

2. Glucocorticoids inhibit iNOS expression and induces autophagy.
3. Activation of autophagy suppresses iNOS expression in microglia;

Depletion of Atg5 increases iNOS expression.

[104–106]
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Table 1. Cont.

Category Functional Proteins
in Macrophages Autophagy-Related Proteins Mechanism or Relationships Reference

Arginase LC3, P62

1. Hepatoma tumor cell condition medium induces macrophage M2-like
phenotype (increased Arginase 1 expression), accompanied by increased
selective autophagy.

2. Recombinant human arginase (rhArg) induces autophagy in
lymphoma cells.

[97,107]

CD206 LC3 CCL2 or IL-6 induces autophagy, companying with the macrophage
polarization toward CD206+ M2-type activation. [102]

TLR 9 pathway IFN-α LC3, Atg7 IFN-α secretion is required for LC3-associated phagocytosis (LAP). [53]

IKKα, IRF7 and
TRAF3 LC3, Atg5 LC3 interacts with IKKα after TLR9 activation, and it is further associated with

IRF7 and TRAF3 to facilitate type 1 IFN production. [98]

LC3-associated
phagocytosis (LAP) PI(3)P Beclin1, UVRAG, Vps34, Atg5,

Atg3, Atg12, and Atg16L1
Autophagical genes, such as Beclin1, UVRAG, Vps34, Atg5, Atg3, Atg12 and
Atg16L1 are required for LAP to generate PI (3) P and facilitate maturation. [32]

Xenophagy cGAS, Nod1 and
Nod2,

Atg16L1, LC3, NDP52, p62,
optineurin, NBR1, V-ATPase

1. Escaped bacterial DNA was recognized by cytosolic sensor cGAS,
subsequently, inducing xenophagy via recruiting p62 and NDP52.

2. NOD1 and NOD2 sense invasive bacterial and induced xenophagy by
recruiting Atg16L1 at the site of bacterial entry.

3. Neighbor of BRCA1 gene 1 (NBR1) and optineurin also serve the
xenophagy process.

4. V-ATPase senses the membrane damage and recruit ATG16L1 to
trigger xenophagy.

[49,120,123–125,130]

RIG-1 pathway RIG-1 like receptors
(RIRs), MAVS Atg5-Atg12, Atg7, Beclin-1

1. Atg5, Atg12, and Atg7 negatively regulate RLR-dependent signaling.
2. Atg5-Atg12 conjugates interact with RIG1 and MAVS and inhibit

RLR-dependent antiviral signaling.
3. RIG-1 RNA sensing pathway induces autophagy via a

MAVS-TRAF6-Beclin-1 axis.
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Table 1. Cont.

Category Functional Proteins
in Macrophages Autophagy-Related Proteins Mechanism or Relationships Reference

CGAS-STING pathway cGAS, cGAMP, STING,
TRIM14 ULK1, Beclin-1, p62, LC3

1. cGAMP in STING pathway induces autophagy kinase ULK1, resulting in
the inhibition of downstream signaling.

2. cGAS interacts with Beclin-1 to enhance cytosolic microbial DNAs
degradation via autophagy.

3. TRIM14 stabilizes cGAS by recruiting USP14 and cleaving the lysine
48-linked ubiquitin, resulting in inhibition of p62-mediated autophagic
degradation of cGAS.

4. STING localized on the ER-Golgi body intermediate compartment
(ERGIC) activates autophagy to eliminate DNA and viruses by inducing
LC3 lipidation, which is dependent on ATG5 and WIPI2, not the ULK
and VPS34 complex.
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