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Abstract: Worldwide, 71 million individuals are chronically infected with Hepatitis C Virus
(HCV). Chronic HCV infection can lead to potentially fatal outcomes including liver cirrhosis and
hepatocellular carcinoma. HCV-specific immune responses play a major role in viral control and may
explain why approximately 20% of infections are spontaneously cleared before the establishment of
chronicity. Chronic infection, associated with prolonged antigen exposure, leads to immune exhaustion
of HCV-specific T cells. These exhausted T cells are unable to control the viral infection. Before
the introduction of direct acting antivirals (DAAs), interferon (IFN)-based therapies demonstrated
successful clearance of viral infection in approximately 50% of treated patients. New effective and
well-tolerated DAAs lead to a sustained virological response (SVR) in more than 95% of patients
regardless of viral genotype. Researchers have investigated whether treatment, and the subsequent
elimination of HCV antigen, can reverse this HCV-induced exhausted phenotype. Here we review
literature exploring the restoration of HCV-specific immune responses following antiviral therapy,
both IFN and DAA-based regimens. IFN treatment during acute HCV infection results in greater
immune restoration than IFN treatment of chronically infected patients. Immune restoration data
following DAA treatment in chronically HCV infected patients shows varied results but suggests that
DAA treatment may lead to partial restoration that could be improved with earlier administration.
Future research should investigate immune restoration following DAA therapies administered during
acute HCV infection.

Keywords: Hepatitis C Virus; direct acting antivirals; DAAs; interferon; IFN; immune restoration;
immune exhaustion; exhausted T cells

1. Introduction

1.1. Natural History of Hepatitis C Virus (HCV) Infection

The World Health Organization (WHO) estimates the prevalence of chronic hepatitis C virus
(HCV) infection to be 71 million people worldwide [1]. Annually, 39,000 deaths are attributed to HCV
infection [1]. These deaths are predominantly caused by outcomes of chronic infection including
cirrhosis and hepatocellular carcinoma [1]. Approximately 15%–45% of those infected with HCV
spontaneously clear viremia with the remaining 55%–85% advancing to chronic Hepatitis C (CHC) [2].
HCV chronicity is generally defined as HCV RNA positivity beyond 6 months [3], but is truly marked
by the exhaustion of the immune response leading to failure of spontaneous HCV clearance [2]. Chronic
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HCV infection is usually a lifelong infection unless treated. Currently there is no preventative or
therapeutic vaccine and treatment targets patients who are in the chronic phase of HCV infection and
generally not those recently infected with HCV [4].

1.2. Virus-Induced Immune Dysfunction

The outcome of a viral infection can be either acute infection followed by control of viral replication
and spontaneous clearance or viral persistence resulting in a chronic infection. Both host and viral
characteristics influence the acute versus chronic outcome [5,6]. Many different cell types contribute to
the elimination of viral infections such as HCV [7]. Both innate and adaptive immune responses are
active during an HCV infection; however, in most cases HCV manages to escape these responses to
establish chronicity.

The high variability in disease outcomes between immune competent individuals is not well
understood, but several factors have been identified that influence an individual’s ability to control HCV
viral infection. Female sex, Aboriginal ethnicity [8] and younger age [9] are associated with increased
rates of HCV clearance. In contrast, human immunodeficiency virus (HIV) coinfection and injection
drug use are associated with increased HCV persistence [8]. Breadth, but not frequency, of HCV-specific
CD8+ T cell responses are shown to be reduced in HIV/HCV co-infected individuals [10]. However,
with improved treatment of both HIV and HCV infections, sustained virological response (SVR)
outcomes for coinfected individuals demonstrate similar success [11]. Furthermore, a retrospective
investigation of HCV infection found spontaneous clearance of HCV was more frequently documented
among subjects with a history of icteric hepatitis and hepatitis B virus (HBV) coinfections [12].

Variation in genes involved in the host immune response have been found to influence an
individual’s ability to clear acute HCV infection. The rs12979860 CC genotype, a single nucleotide
polymorphism (SNP) upstream of the IL28B gene, which encodes the type III interferon IFN-λ has been
shown to be a strong predictor of an effective response to IFN therapy for chronic HCV infection [5].
Individuals with the rs12979860 CC genotype are more likely to spontaneously clear HCV infection
and respond to pegylated-interferon (PEG-IFN)-α/ribavirin(RBV) treatment [5,13,14]. The association
between rs12979860 CC genotype and spontaneous resolution of HCV infection has been shown among
individuals of both European and African ancestry [5] and confirmed in a Chinese population [15].
The major C allele of rs12979860 SNP in the general population has a frequency of 0.23–0.55 among
Africans, 0.53–0.80 among Europeans and 0.66–1.00 among Asians [16]. Accordingly, Asians and
Europeans demonstrate higher response rates to combined peg-IFN-α and ribavirin therapy than
African-descendants [17]. The strong correlation between this genotype, ethnic groups and control of
HCV suggests the presence of a selective pressure exerted by environmental factors [18].

Following an inability to spontaneously clear HCV infection, the majority of cases succumb
to a chronic infection [19]. Natural killer (NK) cells and macrophages play an important role in
innate immune responses and become impaired in chronic HCV infection [20]. During chronic
infection, activity of NK cells has also been reported to be impaired in patients with HCV infection [20].
The ability of NK cells to produce and secrete IFN-γ is weakened after exposure to HCV-infected
cells [21]. The decline of IFN-γ production is consistent with the reduction of NK cell degranulation,
demonstrating a reduced functional capacity of these NK cells [21]. The inhibition of NK cell function
was associated with downregulation of NK-activating receptors on NK cell surfaces [21]. Inhibition of
ex vivo NK functions with HCV infected cells corresponds with reduced surface expression of the
natural cytotoxicity receptor NKp30 [22]. HCV NS5A protein has been shown to induce IL-10 and
TGF-β secretion in monocytes [23]. These cytokines also have a regulatory, suppressive effect on NK
cell function.

HCV-specific CD8+ T cells or cytotoxic T lymphocytes (CTLs) are required for the control of HCV
infection [24]. The CTL response to acute HCV infection begins with the effector phase when naïve T
cells are primed by HCV antigen, undergo expansion and facilitate clearance of infection by specifically
killing infected cells. In the case of spontaneous clearance, this response is successful at clearing the
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HCV infection [25]. A small subset of these HCV-specific CD8+ T cells will persist as long-lived memory
cells that can be recalled upon re-exposure to the same pathogen [25]. Although the development
of an effector CTL response should result in clearance of HCV, in most instances HCV manages to
escape immune control and becomes persistent [25]. If antigen stimulation remains high, the result
can be exhaustion, characterized by an inability to develop and mount a functional CTL response [25].
However, the mechanism contributing to HCV-specific CD8+ T-cell failure and the resulting persistence
of HCV infection is still poorly understood. Complex molecular pathways, including transcriptional
differences, direct the differentiation of CD8+ T cells into memory or exhausted T cells during HCV
infection [26]. Memory T cells during spontaneously resolved HCV infection share co-regulated T cell
identity genes while exhausted T cells share different co-regulated T cell identity genes, distinguishing
the two populations [26]. The cytokines secreted by T cells during viral replication influence the final
outcome of HCV infection. The role of CD4+ have also been explored during HCV infection suggesting
the presence of HCV-specific CD4+ T cell responses to be common in spontaneously resolved HCV
infection [27–30]. A more recent study found the majority of peripheral HCV-specific CD4+ T cells in
patients with self-limiting HCV infection had an effector phenotype (CD4+CD25highCD134+CD39−)
with high IFN-γ production, while the HCV-specific CD4+ T cells from patients who progressed to a
chronic HCV infection were dominated by a regulatory phenotype (CD4+CD25highCD134+CD39+)
and high IL-10 production [31]. It has also been shown that the majority of liver-infiltrating T cells in
chronic HCV infection are Type 1 Helper T (Th1) cells able to secrete IFN-γ, but unable to secrete IL-4
or IL-5 [32].

As seen in other chronic viral infections [33–37], persistent infection with HCV results in T
cell exhaustion [38]. HCV-related exhaustion leads to weak or absent HCV-specific antiviral T cell
responses. T cell exhaustion develops in a step-wise and progressive manner, varies in severity,
and results in blunted virus-specific immunity [39]. These include an impaired ability to respond to
viral peptide and to mitogen. Exhausted T cells have impaired proliferation abilities and reduced
secretion of antiviral cytokines including IL-2 [40], IFN-γ [37,41], IL-21 [42] and TNF-α [41,43]. These
T cells also express high levels of exhaustion markers, PD-1 [44–47], TIM-3 [48–52] and CTLA-4 [53,54]
and low levels of memory markers such as interleukin 7 receptor (CD127) [46,55–57] and Bcl-2 [58].
Co-expression of PD-1 with 2B4, CD160 and KLRG1 has been shown on exhausted T cells during HCV
infection [59]. Additionally, murine models have demonstrated signaling through TIGIT is critical
for maintaining chronic exhaustion during prolonged viral infection [60]. The presence of TIGIT has
been shown on exhausted T cells during viral infection and its expression positively correlates with
disease progression [61]. In chronic HCV infection, this exhausted immune phenotype is present and
presumed to be the reason for failure to clear viral infection [62]. In this review, we provide background
on HCV immune dysfunction and review literature exploring the restoration of HCV-specific immune
responses with antiviral therapy, both IFN-based and more recent DAA therapies.

1.3. Treatment of HCV Infection

The main goal of HCV therapy is to achieve a sustained virological response (SVR), defined as
the absence of detectable HCV RNA in the serum 3 months following the completion of therapy [63].
Traditionally, HCV was treated with pegylated-interferon (PEG-IFN) in combination with ribavirin, a
nucleoside analogue, demonstrating SVR rates between 30%–60% among chronically infected patients
depending on the HCV genotype [64,65]. The introduction of direct-acting antiviral (DAA) therapy
in 2011, with the approval of two protease inhibitors, provided promising improvement in SVR
rates for patients infected with genotype 1 [66–69]. The second wave of DAAs, covering more drug
classes, resulted in a new IFN-free standard of care for chronic HCV [70]. With current DAA therapies,
SVR is achieved in >95% of patients, a considerable improvement from the success rates seen with
IFN therapy [1]. These IFN-free regimens offer significantly higher efficacy and tolerability, even in
previously challenging populations [71]. Unfortunately, patients continue to clear the virus without
sterilizing protection against reinfection [72]. Lack of sterilizing protective immunity means reinfection
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is common, especially among populations with ongoing risk exposures [73–76]. The risk of reinfection
after effective treatment is reported as 2–6/100 person years among people who inject drugs (PWID)
and 10-15/100 person years among human immunodeficiency virus (HIV)-infected men who have sex
with men (MSM) [77]. Even these estimates may be low, as they rely on the diagnosis of reinfection,
which may include a population more connected to care. Clinical trials have investigated the use of 6 or
8 weeks of DAA regimens during acute HCV infection [78–81]. Six weeks of treatment with sofosbuvir
and ribavirin demonstrated high safety and tolerability, but efficacy was suboptimal with common
post-treatment relapse (9/19 participants) [80]. More recent studies investigating the use of ledipasvir
and sofosbuvir in acute HCV infection documented high tolerability as well as efficacy [78,79,81]. These
trials make a strong case for short-duration treatment of acute HCV infection with potent combination
DAA therapy to prevent spread in high-risk populations. However, questions remain about whether
timing of treatment and earlier viral clearance could promote protective immunity upon reinfection.

1.4. Evidence of Protective Immunity in HCV Infection

The correlates of protective immunity against HCV infection are not well elucidated. A rapid
generation of neutralizing antibodies (nAbs) in the acute phase of infection is associated with
spontaneous clearance of infection [82,83], but viral control has also been detected in the absence of
high nAb responses [84]. Furthermore, HCV RNA persists in chronic infection with the presence of
nAbs [85]. These nAbs are thought to be ineffective as the virus employs effective evasion strategies to
escape host immunity. HCV’s RNA Polymerase (NS5B) introduces frequent point mutations generating
diversity in nucleotide sequences within quasispecies of a single infected host [86,87]. Glycosylation
sites present on envelope glycoproteins (E1 and E2) form a glycan shield to protect functional domains
and, consequently, limit access of epitopes to nAbs [86]. Furthermore, interfering Abs and the ability of
the virus to disseminate cell-to-cell hinders the action of nAbs [86,88]. Together, these results suggest
that naturally-produced antibodies alone do not provide protective immunity.

Despite a lack of sterilizing immunity, studies in chimpanzees and humans have demonstrated
evidence of protective immunity following spontaneous clearance of HCV [24,89,90]. Reinfection of
chimpanzees with HCV demonstrates lower peak viremia and more efficient resolution of infection
compared to primary infection [24]. Antibody-mediated depletion of memory CD8+ T cells before a
third infection resulted in an established infection, confirming the role of CD8+ T cells in clearance of
reinfection [24]. Among people who inject drugs (PWID), the duration and maximum level of viremia
during reinfection were decreased, compared with their primary infection [89]. The demonstration
that spontaneous clearance without the development of T cell exhaustion leads to levels of protective
immunity suggests optimizing the timing of treatment to maximize the reversal of or even prevent T
cell exhaustion could be valuable [90].

1.5. Reversing Immune Dysfunction with Blockade of Exhaustion Markers

There has been considerable interest in avoiding and/or reversing immune exhaustion to encourage
improved outcomes for patients with HCV infection. The blockade of PD-1 has been evaluated in vitro
and shown to increase the response of peripheral blood-derived HCV-specific CD8+ T cells to HCV
peptide stimulation [41,46]. However, PD-1 blockade failed to restore the function of HCV-specific
CD8+ T cells that were isolated from liver biopsies [91]. Subsequent studies demonstrated that
the restoration of intrahepatic T cell function required simultaneous blockade of several inhibitory
molecules including CTLA-4 and TIM-3 [53,92].

Anti-PD-1 antibodies have been used to block PD-1 signaling in both HCV-infected
chimpanzees [93] and in human patients with chronic HCV infection [94]. Fuller et al. showed
an increase in HCV-specific CD8+ T cell responses and a significant but transient reduction in HCV
viremia in one of three chimpanzees [93]. This animal had the strongest and broadest CD4+ and CD8+

T cell response prior to development of chronic infection, which suggests that PD-1 blockade alone
is not sufficient to achieve viral clearance [93]. Gardiner et al. demonstrated partial success of PD-1
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blockade in a human population [94]. Five patients who received anti-PD-1 antibodies and one placebo
patient demonstrated a reduction in HCV RNA ≥0.5 log10 IU/mL on at least 2 consecutive visits [94].
Three patients who received the PD-1 blockade achieved a >4 log10 reduction. Two patients who
received the PD-1 blockade achieved HCV RNA below the lower limit of quantitation, one of which
remained RNA-undetectable one year after the study was completed [94]. The observed reductions
in HCV replication persisted for more than eight weeks in the majority of patients demonstrating
continued reversal of exhaustion [94]. Besides exhaustion marker blockade, researchers have also
explored the potential to leverage HCV treatment to restore immune function.

2. Improved Immune Restoration in Acute vs. Chronic IFN-α Treatment

Spontaneous clearance of acute HCV infection is characterized by the presence of HCV-specific
CD8+ T cells expressing memory marker IL-7Rα (CD127) and anti-apoptotic marker Bcl-2 with strong
functional responses measured by cytokine secretion [95]. Spontaneous resolution correlates with
early development of IFN-γ- and IL-2-producing and CD107a+ virus-specific CD8+ T cells [95]. A
body of literature suggests that this phenotype can be preserved and/or re-established when IFN-α
therapy is administered during acute HCV infection, but not during chronic HCV infection [95–97].
Several studies have investigated immune restoration following IFN-α therapy, the previous standard
of care for HCV infection. Vertuani et al. found that following IFN-α therapy with or without
ribavirin, patients who successfully cleared chronic HCV infection exhibited significantly stronger
HCV-specific CD8+ responses than the untreated patients with chronic HCV infection [98]. The majority
of treated patients showed CD8+ responses to at least 3 HCV specific epitopes, demonstrating a CD8+

response directed against more epitopes compared to the untreated group [98]. Morishima et al. also
demonstrated that HCV-specific cytolytic responses measured by chromium release limiting dilution
assay are found more commonly with IFN treatment (with or without ribavirin)-induced control of
viremia measured 6 months post-treatment compared to individuals chronically infected with HCV [99].
Tatsumi et al. looked at the frequencies of HCV-specific CD8+ T cells following combination therapy
of PEG-IFN-α with ribavirin in patients with chronic HCV infection. Their results demonstrated a
significant increase of HCV-specific CD8+ T cells at 4 weeks after the initiation of treatment compared
to frequencies measured in the same patient group pre-treatment [100]. This increase may be associated
with elimination of HCV [100]. Furthermore, they suggest that specific reactivity to Core and NS3
protein-derived peptides may predict clearance of the virus with IFN treatment [100]. Kamal et al.
focused on HCV-specific CD4+ Th1 responses in patients chronically infected with HCV [101]. This
study found that patients who achieved SVR following PEG-IFN-α therapy with or without ribavirin,
maintained multispecific HCV-specific CD4+ T-cell responses with enhanced IFN-γ production [101].
In contrast, the HCV-specific CD4+ Th1 responses in patients who relapsed or only partially responded
to therapy waned or were lost [101].

Interestingly, Caetano et al. reported that treatment-naïve chronically HCV-infected patients
who would eventually achieve a sustained response to IFN therapy showed significantly stronger
HCV specific CD8+ T cell response than non-responders prior to therapy [102]. In responder patients,
terminally differentiated effector cells increased more rapidly, and their frequency was always higher
than in non-responder patients. Sustained-responder patients also showed a higher frequency of
HCV-specific CD8+ T cells producing cytotoxic factors including perforin and granzyme B involved in
cell death by lysis and apoptosis.

Badr et al. analyzed a cohort of patients who resolved acute infection following early treatment
and documented the phenotype and function of HCV tetramer-specific cells prior to, during and up to
1 year following completion of PEG-IFN-α antiviral therapy with no ribavirin [95]. Early IFN therapy
reconstituted a T cell memory response with the same phenotypic and functional characteristics as
memory T cells induced following spontaneous clearance [95]. Upregulation of CD127 and Bcl-2
upon viral elimination was documented, and remained detectable 58 weeks post-treatment. PD-1
expression on HCV-specific T cells was downregulated in all patients upon viral clearance [95]. Overall
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expression of CD127, Bcl-2 and PD-1 was not affected in total CD8+ T cells and control staining using
cytomegalovirus (CMV) and flu tetramers demonstrating the phenotypic observation was exclusive to
HCV-specific T cells [95].

Abdel-Hakeem et al. compared reconstitution in early versus late IFN-α therapy without
ribavirin [96]. CD8+ T cell proliferative responses were higher in patients treated during acute versus
chronic HCV infection, and did not differ significantly when acutely treated patients were compared
to those who spontaneously cleared HCV [96]. HCV-specific IFN-γ producing responses by CD4+

and CD8+ T cells were higher in the acute treatment group compared to patients who were treated
in chronic HCV infection and achieved SVR [96]. Missale et al. compared HCV-specific CD8+ T cell
functional restoration as evidenced by IFN-γ analysis directly ex vivo after PEG-IFN-α treatment with
or without ribavirin in individuals with acute and chronic HCV infection [97]. Mean frequency of
IFN-γ-positive HCV-specific CD8+ T cells was higher among acutely treated individuals compared to
those treated in chronic HCV infection [97]. In contrast, the frequency of IL-2 positive HCV-specific
CD8+ T cells was similar in individuals treated during acute HCV infection, individuals treated during
chronic HCV infection and spontaneously-resolving groups [97]. IFN-γ production by HCV-specific
CD8+ T cells after in vitro expansion, proliferative ability and cytotoxic T cell function was stronger
in patients with an acute HCV infection compared to those with a chronic HCV infection and more
closely resembled self-resolvers [97]. Proliferative capacity was also measured during acute phase of
infection and after treatment. This demonstrated restoration of proliferative capacity post treatment
in 3 of 4 patients tested [97]. These results are in line with Abdel-Hakeem et al. [96], and suggest an
incomplete functional restoration following treatment of acute HCV infection despite improvement
with respect to treatment of chronic HCV infection.

Collectively, these data suggest that IFN-induced SVR leads to partial, but incomplete restoration
of HCV-specific immune responses. Restoration is more marked when HCV is treated during the acute
phase of infection, possibly because treatment occurs before the development of exhaustion. One
confounding factor is the effect of IFN-α itself as it has inhibitory effects on lymphocytes, including
both CD4+ and CD8+ T cells, rendering it difficult to definitively determine if the IFN-α therapy or viral
exposure is responsible for changes in phenotype [103,104]. IFN-α blocks S-phase entry of stimulated
T lymphocytes inhibiting proliferation [103]. IFN production can be induced endogenously by poly(I ·
C), a mismatched double-stranded RNA. Virus-induced suppression of proliferation can be replicated
by contact with the poly(I · C), while no poly(I · C)-induced impairment in proliferation can be seen in
cells lacking IFN-α/β receptors [105]. The introduction of highly effective IFN-free second-generation
DAA treatments could help clarify the question of whether IFN-based therapy itself or long-lasting
exposure to ongoing viral replication mediates T cell impairment.

3. Unclear Outcomes for Immune Restoration following Direct-Acting Antiviral (DAA) Therapy

With the introduction of DAA therapies in 2011, we can now study immune restoration in the
absence of IFN. DAA therapy has been shown to restore HCV-specific CD8+ T cells in patients with
chronic HCV infection [106]. Martin et al.’s cohort of individuals with chronic HCV infection
was treated with a combination of faldaprevir and deleobuvir with or without ribavirin [106].
Significant increases in the frequency of HCV-specific CD8+ T cells were seen at follow-up compared
to baseline after in vitro expansion in the majority of patients that achieved SVR12 [106]. Successful
DAA treatment was associated with an increase in CD127 expression on initially CD127-negative
HCV-specific CD8+ T cells in two patients [106]. Furthermore, a decrease of mean PD-1 expression
on HCV-specific CD8+ T cells from 33.9% at baseline to 18.0% at follow up was documented [106].
Burchill et al. documented a reconstitution of the CD4+ T cell compartment and partial reversal
in exhaustion markers on HCV-specific T cells following DAA treatment in patients with chronic
HCV infection [107]. This restoration was apparent through an increase in CD4+ T cell numbers
and a temporal increase in the proliferative response to T cell receptor (TCR) stimulation [107]. A
reduction in expression of co-inhibitory molecule, T cell immunoreceptor with immunoglobulin and
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immunoreceptor tyrosine-based inhibition motif domains (TIGIT) on all T lymphocytes was also
documented [107]. A partial reversal in exhaustion phenotype was found in HCV-specific CD8+ T
cells with a reduction in PD-1 expression, but no increase in frequency of circulating HCV-specific
CD8+ T cells [107]. The percentage of NK cells expressing TIM-3 was reduced following DAA therapy,
and circulating NK cells shifted towards a differentiated, more functionally active population shown
through reduction in T-bet and increase in Eomes, two T-box transcription factors [107].

A restoration in T-cell activation was documented in a recent study by Emmanuel et al. among
HCV-monoinfected and HIV/HCV co-infected patients treated with DAA therapy during chronic HCV
infection [108]. The study found increasing recovery in T-cell activation during DAA therapy and
post-SVR [108]. Before DAA therapy, HCV-monoinfected patients had higher CD4+ and CD4+:CD8+

T-cell ratio [108]. An observed decrease in activated CD4+ and CD8+ T cells in both monoinfected and
coinfected patients from pretreatment to post-SVR suggests clearance of HCV normalizes activated
T-cell levels [108].

Wieland et al. investigated the differentiation and outcome of HCV-specific CD8+ T cells
after DAA therapy [109]. HCV-specific CD8+ T cell populations from patients chronically infected
with HCV displayed a heterogeneous phenotype that included CD127+ PD1+, CD127-PD1lo and
CD127-PD1hi subsets [109]. This study also examined the expression of T cell factor 1 (TCF1), which
is a transcription factor required for the differentiation and persistence of memory CD8+ T cells.
A larger proportion of CD127+PD1+ HCV-specific T cells expressed TCF1 compared to the other
subsets. These TCF1+CD127+PD1+ T cells were maintained during and after DAA-induced HCV
elimination and showed memory-like characteristic including survival in the absence of HCV antigen
and recall proliferation after HCV viral relapse. Peptide-expanded HCV-specific CD8+ T cells derived
from patients at the completion of DAA therapy exhibited increased IFN-γ production compared to
baseline suggesting some immune restoration in patients following DAA treatment of chronic HCV
infection [109].

However, in a study by Zhang et al. the authors found no functional immune reconstitution of
HCV-specific T cells after DAA treatment in patients chronically infected with HCV [110]. Although
DAA treatment of chronic HCV infection led to SVR in all patients, immune reconstitution was not
documented [110]. This cohort was composed of both HCV-1b and HCV-2a chronically infected
patients who were given 12 or 24 weeks of combination DAA therapies [110]. Successful treatment
did not improve antigen-specific CD8+ T cell IFN-γ production with all patient groups changing
between time points presenting no apparent trend [110]. Phenotyping experiments did not reveal
any significant differences in PD-1 expression before and after treatment for both CD4+ and CD8+ T
cells [110]. The reasons for these differences in results compared to the earlier DAA studies in patients
chronically infected with HCV is not clear and suggests that larger studies may be warranted.

Some indirect evidence of immune recovery after HCV clearance was demonstrated in a cohort of
patients with chronic HCV-induced cryoglobulinemia vasculitis who were treated with DAA therapy.
Successful HCV clearance with DAA therapy has been shown to reverse disturbances in peripheral
B- and T-cell populations [111]. In HCV-associated cryoglobulinemia vasculitis, Follicular Helper T
cells (TFH) expansion has been associated with Th1 and T Helper 17 Cells (Th17) polarization, and
expansion of IgM+CD21−/low memory B cells and low levels of Treg cells [111]. DAA therapy improves
irregularities in B-cell homeostasis, with a decreased percentage of autoreactive memory B cells and
cryoglobulin levels post therapy [111]. Furthermore, successful anti-HCV therapy restores T-cell
homeostasis by reestablishing Th1/Th17 balance and improving T cell activation [111].

During an infection with HCV there is a marked increase in intrahepatic and peripheral
IFN-stimulating genes (ISGs) [112–114]. The majority of ISGs have antiviral properties, but upregulation
during a chronic infection with HCV is ineffective at clearing the virus [112–114]. The inability of
the host to clear HCV with increased ISG expression suggest an exhausted immune phenotype
characterized by a refractory state of IFN-signaling [112]. Holmes et al. investigated changes in innate
immune response during and after DAA therapy administered during chronic HCV infection [115].



Cells 2019, 8, 317 8 of 17

ISG expression was found to be downregulated at week 2 and 4 of DAA treatment, but recovered by
the end of treatment to a level below that observed at baseline [115]. ISGs quantified at SVR showed
levels similar to treatment week 2 [115]. This second downregulation of ISG following DAA treatment,
suggests a reversal of the exhausted ISG phenotype [115]. NK cell activity, a key component of the
innate immune response, is reduced in individuals chronically infected with HCV [116]. Corado et al.
documented that spontaneous NK cytotoxicity was four-fold lower in patients chronically infected
with HCV than in healthy donor demonstrating a significant functional impairment [116]. There
are two major populations of NK cells, CD56dimNK and CD56brightNK [117–119]. CD56dim NK cells
are more cytotoxic than CD56brightNK cells [120], but produce significantly less IFN-γ [121]. It was
reported that a CD56dimNK cell subset, but not a CD56brightNK cell subset, showed significantly lower
frequencies in patients with chronic HCV compared to healthy subjects [122]. DAA therapy in chronic
HCV patients has been shown to improve NK activity by increasing the frequency of CD56dimNK
cells at SVR24 [123]. It was also found that NK activity quantified by Chromium-50 release assay
significantly improved at end of treatment versus prior to therapy (p < 0.01) and at follow up 24 weeks
post treatment (SVR24) versus prior to treatment (p < 0.001) in 30 patients [123].

4. Conclusions and Future Perspectives

IFN-based treatment during acute HCV infection has demonstrated an improved likelihood
of immune restoration compared to patients treated in chronic HCV infection. Figure 1 shows an
inverse relationship between the level of immune restoration and the duration of exposure to HCV
antigen. DAA treatment has led to some level of immune restoration when administered to patients
chronically infected with HCV, but results are variable and require further investigation (Figure 1).
Reversal of HCV-specific immune exhaustion results in treated patients acquiring an immunological
phenotype similar to spontaneous clearers. Combining these results, there is reason to believe that
DAA treatments will outperform IFN therapy in their capacity to rescue exhausted T cells upon HCV
clearance during acute infection.

Complicated molecular pathways determine the differentiation of CD8+ T cells into memory
or exhausted T cells during HCV infection [26]. In a prospective study, the transcriptional profiles
of HCV-specific CD8+ T cells from HCV infected patients progressing to persistent infection and
patients spontaneously resolving HCV infection were compared during the acute phase of infection [26].
Dysregulation of metabolic processes during acute infection was observed in patients who progressed
to persistent infection [26]. This dysregulation was linked to changes in gene expression related to
cellular pathways including nucleosomal regulation of transcription, T cell differentiation, and the
inflammatory response [26]. These changes in HCV-specific CD8+ T cell transcription came before the
establishment of T cell exhaustion, suggesting it as a target the origins of T cell exhaustion in chronic
HCV infection [26]. Further research and understanding in this field, may help direct treatment to
improve restoration and lower dysfunction.

It is difficult to determine if this reconstitution is the cause or effect of enhanced viral clearance.
It is hypothesized that it is the consequence of clearance, as T cells are being further exhausted by
continued antigen exposure. Large studies to track reinfection following DAA treatment at different
stages of infection are necessary to see the outcome of protective immunity. The studies included in
this review typically utilize peripheral immune cells and it is not fully understood how the function
of peripheral and liver-infiltrating immune cells parallels each other. Recent investigation suggests
HCV-specific T cell responses in the periphery do not reflect those in the liver [124].
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CD127 and IFN-γ production. Immune restoration following DAA therapy administered during 
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increased CD127 has been reported, while no change in PD-1 expression post-treatment has also been 
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Figure 1. HCV-specific Immune Restoration following IFN and DAA therapy administered during the
acute and chronic phase of HCV infection. HCV is characterized by an acute phase of infection in which
the immune response is unable to control HCV replication, leading to chronicity in the majority of
patients. Following IFN-α therapy administered during acute HCV infection: CD8+ T cell populations
expressed low levels of exhaustion marker, PD-1 and increased levels of memory marker CD127,
anti-apoptotic marker Bcl-2 and IFN-γ production. Following IFN-α therapy administered during
chronic HCV infection: CD8+ T cell populations expressed high level PD-1 and low level of CD127
and IFN-γ production. Immune restoration following DAA therapy administered during acute HCV
infection has not been documented in the literature. Following DAA therapy administered during
chronic HCV infection: Literature demonstrates varying results. Decreased PD-1 and increased CD127
has been reported, while no change in PD-1 expression post-treatment has also been reported.

Presently, DAA treatment is generally initiated during chronic HCV infection to avoid treating
patients who may spontaneously clear the infection without treatment. Based on current research,
we identify the need to investigate immune restoration following early treatment of HCV infection
with current DAAs. We hypothesize that DAAs administered during acute infection may prevent
progressive T cell exhaustion characteristic of chronic HCV infection, leading to enhanced T cell
memory and improved protection against progression to chronicity upon subsequent HCV reinfection.
Ongoing clinical trials testing the efficacy of DAA treatment for recently-acquired HCV infection,
including the REACT Trial (Randomized Study of Interferon-free Treatment for Recently Acquired
Hepatitis C in People Who Inject Drugs and People with HIV Coinfection, (https://clinicaltrials.gov/

ct2/show/NCT02625909) may be leveraged to explore immune restoration following DAA therapy
administered in early HCV infections. The REACT trial includes a long follow-up period to monitor
cases of reinfection among this population. Data and samples generated from this trial may be used to
study HCV-specific immune restoration following therapy during acute HCV infection and investigate
evidence of protection against progression to chronicity after reinfection.

The potential for immune restoration with early treatment may have additional clinical benefits,
including a reduced risk of hepatocellular carcinoma (HCC) development. The risk of HCC after
DAA-induced SVR is unclear. A recent study found that among patients treated with DAA, SVR
was associated with a reduction in the risk of HCC compared to patients who did not achieve
SVR [125]. As the majority of infected individuals do not develop specific symptoms, improved
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screening methods to identify unknowingly infected individuals is necessary. Future findings could
provide the foundation for informing treatment guidelines for early HCV infection and improve our
understanding of HCV-induced T cell exhaustion while further elucidating the factors associated with
protective immunity among these patients. While studies continue to address the barriers related to
the development of an HCV vaccine, early treatment may be used to rescue immune responses and
reduce reinfection rates.
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