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Abstract: Although autophagy is a well-known and extensively described cell pathway, numerous
studies have been recently interested in studying the importance of its regulation at different molecular
levels, including the translational and post-translational levels. Therefore, this review focuses on
the links between autophagy and epigenetics in cancer and summarizes the. following: (i) how
ATG genes are regulated by epigenetics, including DNA methylation and post-translational histone
modifications; (ii) how epidrugs are able to modulate autophagy in cancer and to alter cancer-related
phenotypes (proliferation, migration, invasion, tumorigenesis, etc.) and; (iii) how epigenetic enzymes
can also regulate autophagy at the protein level. One noteable observation was that researchers most
often reported conclusions about the regulation of the autophagy flux, following the use of epidrugs,
based only on the analysis of LC3B-II form in treated cells. However, it is now widely accepted that
an increase in LC3B-II form could be the consequence of an induction of the autophagy flux, as well
as a block in the autophagosome-lysosome fusion. Therefore, in our review, all the published results
describing a link between epidrugs and autophagy were systematically reanalyzed to determine
whether autophagy flux was indeed increased, or inhibited, following the use of these potentially
new interesting treatments targeting the autophagy process. Altogether, these recent data strongly
support the idea that the determination of autophagy status could be crucial for future anticancer
therapies. Indeed, the use of a combination of epidrugs and autophagy inhibitors could be beneficial
for some cancer patients, whereas, in other cases, an increase of autophagy, which is frequently
observed following the use of epidrugs, could lead to increased autophagy cell death.

Keywords: autophagy; epigenetics; cancer; DNA methylation; histone deacetylase (HDAC); histone
methylation; histone methylation

1. Introduction

1.1. Basics of Autophagy

Autophagy is a multistep process involving more than 40 autophagy-related (ATG) proteins
leading to the formation of a double membrane structure, called autophagosome, and the elimination
of its content following its fusion with a lysosome (Figure 1) [1]. Autophagy degrades proteins or
organelles, such as damaged mitochondria, and is frequently linked to cancer initiation and progression.
Indeed, both pro- (e.g., resistance to starvation, chemo-resistance, etc.) and anticancer (e.g., autophagic
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cell death. etc.) properties have been associated to autophagy depending of the cell model, cancer grade,
or cell microenvironment. Autophagy can be divided into the following four steps: (i) initiation which
is controlled by the activating phosphorylation of ULK1 (Unc-51-like autophagy activating kinase 1) by
AMPK while the phosphorylation of ULK1/ULK2 by mTOR (mammalian target of rapamycin kinase)
leads to autophagy inhibition; (ii) formation of the phagophore which requires Beclin-1 and ATG14
(autophagy gene 14) leading to the recruitment of the PI3K kinase and the production of PI3P, shown
to be essential for the phagophore initiation; (iii) elongation which is dependent of two complexes,
the ATG5/ATG12/ATG16L trimeric complex which acts as an E3-like molecule and facilitates the
conjugation of ATG8 proteins onto phospholipids, previously cleaved by the ATG4 proteases; and (iv)
fusion involving UVRAG (ultraviolent irradiation resistance-associated), and leading to the fusion of
the autophagosome with lysosomes to induce the degradation of its content by proteolytic lysosomal
enzymes. Autophagy can be unselective, when the phagophore nonspecifically engulfs part of the
cytoplasm, or selective, when adaptor proteins specifically link the material to degrade and the ATG8
proteins on the surface of the autophagosome to induce its selective degradation. We can cite, for
example, the mitophagy, a process implying the protein NIX which specifically targets mitochondria to
autophagosomes thanks to its interaction with ATG proteins.
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Figure 1. Interconnection of major autophagy steps. Autophagy induction and initiation of
autophagy steps lead both to the cleavage and lipidation of autophagy gene 8 (ATG8) and
autophagosome nucleation. ATG8 and protein involved in autophagosome elongation favor the
closure of autophagosome and, then, its fusion with lysosome to form an autolysosome and to induce
the degradation of its content. AMPK acts as an activator of autophagy, whereas mTOR acts as an
inhibitor of autophagy. 3-MA and wortmannin are chemical inhibitors of early steps autophagy,
whereas BafA1 blocks the fusion of autophagosomes with lysosomes. Arrows represent a positive
action on the target, whereas bar-headed arrows represent an inhibition process.
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1.2. Transcriptional Regulation of Autophagy

Although autophagy is a well-known and extensively described cell pathway, numerous studies
have been recently interested in studying the importance of its regulation at different molecular levels,
including at the translational or post-translational levels. Indeed, only a few transcriptional factors
(TFs) have been described to be key regulators of the transcription of autophagy genes (for reviews
see [2,3]). The helix–loop–helix transcription factor EB (TFEB) can preferentially bind to the coordinated
lysosomal expression and regulation motif (CLEAR) (GTCACGTGAC) and promote the transcription
of many ATG-related genes. Indeed, upon starvation, TFEB is dephosphorylated and translocated
into the nucleus leading to an increase in autophagy gene transcription, and therefore autophagy.
Under nutrient-rich conditions, mTOR is responsible for the phosphorylation of TFEB at the lysosomal
surface, and therefore leading to its inactivation. Phosphorylation of the forkhead transcription factor
FOXO3 by AKT blocks its translocation into the nucleus, therefore, inhibiting the transcription of
several ATG-related genes. Another transcription factor, P53, which is frequently mutated in cancer
cells, also promotes the expression of FOXO3. Moreover, P53 can also induce the expression of Sestrin
proteins which activate AMPK leading to the inhibition of mTOR and the activation of autophagy.
Finally, hypoxia, which could be observed in solid tumors, is associated with a decreased recruitment
of NFKB and E2F1 on the BNIP3 promoter and an inhibition of the transcription of BNIP3. These data,
therefore, strongly argue that autophagy can, indeed, be controlled at the transcription level.

This review focuses on the links between autophagy and epigenetics in cancer to describe
the following: (i) how ATG genes are regulated by epigenetics, including DNA methylation and
post-translational histone modifications; (ii) how epidrugs are able to modulate autophagy in cancer
and to alter cancer-related phenotypes (proliferation, migration, invasion, tumorigenesis, etc.) and;
(iii) how epigenetic enzymes can also regulate autophagy at the protein level. One noteable observation
was that researchers most often reported conclusions about regulation of the autophagy flux by
epigenetic modifications or epidrugs, by only analyzing the levels of the LC3B-II form in treated cells.
However, it is now widely accepted that an increase in the LC3-II form could be the consequence of an
induction of the autophagy flux, as well as a block in the autophagosome-lysosome fusion and therefore
vesicle degradation. We systematically reanalyzed all the published results describing the link between
epidrugs and autophagy to determine whether autophagy flux was indeed regulated by epidrugs. To do
so, we determined whether the conclusions of the authors were based on different protocols analyzing
autophagy flux following a treatment with an epidrug (LC3B-II levels, number of autophagosomes in
presence and absence of inhibitors of autophagy induction, and autophagosome-lysosome fusion, etc.)
or whether the conclusions were only based on the analysis of the LC3B-II levels.

Therefore, to the best of our knowledge, this review summarizes, for the first time, the recent data
describing a new approach to regulate autophagy during the development of cancers. These data
clearly demonstrate that some cancer cells could profit from the use of a combination of epidrugs and
autophagy inhibitors while, in other cancers, an increase of autophagy, which is frequently observed
following the use of epidrugs, led to increased autophagy cell death.

2. Regulation of Autophagy Genes in Cancer Cells by DNA Methylation

Epigenetics is a transmissible but reversible process controlling gene expression. Among epigenetic
modifications occurring in promoters, DNA methylation is a mark affecting DNA, whereas histone
post-translational modifications modify the chromatin. DNA methylation and histone modifications
both regulate gene transcription by modulating local chromatin structure and selective fixation of
chromatin readers.

2.1. Basics of DNA Methylation

DNA methylation is the process leading to the addition of a methyl group onto the fifth carbon
of a cytosine located in CpG motifs. About 80% of CpGs in the genome are methylated in mammals



Cells 2019, 8, 1656 4 of 30

and this epigenetic mark is generally associated to gene repression and heterochromatin condensation.
DNA methylation is catalyzed by a family of enzymes, called the DNA methyl transferases (DNMTs).
On the one hand, DNMT1 mainly regulates the maintainance of DNA methylation on the newly
synthetized DNA strand following DNA replication using the parental methylated strand as a matrix.
DNMT3A and DNMT3B, on the other hand, are involved in de novo methylation on both stands of
DNA, a process which is independent of the S-phase replication, and their roles during embryogenesis
and inactivation of tumor suppressor genes (TSG) in cancers are well described. Another enzyme,
DNMT3L, does not contain any catalytic domain but has been shown to be able to activate the latter
enzymes. DNA methylation has been closely associated to tumorigenesis. For example, a global DNA
hypomethylation is frequently observed in tumors and is correlated to grade. Local hypomethylation,
as well as local hypermethylation, could also, respectively, lead to the expression of specific genes (e.g.,
oncogenes, antiapoptotic genes, etc.) or the specific inhibition of gene expressions (TSG, proapoptotic
genes, etc.) (for a review, [4]).

2.2. Negative Regulation of Autophagy by DNA Methylation Favors Cancer Cell Aggressiveness

2.2.1. Molecular Mechanisms Inhibiting ATG Gene Expression via DNA Methylation

ChIPsequencing analyses showed in a prostate cancer cell model that the co-repressor DAXX
(death domain associated protein) colocalized with DNMT1 near the TSS (transcriptional start site)
of several ATG-related genes including ULK1 and DAPK3 (death-associated protein kinase 3) [5].
Since DAXX has already been shown to specifically recruit DNMTs on specific target promoters,
these data strongly suggested that DAXX may actively mediate a methylation-dependent silencing
of ATG genes [6]. Moreover, it has been shown that DNMT1 expression levels are strongly increased
in childhood acute lymphatic leukemia (ALL) as compared with healthy individual samples. DNA
digestion of ALL samples using restriction enzymes able to target modified CG sites showed a protection
of digestion of ATG5 and LC3B promoters confirming CG methylation; it has been shown that the
promoter methylation of these genes is correlated with decreased expression levels [7]. Interestingly,
these publications also demonstrated that DNA methylation-dependent inhibition of ATG-related
gene expression, in many different cancer models, led to the promotion of aggressiveness by reducing
autophagy cell death.

2.2.2. Negative Regulation of ATG Genes by DNA Methylation in Cancer Cells

Several genes directly involved in the core of the autophagy process have been shown to be
controlled by DNA methylation in cancers (these genes are listed in the Table 1). Indeed, the expression
of BECN1 (Beclin 1) is frequently inactivated by a loss of heterozygosity (LOH) combined with
a promoter hypermethylation in invasive breast cancers [8]. Similarly, ATG4D, ATG2B, ATG9A,
and ATG9B promoter hypermethylation have been found in most of invasive ductal carcinomas (IDC)
and this increased methylation was correlated to the grade of cancer, a decreased gene expression,
and lymph node infiltration [9]. Hypermethylation of BNIP3 promoter (BCL2/adenovirus E1B 19 kDa
protein-interacting protein 3) was also reported in colorectal carcinomas and a 5-aza-deoxycytidine
(5-azadC) treatment restored its expression in colorectal cancer cells [10]. Similarly, combined 5-aza-dC
and TSA (trichostatin A) treatments restored GL1 (GABARAPL1, GABA type A receptor-associated
protein like 1) expression in breast cancer cell models [11]. In both gastric carcinoma and non-cancerous
mucosae, methylation of the promoter of MAP1LC3v1 (microtubule-associated protein 1 light
chain 3 alpha variant 1, also called LC3B) decreased its expression and was associated with
Helicobacter pilori infection [12]. Since the inhibition of MAP1LC3v1 expression, in gastric cancer
cells, favored proliferation, migration, and invasion of cancer cells, these results suggested that the
methylation of MAP1LC3v1 might contribute to gastric carcinogenesis. The MAP1LC3Av1 gene,
but not MAP1LC3B, was also silenced by methylation in oesophageal squamous cell carcinoma and
overexpression of MAP1LC3Av1 in these cells decreased tumorigenesis in vivo [13].
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Table 1. Specific promoter methylation of ATG genes in cancers (ND, not determined).

Epigenetic
Regulation Gene Gene

Expression Cancer Ref

DNA
hypermethylation

ATG2B Decreased Invasive ductal carcinoma [9]

ATG5 Decreased Childhood acute lymphatic leukemia [7]

ATG4D ND Invasive ductal carcinoma [9]

ATG9A ND Invasive ductal carcinoma [9]

ATG9B Decreased Invasive ductal carcinoma [9]

ATG16L1 ND Medulloblastoma [14]

BECN1 Decreased Invasive ductal carcinoma [8]

BNIP3 Decreased Colorectal cancer cell lines [10]

GL1 Decreased Breast cancer [11]

MAP1LC3 Decreased

Lung cancer cell lines [15]

Childhood acute lymphatic leukemia [7]

Gastric carcinoma [12]

ULK2
ND Gastric carcinoma [12]

Decreased Glioblastoma [16]

DNA
hypomethylation ATG4A Increased Ovarian cancer cell lines [17]

2.2.3. Inhibition of DNA Methylation Rescue ATG Gene Expression and Reverse
Cancer-Related Phenotypes

A similar methylation-dependent gene silencing was also reported in lung cancer cell lines,
but not in lung cancers [15]. Indeed, EGFR-TKI-resistant (epidermal growth factor receptor-tyrosine
kinase inhibitor) lung cancer cells presented a decreased methylation of the promoter of MAP1LC3v1
associated with increased LC3A protein expression [18]. Inhibition of LC3A expression using siRNA
also decreased LC3B-II levels and cell proliferation, whereas a 5-azadC treatment restored LC3A
expression in lung cancer PC9 cells and decreased their response to EGFR-TKI. ULK2 expression
was also shown to be downregulated following promoter methylation in Glioma cell lines and was
restored following a 5-azadC treatment [16]. Moreover, overexpression of ULK2 strongly induced
autophagy-mediated cell death in a reactive oxygen species (ROS)-dependent manner. Indeed, treatment
of ULK2-overexpressing cells with a ROS scavenger, N-acetyl cysteine (NAC), or an inhibitor of the early
steps of autophagy, 3-MA (3-methyladenine), blocked ULK2-induced cell death. Expression of LAPTM5
gene (lysosomal-associated protein multispanning transmembrane 5) coding a protein associated
to lysosomes was downregulated in all (10 out of 10) neuroblastoma tested. LAPTM5 expression
was inversely correlated to promoter methylation and this hypermethylation could be reverted by
a 5-azadC treatment [19]. Indeed, LAPTM5 overexpression provoked a caspase-independent cell
death associated with an accumulation of autophagic vesicles. However, since neither wortmannin,
an autophagy inhibitor, nor siATG5 affected LAPTM5-induced cell death, the authors proposed
that classical autophagy cell death was not involved. Indeed, LAPTM5 overexpression led to
lysosomal destabilization and blocked the autophagy flux, and thus led to cell death [19]. Surprisingly,
a hypomethylation of the ATG4 promoter was frequently associated with the increased expression of
the gene and poor prognosis in ovarian carcinoma patients [17].

2.2.4. Indirect Regulation of Autophagy by DNA Methylation in Cancer Cells

The tumor suppressor gene (TSG) PCDH17 (Protocadherin 17), which is an activator of autophagy,
has been shown to be frequently silenced by promoter hypermethylation in gastric and colorectal cancers,
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but not in normal tissues [20]. Similarly, in hepatocellular carcinoma samples, methylation of the
promoter of BCL2L10 (Bcl-2-like protein 10) was associated with a decreased expression of BCL2L10 [21].
Overexpression of this protein in hepatoma cells restored autophagy in an AMPK-manner and inhibited
cell proliferation and tumor growth in mice models. In glioblastoma cells, the TSG ANKDD1A (ankyrin
repeat and death domain containing 1A) was also frequently silenced by hypermethylation [22].
In normal cells, ANKDD1A interacts with, and activates the expression of FIH1 (factor inhibiting HIF1)
which leads to the downregulation of HIF-1α, and thus to decreased autophagy and induction of cell
death. Indeed, activation of the HIF-1-dependent autophagy pathway in GBMs has been previously
demonstrated to be a survival pathway.

2.2.5. Molecular Mechanism Controlling Cancer Cell Aggressiveness in a DNA Methylation-Mediated
ATG Repression Manner

The treatment of ovarian carcinoma cells with 5-azadC has been shown to induce autophagy
and promote cell death [23]. These effects are highly potentiated when 5-azadC is used together with
SAHA (suberanilohydroxamic acid), an HDACi. The increase in autophagy in these cells has been
demonstrated to be dependent of the induction of expression of the TSG ARH1 (age-related hearing
impairment 1). A treatment of colorectal cancer cells (HT-29) with Se-allylselenocysteine (ASC) has
been shown to induce a demethylation of the PCDH17 promoter associated with an increase in PCDH17
expression and an activation of autophagy [24]. This effect was described to be linked to the inhibitory
effect of ASC on global DNA methylation and DNMT1 expression. Moreover, ASC has been described
to significantly decrease HT-29 tumor xenograft growth in mice. It was also recently demonstrated that
the activation of CDK4 (cyclin dependent kinase 4), which is frequently observed in cancer cells and
linked to the inhibition of senescence, directly phosphorylates DNMT1 and blocks its degradation by
autophagy [25]. On the contrary, inhibition of CDKs with palbociclib in prostate cancer cells led to the
decrease in DNMT1 levels and overall methylation and contributed to the reduction of the resistance
to senescence. Therefore, it has been proposed that the use of CDK inhibitors could be useful in the
future to both restore autophagy, inhibit global DNA methylation, and counteract the activation of E2F
target genes instead of combining multiple molecules and increasing off-targets [26].

3. Histone Deacetylases (HDACs) are Key Regulators of Autophagy

3.1. Basics of Histones Acetylation and Deacetylation

Lysine acetylation of histones 3 and 4 are well described epigenetics marks linked to the activation
of gene transcription. These modifications are added by histone acetyl transferases (HAT) and removed
by histone deacetylases (HDACs). However, it has to be kept in mind that acetylation of nonhistone
proteins is also controlled by the same enzymes. To our knowledge, 18 HDACs have been reported in
the mammalian genome and these proteins have been divided into the following four classes: class I
includes HDAC1, HDAC2, HDAC3, and HDAC8 whichis generally localized in the nucleus; class II
is composed of HDACs which shuttle between the cytoplasm and the nucleus and are subdivided
into class IIa (HDAC4, HDAC5, HDAC7, and HDAC9) and class IIb (HDAC6 and HDAC10); class III
comprises SIRT1 (Sirtuin-1), SIRT2, SIRT3, SIRT4, SIRT5, SIRT6, and SIRT7; and class IV includes
HDAC11. Classes I, II, and IV regroup zinc-dependent HDACs, whereas class III contains nicotinamide
adenine dinucleotide (NAD+)-dependent HDACs. In cancer cells, acetylation and deacetylation
of many promoters has been involved in the specific control of gene expression. Indeed, HDACs
have been implicated in different key processes of cancer, including proliferation, inhibition of cell
differentiation, cell death, angiogenesis, immune evasion, and autophagy (for a review, [27]). Moreover,
HDACis, by modulating these phenotypes, are promising drugs to fight against cancer cells.
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3.2. HDAC Activities Control Autophagy

The effects of the modulation of HDAC expression or HDAC activity on autophagy has been
extensively investigated in cancer cells. Altogether these data, compiled in the Table 2 and detailed
below, suggest that HDACs play a key role in the control of autophagy and cancer-related phenotypes
associated to autophagy. Moreover, a decrease in acetylation of the lysine 16 of histone 4 (H4K16ac)
has been fully correlated to autophagy induction in physiologic conditions and mediated by a loss of
HAT hMOF [28]. Indeed, repression of hMOF was dependent of the autophagy process, since blockade
of autophagy using BafA1 or 3-MA restores hMOF content. Activation of AMPK, following glucose
deprivation, resulted in phosphorylation of acetyl coA synthetase ACSS2 at S659 and modification
of its three-dimensional (3D) structure leading to exposition of a NLS domain [29]. P-ACSS2 could
interact with importin α5 that promoted importin α/importin β/ACSS2 complex formation, and thus
favored ACSS2 nuclear translocation and its further association with TFEB. The ACSS2/TF complex can
incorporate acetate from histone acetylation turnover to produce locally acetylcoA and used it to induce
H3 acetylation in promoters of ATG-related genes, thus, promoting both autophagy (e.g., activation of
lysosome genes CTSA (coding cathepsin A), GBA (β-glucuronidase), GUSB (β-glucosidase), and LAMP1
(lysosomal membrane protein 1) and cell survival. Indeed, invalidation of ACSS2 expression inhibited
cancer cell growth and tumorigenesis in rodent models [30].

Table 2. Described effects of epidrugs on autophagy in cancer cells. Classification from left to right:
Epigenetic target, epidrug; cancer cells used in the studies; cancer origin; and effect on autophagy.

Target Epigenetic Drug Cells Cancer Origin Autophagy Ref

BETi JQ1 KP-4 Pancreas carcinoma Increase ATG gene expression [31]

DNMT 5-aza-dC
Hey Ovarian carcinoma Increase of AVOs [23]

K-562 Chronic myeloid
leukemia

Increase of LC3B-II [32]

EZH2

DZNep RKO, HCT116 Colorectal carcinoma Increase of LC3B-II [33]

GSK126 MG803 Gastric carcinoma Increase of LC3B-II and decrease
of phospo AKT/mTOR/ULK1

[34]

GSK343

U2OS Bone carcinoma Increase of LCB-II, decrease of
P62/SQSTM1

[35]

HCT115,
DLD-1

Colorectal carcinoma Increase of LC3B flux and
autophagic vesicles

[36]

MDA-MB-231 Triple negative
breast cancer

Increase of LC3B and
SQSTM1/P62 fluxes

[37]

1o
K562 Myelogenous

leukemia
Increase of LCB-II [38]

SK-N-BE Neuroblastoma Increase of LCB-II [38]

UNC1999
HT-29, HC-T15 Colon cancer Increase LC3B-II flux [39]

Lovo HCT115,
DLD-1

Colorectal carcinoma Increase LC3B-II flux and
autophagic vesicles

[36]

G9a

BIX01294

U2OS Bone carcinoma Increase of LC3B-II and vesicles [35]

HeLa Cervix carcinoma Increase of LC3B-II and vesicles

MCF-7 Breast (LumA) Increase of BECLIN-1 [40]

TCA8113 Tongue squamous
cell carcinoma

Increase of LC3B-II [41]

BE(2)-C, SHEP1 Neuroblastoma Increase of vesicles and LC3B-II [42]

HCT116 Colorectal carcinoma Increase of vesicles and LC3B-II,
activation of ATG gene expression

[43]

Kaempferol
AGS Gastric carcinoma Increase of LCB-II, decrease of

P62/SQSTM1, autophagic cell
death

[44]
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Table 2. Cont.

Target Epigenetic Drug Cells Cancer Origin Autophagy Ref

HDAC

Apicidin

YD-8,YD-10B,
AT84

Oral squamous
carcinoma

Increase of LC3B-II,
ATG5 and AVOs

[45,46]

YD-15 Mucoepidermoid
carcinoma

Increase of LC3B-II and AVOs,
decreased P62

[47]

Butyrate HeLa Cervix carcinoma Increase of vesicles and
autophagic cell death

[48]

ITF2357
(givinostat) U87, U251 Glioblastoma Increase of LCB-II, ATG5, ATG7,

BECLIN-1, autophagic cell death
[49]

MGCD0103
Primary B-cell
chronic
lymphocytic

B-cell chronic
lymphocytic
leukemia

decrease of LCB-II, ATG5, ATG12,
P62/SQSTM1, BECLIN-1 and of
autophagic flux

[50]

MHY218 MCF-7 Breast (LumA) Increase of LCB-II and BECLIN-1 [51]

Panobinostat
(LBH589)

L428, L540 Hodgkin lymphoma Increase of LCB-II and vesicles [52]

Huh7 Hepatocarcinoma Increase of LCB-II and decrease of
P62/SQSTM1

[53]

MDA-MB-231,
SUM159PT

Triple negative
breast cancer

Increase of LCB-II, BECLIN-1 and
decrease P62/SQSTM1

[54]

OSU-HDAC42 HCCs Hepatocarcinoma Increase of LCB-II and vesicles [55]

SAHA
(Vorinostat)

HeLa Cervix carcinoma Increase of vesicles [48]

RCS, OUMS-27 Chondrosarcoma Increase of LCB-II and vesicles [56]

HCCs Hepatocarcinoma Increase of LCB-II and vesicles [55]

T98G, U251MG,
C6

Glioblastoma Increase of LCB-II, vesicles and
AVOs

[57,58]

MCF-7, MCF-7
Tamox-R

Breast (LumA) Increase of LCB-II, BECLIN-1,
vesicles, AVOs, autophagic cell
death and decrease of
P62/SQSTM1

[59,60]

MDA-MB-231 Triple negative
breast cancer

Increase of LCB-II, BECLIN-1 and
AVOs and decrease of
P62/SQSTM1

[60]

HUT78 T-cell lymphoma Increase of LCB-II [61]

MYLA Cutaneous T-cell
lymphomas

Increase of LCB-II [61]

A2058, A375 melanoma Increase of LCB-II [61]

HCT116,
HCT15

Colorectal carcinoma Increase of LCB-II, ATG5 [61]

µ-myc B-cell lymphoma Increase of LCB-II [62]

4T1 Breast cancer Increase of vesicles [63]

Sulforaphane
MDA-MB-231,
BT549,
MDA-MB-468

Triple negative
breast cancer

Increase of LCB-II, BECLIN-1 and
vesicles and decrease of
P62/SQSTM1

[64]

ZW2-1 HL-60 Leukemia Increase of LCB-II, vesicles [65]
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Table 2. Cont.

Target Epigenetic Drug Cells Cancer Origin Autophagy Ref

HDAC
(class I/II)

FK228
KP-MRT-NS Malignant rhabdoid

tumors
Increase of LC3B-II and vesicles,
autophagic cell death

[66]

Valproate

A2058, A375 Melanoma Increase of LCB-II [61]

Namalwa, Raji,
Daudi, Ramos

Burkitt
leukemia/lymphoma

Increase of LCB-II, BECLIN-1,
vesicles and decrease of
P62/SQSTM1, P-MTOR

[67]

CMK Acute
megakaryocytic
leukemia

Decrease of ATG7 mRNA and
increase of GFP-LC3B vesicles

[68]

Jurkat, H9 T-lymphoma Increase of LCB-II, vesicles and
decrease of P-MTOR

[69]

SU-DHL-4 B-lymphoma Increase of LCB-II, vesicles and
decrease of P-MTOR

[69]

HepG2 Hepatocarcinoma Increase of LCB-II and AVOs [70]

HeLa Cervix carcinoma Increase of LC3B vesicles [28]

JMJD2 ML324 U2OS Bone carcinoma Increase of LCB-II [35]

KDM5B PBIT U2OS Bone carcinoma Increase of LCB-II and
P62/SQSTM1

[35]

KDM6B/
JMJD3 GSKJ4 U2OS Bone carcinoma Increase of LCB-II, decrease of

P62/SQSTM1
[35]

LSD1

GSK-LSD1
U2OS Bone carcinoma Increase of LCB-II, decrease of

P62/SQSTM1
[35]

S2101
SKOV3 Ovarian carcinoma Increase of LCB-II, GFP-LC3B

vesicles and decrease
P62/SQSTM1

[71]

JL1037 THP-1,
Kasumi-1

Acute myeloid
leukemia

Increase of LCB-II and vesicles [72]

NCL1 LnCAP Prostate carcinoma Increase of LCB-II flux, vesicles [73]

SP2509
SHSY5Y Neuroblastoma Increase of LCB-II [74]

ARK2,
TOV112D

Ovarian carcinoma Increase of LCB-II, ATG7 and
P62/SQSTM1

[75]

TCP
SHSY5Y Neuroblastoma Increase of LCB-II and GFP-LC3B

vesicles
[74]

HO8910 Ovarian carcinoma Increase of LCB-II [76]

SIRT1

Sirtinol MCF-7 Breast (LumA) Increase of LCB-II and AVOs [77]

J11-C1 SKOV3 Ovarian carcinoma Increase of LCB-II and BECLIN-1 [78]

15dPGJ2 SKOV3 Ovarian carcinoma Increase of LCB-II [78]

J19 SKOV3 Ovarian carcinoma Increase of LCB-II, ATG3 and
BECLIN-1

[78]

MHY2256

Ishikawa Endometric
carcinoma

Increase of LCB-II, ATG5/7,
BECLIN-1, AVOs

[79]

SKVO3 Breast (LumA) Increase of LCB-II and AVOs [80]

MCF-7 Ovarian carcinoma Increase of LCB-II and AVOs [80]

NCO-90/NCO141 HL60, MT2,
SIT1, Jurkat

Leukemia/T-lymphoma Increase of LCB-II [81]

SIRT6 UBCS039

H1299 Non-small cell lung
carcinoma

Increase of LCB-II, GFP-LC3B
vesicles and autophagic flux

[82]

HeLa Cervix carcinoma Increase of LCB-II, GFP-LC3B
vesicles and autophagic flux

[82]
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Interestingly, acetylation of nonhistone proteins can also control the degradation of specific HDAC
targets by autophagy leading to cancer aggressiveness. For example, PCAF (p300/CBP-associated factor)
has been shown to favor the acetylation of δ-CATENIN and promote its degradation by autophagy
and, consequently, reduce cell growth and mobility [83]. Indeed, overexpression of HDAC1, HDAC4,
or HDAC8 markedly increases δ-CATENIN stabilization, to the same levels as the ones observed with
autophagy inhibitors (CQ or 3-MA), whereas the inhibition of HDACs (classes I and II) with TSA
decreases its stability. In the same way, FOXO1 and 3 transcription factors are effectively described to
control gene expression of proteins implicated in autophagosome formation, direct deacetylation of
FOXO 1 and 3 by sirtuins induces nuclear localization and increases they ability to bind to DNA [84,85].

3.3. HDACi (Classes I and II) Promote Autophagy Cell Death in Cancer Cells

The inhibition of HDACs, using HDACi, has been associated with an increase of autophagy
signaling which could lead to autophagy-linked cell death in many different cancer models (Figure 2).
Indeed, SAHA or butyrate promotes both apoptosis and autophagy-induced cell death in HeLa or
chondrosarcoma cells (RCS, OUMS-27) [48,56]. Similarly, a molecular mechanism explaining the
induction of autophagy by SAHA in breast cancer cells has recently been proposed [60]. Indeed,
SAHA has been described to repress the transcription of the autophagy repressor gene SURVIVIN,
as well as promote the acetylation of the protein leading to its nuclear translocation. Since nuclear
SURVIVIN is less stable than the cytosolic protein and more rapidly degraded, these data might explain
how SAHA could favor autophagy. Moreover, inhibition of SURVIVIN expression using siRNA in
breast cancer cells (MCF-7 and MDA-MB-231) also promoted autophagy, whereas overexpression of
SURVIVIN decreased LC3B puncta [60]; siHDAC2, siHDAC3, and siHDAC6 also decreased SURVIVIN
expression and promoted LC3B-II conversion in these cells, whereas siHDAC1 led to opposite results [60].
Interestingly, SAHA is known to be more specific towards HDAC3 and HDAC6 than towards HDAC1,
and HDAC6 has already been described to be involved in the acetylation of SURVIVIN on K129.
Similarly, panobinostat inhibited cell proliferation and promoted both apoptosis and autophagy in
Huh7 hepatocellular carcinoma cells [53]. Moreover, depletion of HDAC1 in hepatocellular cancer
cells provoked a decrease in cell proliferation and an activation of autophagy-induced cell death [86].
Another HDACi, ZW2-1, also promoted both mitochondria-mediated apoptosis and the number of
autophagy vesicles or the levels of LC3B-II in leukemia HL-60 cells [65].

Interestingly, VPA (valproic acid) and SAHA induced the expression of UVRAG in HCT116
colorectal cells and then limited apoptosis in response to 5-FU [87]. Inhibition of autophagy (with CQ
or in an ATG7 knockdown) also enhanced anticancer properties of SAHA, decreased cell proliferation
and induction of apoptosis in chronic myeloid leukemia cells, or of vorinostat in colorectal cells in
a ROS-dependent manner [88,89]. Indeed, ROS production caused by these compounds led to an
accumulation of ubiquitinylated proteins and, then, to increased cell death. Indeed, in U2OS cells,
ubiquitination of proteins following SAHA treatment was dependent of the protein HR23B (RAD23
(S. Cerevisiae) homolog B) [61] and it has been shown that a decrease of HR23B levels, decreased
ubiquitination-mediated apoptosis. All these data, therefore, support that Class I and II HDACi alone
can promote autophagy and led to autophagy-linked cell death in a ROS-dependent manner in many
different cancer models.
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Figure 2. Model of the balance between autophagy and apoptosis governing cell death. (A) In cancer
cells, the combination of an autophagy-mediated pro-survival signal and weak apoptosis led to cancer
cell survival. (B) An HDACi can promote a slight increase in apoptosis signaling but also a strong
increase in autophagy signaling leading to a balance in favor of autophagy-linked cell death (solid line)
or survival (dotted line) depending of both cancer cell model and autophagy induction level. (C) The
combination of an HDACi and an autophagy inhibitor (autophagy i) in cells resistant to apoptosis, or in
the absence of an external signal of apoptosis, led to a balance in favor of survival via the inhibition of
autophagy-linked cell death. (D) The combination of an HDACi and an autophagy inhibitor (autophagy
i) led to a balance in favor of apoptosis.

3.4. Inhibition of Autophagy Induced by HDACi Blocks Cell Death

SAHA or OSU-HDAC42 also induced autophagy and autophagy-mediated cell death in
hepatocellular carcinoma cells by repressing the AKT/mTOR signaling pathway [5]. However,
HDACi-induced cell death could be limited by the addition of the autophagy inhibitor 3-MA or by the
inhibition of ATG5 expression [55]. In Burkitt leukemia and lymphocyte cell lines, VPA also promoted
autophagy, and its combination with a mTOR inhibitor, temsirolimus, further increased autophagy,
inhibited cell growth, and synergistically promoted autophagy-mediated cell death [67]. Moreover,
inhibition of autophagy using 3-MA, BafA1, or siATG5 decreased growth inhibition mediated by the
combined treatment, suggesting that autophagy could act as an antiproliferative pathway in this model.
In highly metastatic mice breast cancer cells (4T1), SAHA also increased autophagy (accumulation
of LC3B-II and induction of BECLIN1 expression) and potentiated radiation-induced cell death [63].
Indeed, blocking autophagy, using 3-MA, decreased toxicity of the combined treatment. In lung cancer
cell lines (PC-9G and H1975), presenting a resistance to EGFR tyrosine kinase inhibitors due to the
mutation T790M, SAHA restored the sensitivity to these inhibitors by promoting both apoptosis and
autophagy-linked cell death [90]. Inhibition of autophagy by overexpression of spautin-1, which triggers
the ubiquitinylation of BECLIN-1, or with siLC3B or siBECN1, decreased both caspase-dependent and
independent apoptosis induced by the combined EGFR tyrosine kinase inhibitor/SAHA treatment in
these cells. VPA also potentiated the formation of LC3B-GFP vesicles induced by the multi-kinase
inhibitor Pazopanib in sarcoma cell lines. Inhibition of autophagy using siBECN1 or siATG5 abrogated
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VPA/Pazopanib treatment-induced cell death [50]. Romdepsin, another HDACi, also potentiated the
response to Bortezomib in gastric carcinoma cells by inhibiting cell proliferation and increasing both
apoptosis and autophagy-mediated cell death [91]. Indeed, addition of a ROS scavenger or inhibition
of autophagy, using 3-MA, strongly decreased autophagy-induced cell death in these cells (AGS-BDneo
and SNU-719) suggesting that the induction of ROS-dependent autophagy was required for the
efficiency of the combined treatment [91]. Similarly, AR42, a classI/II HDACi, potentiated cell toxicity of
the multi-kinase inhibitor Pazopanib in drug-resistant melanoma cells [92]. Toxicity was mediated by
increased death receptor signaling, ER stress signaling and, mainly, autophagy induction (accumulation
of BECLIN-1 and positive phosphorylation, S318-P-ATG13, S317-P-ULK1, T172-P-AMK in detriment
of negative phosphorylation, S757-P-ULK1, S2448, and S2481-P-mTOR). Moreover, inhibition of
autophagy via siBECN1 or siATG5 decreased AR42 toxicity. Treatment of T/B-lymphoma cell lines with
a combined treatment VPA/doxorubicin increased autophagy (increased LC3B-II and BECLIN-1 levels
and autophagy vesicle number) via the activation of AMPK and the inhibition of mTOR, leading to
cell toxicity [69]. Inhibition of autophagy in Jurkat cells using drugs (3-MA or BafA1), siRNA (BECN1
or ATG5) but not with the caspase inhibitor ZVAD-FMK strongly reduced anti-cell growth effects.
Surprisingly, the inhibition of HDAC1 or HDAC3 expression, using RNAi, had no effect on the
induction of autophagy by VPA/doxorubicin, suggesting that this process was HDAC-independent.
Indeed, VPA induced a drop in IP3 levels, and thus a blockade of calcium in mitochondria leading to
autophagy, independently of HDAC activity [69]. Similar observations reported that VPA/doxorubicin
cotreatment synergistically inhibited cell viability in HepG2 cells, by promoting both apoptosis and
autophagy-mediated cell death in a ROS production-dependent manner, cell death which could be
reversed by addition of NAC or 3-MA [70]. Pemetrexed/sildenafil (P/S) cotreatment also increased
autophagy in non-small cell lung carcinoma (NSCLC) cells (A549) via an induction of CerS6 (ceramide
synthase 6) expression and the disruption of HDAC6 content [93]. The inhibition of autophagy
by siBECN1 or siATG5 decreased P/S-induced toxicity, whereas a cotreatment of P/S with AR42 or
VPA increased cell death. Similarly, the combination of VPA with neratinib increased NSCLC cell
toxicity by inactivating mTORC1 and mTORC2, and thus inducing both autophagy and cell death [94].
Moreover, inhibition of BECN1 or ATG5 expression, or forced expression of an active form of mTOR
severely decreased cell death. Cotreatment of uveal melanoma cells with neratinin/MS275 (entinostat)
also strongly reduced cell viability by inducing apoptosis and autophagy-linked cell death [95].
Indeed, neratinin/MS275 activated AMPK/ULK1 and ATG13 phosphorylation in a ROS-dependent
manner and also severely reduced HDAC6 content leading to cell death. Moreover, overexpression of
mTOR significantly reverted cell toxicity mediated by the neratinin/MS275 cotreatment [95]. Indeed,
these data strongly suggest that in many cancers, inhibition of autophagy decreased cell death and
toxicity mediated by anticancer molecules. As expected, all these data clearly showed, that the
inhibition of autophagy blocked autophagy-linked cell death and may favor cancer cell models
(Figure 2).

3.5. HDACi Treatments Modify the Balance Between Autophagy and Apoptosis

3.5.1. Effects of SAHA and VPA

Although HDACi promote autophagy, which can induce autophagy-mediated cell death (see
above), these molecules also act on apoptosis signaling. Indeed, a balance between autophagy and
apoptosis has frequently been observed. Since autophagy signaling, following HDACi treatment, can
compete with chemical-induced apoptosis for cell survival/death, much data have confirmed that the
inhibition of autophagy can promote cell death mediated apoptosis (Figure 2). Indeed, inhibition of
autophagy using siBECN1 in hepatoma cell lines (HepG2, Hep3B, and PLC/PRF/5) enhanced apoptosis
induced by the cotreatment SAHA-sorafenib (multi-kinase inhibitor) [96]. Similarly, blockade of
panobinostat-induced autophagy using CQ in triple negative breast cancer cells lines (MDA-MB231
and SUM159PT) also led to the accumulation of ubiquitinylated proteins such as SQSTM1/P62-Ub and



Cells 2019, 8, 1656 13 of 30

promoted both cell death in vitro and decrease of tumor growth in xenograph models [54]. In T47D ER
(estrogen receptor) positive breast cancer cells, VPA favored apoptosis instead of growth arrest when
cells were treated with tamoxifen [97]. However, tamoxifen resistant T47D cells presented a higher
autophagy activity, and the inhibition of autophagy in these cells using CQ or BECN1 silencing restored
cell death. In the breast cancer MCF-7 cell line, inhibition of autophagy using 3-MA also potentiated
the antiproliferative effect of HDACi, such as CTS203, and promoted apoptosis via the CASPASE
8-mediated cleavage of BECLIN-1 [98]. However, in MCF-7-tamoxifen resistant cells, SAHA alone
was sufficient to promote autophagy-dependent cell death [59]. Similar results were obtained in
glioblastoma, since the transfection of siATG7 in T98G cells blocked the induction of SAHA-induced
autophagy which was associated to increased LC3 expression and impaired mTOR signaling, and thus
favored apoptosis [57]. Combined SAHA/CQ treatments also promoted apoptosis in glioblastoma
cell models [99]. Surprisingly, inhibition of the early steps of autophagy using 3-MA, decreased
SAHA/CQ-induced cell death suggesting that the accumulation of autophagosomes could be required
to induce cell toxicity. These results, therefore, suggest that the benefits of autophagy inhibition
against cancer cells are not due to a negative regulation of a pro-survival pathway but rather are
dependent on the production of ROS and mitochondria accumulation leading to cell death [99]. Indeed,
other data showed that the combination of SAHA with quinacrine, an anti-malaria and autophagy
inhibitor, also promoted apoptosis in T-cell leukemia Jurkat cell line by decreasing mitochondrial
membrane potential and inhibiting mitophagy [100]. Moreover, a quinacrine/SAHA cotreatment led to
ubiquitinylated mitochondrial aggresomes and cell death, effects which could be reverted using the
antioxidant NAC.

3.5.2. Others HDACi

Another HDACi, apicidin, also promoted both apoptosis and autophagy in oral squamous cell
carcinoma cells and in mucoepidermoid carcinoma YD-15 cells [45–47]. Inhibition of autophagy,
using CQ, in these cells further increased cell death linked to the inhibition of the phosphorylation of
both AKT and mTOR, the accumulation of LC3B-II, ATG7, and a decrease of SQTM1/P62 levels [45–47].
Since apicidin seemed to specifically inhibit HDAC8, a protein frequently overexpressed in oral
squamous cell carcinoma tumors, HDAC8 signaling appeared important for the regulation of cell
proliferation in this model. Inhibition of HDAC classes I-II in rhabdoid tumor cells, using FK228,
also induced autophagy and cell death but the combined inhibition of HDAC and autophagy, with the
additional use of CQ, further increased cell death suggesting that autophagy could partially protect these
cells from death [66]. Similarly, CQ also increased VPA-induced toxicity in AML cells [101]. A specific
inhibition of HDAC8 expression by siRNA in oral squamous cell carcinoma cells (YD-10B and FaDu)
also promoted both apoptosis and an increase in BECLIN-1, ATG5, ATG12, LC3B-II, and acidic vesicle
number, whereas the inhibition of autophagy, using CQ, dramatically increased siHDAC8-induced
cell toxicity [102]. The inhibitor of HDAC, MGCD0103, promoted apoptosis in primary chronic
lymphocytic leukemia (CLL) in detriment of autophagy [50]. Indeed, MGCD0103 activated the
PI3K/AKT/mTOR signaling pathway, decreased ATG gene expression (such as BECN1, UVRAG, ATG7,
ATG12, or GABARAP), and thus decreased autophagy flux in primary chronic lymphocytic leukemia,
but not in PBMCs (peripheral blood mononuclear cells). However, inhibition of autophagy, using
3-MA or CQ, in primary chronic lymphocytic leukemia inhibited cell growth, whereas combined
treatment with MGCD0103 (or VPA) and autophagy inhibitors potentiated cell death [50]. Surprisingly,
the blockade of vorinostat-induced autophagy using shRNA ATG5 or ATG7, in Eµ-myc lymphoma
cells, had no effect on cell death [62]. These data suggested that, in this model, autophagy induction
and cell death mediated by vorinostat were two independent processes.

In 2014, a phase I study tested the combination of SAHA and hydroxychloroquine (HCQ) for the
treatment of solid tumors [103]. This study established a maximum daily tolerated dose of 600 mg
HCQ and 400 mg SAHA. Among the included patients, one with renal carcinoma presented a stable
partial response to treatment. On the basis of the in vitro results, a combination of SAHA with CQ
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remains promising but efforts are needed to specifically identify the population that could benefit from
this treatment. Some additional clinical trials in solid tumors, testing the combination of HDACi and
derivative CQ, are currently active or in recruitment (Table 3) (clinicaltrials.gov).

Table 3. Clinical trials testing autophagy inhibitor and HDACi.

Trial Reference Study Cancer Drugs Status

NCT01023737
Hydroxychloroquine +
vorinostat in advanced

solid tumors
Malignant solid tumor Hydroxychloroquine

Vorinostat
Active,

not recruiting

NCT01266057
Sirolimus or vorinostat

and hydroxychloroquine
in advanced cancer

Advanced cancers
Hydroxychloroquine

Sirolimus
Vorinostat

Active,
not recruiting

NCT03243461

International cooperative
phase III trial of the

HIT-HGG study group
(HIT-HGG-2013)

Glioblastoma WHO
Grade IV

Diffuse Midline Glioma
Histone 3 K27M WHO

Grade IV
Anaplastic Astrocytoma

WHO Grade III

Temozolomide +
Valproic Acid

Temozolomide +
Chloroquine

Recruiting

NCT02316340

Vorinostat Plus
Hydroxychloroquine
versus regorafenib in

colorectal cancer

Colorectal cancer
Vorinostat

Hydroxychloroquine
Regorafenib

Active,
not recruiting

3.5.3. Effect of HDACi/Autophagy and Chemotherapy Combination on Cancer Cells

The inhibition of autophagy, using CQ, severely potentiated cell toxicity mediated by TMZ,
SAHA alone, or the combined TMZ/SAHA treatment in glioma cells (C6, U251MG) [58]. Similarly,
CQ also increased the effects of SAHA in the glioma GL261 rodent model, suggesting that autophagy
induced by SAHA was a protective response against cell death in this type of cancer [58].

In Down syndrome-associated myeloid leukemia cells, VPA treatment was associated with a
downregulation of 409 autophagy-related genes, associated with an inhibition of autophagy flux and
an accumulation of ROS and mitochondria [68]. In MCF-7 cells with acquired resistance to tamoxifen,
the HDACi, MHY218, promoted cell arrest and autophagy cell death and suppressed tumor growth
in vivo.

Moreover, cotreatment of TNBC cells (MDA-MB-231 and MDA-MB-468) with LBH549, an HDACi,
and Mevastatin, a HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase) inhibitor, increased apoptosis
and reduced tumor growth in nude mice models as compared with effects obtained with the molecules
used alone [104]. Indeed, this cotreatment induced autophagy by activating the T172-P-AMPK
phosphorylation and inhibiting mTOR and P70S6K but at the same time, also inhibited autophagy
flux by preventing the formation of the Vsp34/BECLIN-1 complex and decreasing the prenylation
of Rab7 (an active form of the small GTPase involved in autophagosome-lysosome fusion) [104].
SAHA and Olaparib, a PARP (poly (ADP-ribose) polymerase 1) inhibitor, cotreatment decreased cell
viability in triple negative breast cancer cells (MDA-MB-157, MDA-MB-231, and HCC1143) but not in
MDA-MB-468 and HCC70 cells [105]. Indeed, these differences could be explained by the different
levels of PTEN (phosphatase and TENsin homolog) in these cells. Moreover, inhibition of PTEN levels
using siRNA in MDA-MB-231 cells strongly decreased BECLIN-1 and LC3B contents and autophagy
vesicle number.

3.6. Specific Inhibition of Class II HDAC also Promote Autophagy Cell Death

Since panHDACi seem to promote autophagy-mediated cell death, some studies focused on
the role of specific HDACs in this process. Indeed, HDAC4 has been described to deacetylate
STAT1 (signal transducer and activator of transcription 1), and thus suppress autophagy in diabetes

clinicaltrials.gov
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models [106]. Moreover, in multiple myeloma cells, miR-29b specifically targets HDAC4 mRNA and
inhibits HDAC4 expression resulting in the inhibition of cell migration and cell viability and the
induction of autophagy [107]. Indeed, treatment of these cells with the pan-HDAC inhibitor, SAHA,
promoted miR29b expression and blocked pro-cancer HDAC4-associated phenotypes. Interestingly,
a combined treatment of a miR29b mimics and SAHA synergistically reduced cell aggressiveness
in vivo [107]. Inhibition of HDAC5 in HeLa cells using siRNA modulates ROS-related gene expression
and provokes an important ROS production leading to apoptotic cell death and a mechanism of
elimination of damaged mitochondria by mitophagy. HDAC5 inhibition induces also a metabolic
reprogrammation towards glucose and glutamine. Concomitant inhibition of HDAC5 and glutaminase
synthase using LMK235 and BTPE, respectively, reduced significantly tumor growth in vivo [108,109].

3.7. HDAC6 and HDAC10 are Pro-Autophagy Proteins Which Act at the Protein Level

In contrast, HDAC6 is a cytosolic protein favorable to autophagy. HDAC6-/Y mice present
lower autophagy than wild type mice [110]. Moreover, HDAC6 can directly interact with HR23B
and silencing of HDAC6 in NSCLC A549 cells, using RNAi, promotes both HR23B stabilization and
global protein ubiquitination leading to reduced autophagy but increased apoptosis [61]. HDAC6 is
also frequently overexpressed in GBMs and high expression of this protein is associated with poor
prognosis. Indeed, HDAC6 KO sensitizes the U87 GBM cell line to radiotherapy-mediated autophagic
cell death. Indeed, inhibition of autophagy using siBECN1 or 3-MA restores the formation of colonies
in these cells [111]. Nutriment deprivation frequently occurs in solids tumors and its mimics in U87
cells leads to the accumulation of TDP-43 (TAR DNA binding protein), pro-cancer phenotypes and
activation of a HDAC6 dependent autophagy at the expense of apoptosis [112]. Indeed, inhibition of
HDACs using SAHA or inhibition of autophagic flux using 3-MA or BafA1 in TDP-43 overexpressing
cells restores apoptosis. In melanoma cells, AR42 seems to specifically promote HDAC6 degradation by
autophagy [113]. However, sulforaphane, a natural HDACi decreases HDAC6 expression at the mRNA
and induces TNBC cell growth arrest and autophagy [64]. Indeed, a decrease of HDAC6 content
promotes acetylation and activation of PTEN. PTEN silencing using specific siRNA reverses autophagy
markers expression, suggesting that sulforaphane-induced autophagy activation is mediated by
PTEN [64]. Although little is known concerning the role of HDAC7 on autophagy, its inhibition in
mucoepidermoid carcinoma cells, using siRNA also blocks cell proliferation and promotes autophagy
(accumulation of LC3B-II and acidic vesicles and decrease of SQSTM1/P62 content) [114].

An increase expression of HDAC10 is associated with autophagy induction and food restriction
in rodent models or in Huh7 HCC cells treated with the mTOR inhibitor rapamycin [115]. Moreover,
overexpression of HDAC10, in these cells, also promotes autophagy and decreases cell viability.
High HDAC10 expression is also associated with ATGs gene expression in neuroblastoma but also to
poor prognosis [116]. Since CQ addition does not further increase the accumulation of LC3-II caused
by HDAC10 depletion in SK-N-BE(2)-C cells, it has been suggested that HDAC10 promotes autophagy
and its depletion blocks autophagic flux. Indeed, overexpression of HDAC10 protects NB cells against
doxorubicin-mediated toxicity via the acetylation of HSP70. Moreover, cotreatment of SK-N-BE(2)-C
cells with doxorubicin and the specific HDAC10 inhibitor bufexamac restores doxorubicin sensitivity
and cell death [116].

3.8. Ambivalent Role of the SIRT Family (Class III) in Autophagy and Cell Death

In NSCLC (A549 and H1299) cell lines, resveratrol, an activator of SIRT1, increased apoptosis and
autophagy (increase of BECLIN-1 and LC3B-II, decrease of SQSTM1/P62, P-MTOR, and P-AKT) [117].
Interestingly, inhibition of SIRT1, using nicotinamide, or blockade of autophagy, using 3-MA, reduced
resveratrol-mediated autophagy suggesting that autophagy was mediated by SIRT1 and was a
protective event for these cells [117]. Similarly, autophagy-induced by SIRT1 is also involved in 5-FU
(5-fluorouracil) resistance in colorectal cancers. Indeed, overexpression of the lncRNA H19, a sponge of
miRNA, or its accumulation following 5-FU treatment in colorectal cancer cells (HCT8 and HCT116)
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inhibits miR-194-5p, a negative regulator of SIRT1, and thus increases SIRT1 expression and autophagy
(increase of autophagosomes, LC3B-II, and decrease of SQSTM1/P62) [118]. Moreover, inhibition of
autophagy using CQ, abolishes H19 dependent 5-FU resistance in these cells. SIRT1 also controls the
expression of ATGs-related genes. Indeed, SIRT1 could deacetylate the RelA/p65 subunit of NFKB
(nuclear factor kappa B subunit) at K310, and thus block BECN1 repression mediated by NFKB [119].

In contrast, inhibition of SIRT1 can also promote autophagy. Indeed the blockade of sirtinol-induced
autophagy (accumulation of LC3B-II) using 3-MA favors cell toxicity in breast cancer MCF-7 cells [77].
Inhibition of SIRT1 (using siRNA or Ex527 inhibitor) or overexpression of hMOF restores H4K16
acetylation in HeLa cells [28]. However, blockade of autophagy (BafA1, CQ, 3-MA, or ATG7
knock-down) in these cells abrogates rapamycin + Ex524-induced cell death [28]. Inhibition of SIRT1
in endometric cancer cells (Ishikawa) or LumA (MCF-7) cells using MHY2256 also increased apoptosis
and accumulated LC3B-II and eventually BECLIN-1, ATG5, ATG7, and autophagy vesicles [79,80].
Treatment of ovarian cancer cells (SKVO3) with different derivatives of a SIRT1 family inhibitors
(J11-C1, 15dPGJ2, J19, or MHY2256) affected cell survival and also increased autophagy marker
expression (LC3B-II, and/or BECLIN-1, and ATG13), whereas inhibition of autophagy using 3-MA
strongly reduced cell death [78,80].

In leukemia/lymphoma cells, SIRT2 inhibitors NCO-90/NCO-141 also increased LC3B-II content
and apoptosis but neither caspase inhibition nor BafA1 blocked NCO-90/NCO-141-induced cell death
suggesting that additional mechanisms were involved [81]. The SIRT6 inhibitor UBCS039 mediated
activation of autophagy via the induction of ROS accumulation which by ricochet activated the
AMPK-ULK1-mTOR pathway. ROS scavengers prevented UBCS039-mediated autophagy induction.
This process required the deacetylase activity of SIRT6 since the H133Y failed to induce autophagy [82].

4. HMTs and HDMs also Regulate Autophagy in Cancer Cells

Similar to histone acetylation, histone methylation, which occurs on lysine and arginine, has also
been described to be involved in the control of autophagy. Methylation of histones is added by
HMTs (histone methyl transferases) and removed by HDMs (histone demethylases). Some specific
methylations are associated with active transcription (e.g., H3K4me2/3) but others inhibit gene
expression (e.g., H3K27me3). These marks are recognized by epigenetic readers which contribute to
modulate gene expression. The effects of the specific inhibition of HMTs or HDMs by epidrugs are
summarized in Table 2.

4.1. G9a Represses Autophagy Genes Expression in Cancer Cells

The histone methyl transferase G9a has been shown to normally repress LC3B, WIPI, and DPTOR
expression by adding the repressive H3K9me2/3 mark on their promoters but this mark has also
been shown to be removed following starvation [120]. Chemical inhibition, or the use of a specific
siRNA targeting G9a, led to the induction of autophagy in oral squamous cell carcinoma cells [41,120]
or in bone osteosarcoma cells [35]. In breast cancers, G9a expression was inversely correlated to
BECN1 expression and patients with high G9a levels and low BECN1 expression presented the worst
prognosis [40]. In MCF-7 breast cancer cells, BECN1 silencing was correlated to the corecruitment of G9a
and DNMT1 on its promoter. In contrast, chemical inhibition of G9a using the compound BIX-01294
promoted BECN1 expression by inducing the recruitment of NFKB on its promoter in a ROS-dependent
manner. Moreover, mono-methylation of H3K9 by G9a was responsible for the activation of the
serine-glycine biosynthetic pathway via the induction of the transcription of genes in response to
serine deprivation [121]. Indeed, inactivation of G9a led to the depletion of serine and the induction
of autophagy-linked cell death. In contrast, a high expression of G9a in cancer patients resulted in
poor prognosis and elevated serine levels. In neuroblastoma BE(2)-C cells, BIX-01294 also induced the
accumulation of autophagy vesicles and LC3B-II levels, whereas the silencing of G9a, using specific
siRNA, increased both LC3B-I, LC3B-II, ATG3, ATG7, and ATG12 levels [42]. In glioma cells, BIX-01294
treatment resulted in an AKT-dependent increase of HIF-1α (hypoxia-inducible factor 1) expression,
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and therefore to increased PKM2 (pyruvate kinase M2) and TIGAR (TP53-induced glycolysis and
apoptosis regulator) levels leading to LC3B increased expression [122]. In colorectal cancer cells
HCT116, BIX-01294 promoted both an accumulation of GFP-LC3B vesicles and LC3B-II levels but also
the induction of the transcription of ATG3, ATG4A, ATG9A, and LC3B [43]. In AGS gastric cancer
cells, the flavonoid kaempferol induced autophagy (accumulation of LC3B-II, BECLIN-1, and ATG5
and decreased levels of SQSTM1/P62) and autophagy-related cell death linked to the decrease in G9a
content and the stabilization of IRE1 [44]. Indeed, inhibition of autophagy, using 3-MA, CQ, siATG5,
or siLC3B, restored cell viability in kaempferol-treated cells. ChIP (chromatin immuno-precipitation)
experiments also revealed that G9a directly repressed LC3B expression by inducing the addition of the
repressive mark H3K9me2 on its promoter. In contrast, transfection of siG9a restored LC3B expression
in these cells [44].

4.2. Overexpression of EZH2 (Enhancer of Zeste 2 Polycomb Repressive Complex 2 Subunit) in Cancer Cells
Repress Autophagy at the Transcriptional Level

EZH2 has been shown to be recruited onto several autophagy-related promoters (TSC2,
RHOA, DEPTOR, FKBP11, RGS16, and GPI) via the chromatin binding protein MTA2 (metastasis
associated 1 family, member 2). This recruitment led to the inhibition of their expression via
the addition of the repressive mark H3K27me3, and therefore to autophagy blockade [123].
On the one hand, inhibition of EZH2, using GSK343, increased LC3B-II levels and autophagy
in U2OS bone osteosarcoma cells [35]. In the MDA-MB-231 breast cancer cells and A549 lung
cancer cells, GSK343 treatment also increased LC3B-II levels, as well as the number of autophagy
vesicles [37]. On the other hand, SQSTM1/P62 expression was decreased following GSK343
exposure, whereas 3-MA decreased LC3B-II levels and partially blocked GSK343-induced cell
death in these cells. These data supported the idea that EZH2 negatively regulated autophagy
flux, and therefore inhibited cell proliferation [37]. Moreover, inhibition of EZH2 by the chemical
inhibitor 1o (N-((4,6-dimethyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-5-methyl-1-phenyl-1H-pyrazole-
4-carboxamide) in neuroblastoma SK-N-BE cells and leukemia K562 cells decreased cell proliferation
in an autophagy-dependent manner [38]. In colon cancer cells (HT-29 and HCT-15), inhibition of
EZH2, using the compound UNC1999, increased autophagy flux [39]. However, autophagy was
more induced when using a combined UNC1999/Gefitinib (EGFRi) treatment which also promoted
the inhibition of cell growth and apoptosis. Inhibition of EZH2, using siRNA or EZH2i DZNep, in
colorectal cancer cells (RKO and HCT116), also increased LC3B-II levels and the expression of the
ATG-related protein AMBRA1 (autophagy and BECLIN-1 regulator 1) and favored apoptosis but
inhibited cell proliferation and migration [33]. Similar results were obtained in the gastric cancer cells,
in which the EZH2 inhibitor GSK126 promoted autophagy by decreasing phosphorylation of mTOR,
AKT, and ULK1 leading to LC3B-II accumulation. These effects were further increased when GSK126
was combined with gefitinib and provoked cell death and tumor regression. This effect could be
blocked when cells were first treated with the autophagy inhibitor 3-MA [34]. Similarly, in colorectal
cancer cells (Lovo, HCT115, and DLD-1), inhibition of EZH2, using the chemical UNC1999 or GSK343
inhibitors, increased autophagy [36], but UNC1999 was still able to promote autophagy in ATG5-/- cells,
cells treated with 3-MA, or cells expressing a dominant negative mutant of ULK1, suggesting that
EZH2i could induce non-canonical autophagy in this model. Indeed, autophagy was blocked when
DLD-1 cells were first treated with an inhibitor of transcription (actinomycin D) bringing to mind that
EZH2i-mediated autophagy was mainly due to the induction of ATG gene transcription. Inhibition of
LC3B expression using siRNA partially rescued cell viability in UNC1999-treated cells [36].

4.3. miRNA Inhibitors of EZH2 Promote Autophagy and Cell Death

The expression of miR92b and EZH2 were inversely correlated in breast cancers and overexpression
of miR92b favored the accumulation of LC3B-II and GFP-LC3B vesicles and the decrease of P62/SQSTM1
in MCF-7 and MDA-MB-453 cells, during both basal or induced autophagy (starvation or rapamycin
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treatment) [124]. As expected, inhibition of EZH2 in the same models also led to LC3B-II and autophagy
vesicle accumulation. Moreover, overexpression of miR29b strongly decreased cell proliferation,
migration, and invasion, suggesting that EZH2 negatively controlled autophagy and inhibited
its pro-cancer effects [124]. Similarly, the expression of miR101-3p was decreased in endometrial
carcinoma (EC) as compared with normal adjacent tissues and miR101-3p was shown to negatively
regulate EZH2 expression [125]. Moreover, both suppression of EZH2 expression and miR101-3p
increased LC3B-II and BECLIN-1 levels [125]. In laryngeal carcinoma, a low expression of miR101
was also correlated to a high expression of EZH2. However, in this model, the ectopic expression of
miR101 not only reduced EZH2 expression and cell proliferation but also decreased LC3B-II/LC3B-I
levels and accumulated SQSTM1/P62, suggesting that miR101 could favor or inhibit autophagy
depending of the cell model [126]. In glioma, a low expression of miR340 was associated with a poor
prognosis, whereas overexpression of miR340 strongly decreased EZH2 expression and inhibited cell
proliferation, migration, and invasion [127]. Moreover, forced miR340 expression also decreased
phosphorylation of AKT and led to apoptosis, accumulation of LC3B-II, and decreased SQSTM1/P62
contents. In cholangiocarcinoma (CCA) cells (MZChA1, KBMC, and HuCCT1), the specific EZH2
miRNA, miR124, was also described to be decreased in tumors as compared with normal tissues [128].
miR124 or siEZH2 transfection promoted apoptosis and the accumulation of LC3B-II, BECLIN-1,
and LC3B-positive vesicles in these cells. Cotransfection of siATG5 (or siBECN-1) with siEZH2 (or with
miR124) inhibited cell death linked to the inhibition of EZH2 [128].

4.4. lncRNA Modulators of EZH2 Expression Modulate Autophagy in Cancer Cells at the Transcription and
Post-Transcriptional Levels

In chondrosarcoma, both the expression of EZH2 and its positive regulator lncRNA HOTAIR were
increased [129]. Inhibition of lncRNA HOTAIR reduced cell proliferation, the number of autophagy
vesicles and LC3B-II levels in benefit of an activation of apoptosis. Indeed, the lncRNA HOTAIR
could repress miR454-3p expression, in a DNA methylation manner, by inducing the recruitment of
the DNMT1/EZH2 complex on the miR454-3p promoter. The levels of miR454-3p directly affected
autophagy, since this miRNA can bind to the 3′-UTR of the ATG12 transcript, and thus induce its
degradation [129]. Similarly, the levels of EZH2 were increased in lung cancers as compared with
normal tissues and its levels were correlated to the ones of the lncRNA MSTO2P, (a new positive
regulator of EZH2 whose mechanism is unknown), data which were coherent since lncRNA MSTO2P
can positively regulate EZH2 [130]. As expected, the inactivation of lncRNA MSTO2P reduced EZH2
expression, as well as cell proliferation and, surprisingly, also autophagy markers (ATG5, LC3B-I,
and LC3B-II), suggesting that EZH2 promoted autophagy in this model.

4.5. LSD1 (Lysine-Specific Demethylase-1) Negatively Regulates Autophagy at the Protein Level in
Cancer Cells

An increase in expression of the histone demethylase LSD1 was frequently observed in cancers.
Moreover, a high expression of LSD1 in neuroblastoma was correlated with poor prognosis [74].
Similarly, the expression of LSD1 was also increased in acute myeloid leukemia [72]. In neuroblastoma
SH-SY5Y cells, inhibition of LSD1, using chemical inhibitors (TCP or SP2509), blocked LSD1 recruitment
onto the SESN2 (sestrin2) promoter and induced its expression. Since SESN2 is an inhibitor of mTORC1,
this led to the restoration of autophagy in these cells [74]. Similarly, inhibition of LSD1 in the U2OS
bone osteosarcoma cells, using GSK-LSD1 or 2-PCPA, restored autophagy via the activation of the
transcription of NURP1 and P62/SQSTM1 manner [35]. However, the inhibition of ULK1 or BECN-1 using
siRNA had no effect on autophagy linked to LSD1-inhibition suggesting that the repression of autophagy
mediated by LSD1 mainly occurs at the protein level [35]. In ovarian and endometrial carcinoma
cells (ARK2, TOV112D), inhibition of LSD1, using siRNA or SP2509, increased ATG7, P62/SQSTM1,
and LC3B-II levels and induced GFP-LC3B vesicle formation [75]. Moreover, LSD1 is known to interact
with P62/SQSTM1 in the nucleus where it controls its stability in a methylation-independent manner.
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Inactivation of both P62/SQSTM1 and LSD1 in these cells strongly reduced tumor growth in rodent
models. These results strongly supported the idea that the autophagy pathway regulated by LSD1 was
independent of BECN-1 and different from the autophagy process induced by starvation. Inhibition of
LSD1 in AML cells, using the JL1037 inhibitor, provoked LC3B-II and autophagosome accumulation [72].
Moreover, combination of JL1037 with CQ favored apoptosis in this cell model. In the ovarian carcinoma
SKOV3 cells, inhibition of LSD1, using the S2101 inhibitor, activated autophagy by decreasing the
phosphorylation of AKT, MTOR, and P70S6K and led to a decrease in P62/SQSTM1 and LC3B-II levels,
as well as the number of LC3B-positive vesicles [71]. This effect was accompanied with an increase
in apoptosis in these cells. Similarly, inhibition of LSD1, using the NCL1 inhibitor, in the prostate
cancer LnCAP cells also promoted apoptosis and induced both LC3B-II levels and autophagosome
accumulation [73]. Treatment of LnCAP-injected mice with NCL1 decreased tumor growth.

Some recent data suggested that autophagy could also be regulated by additional histone
demethylases in cancer cells. Indeed, inhibition of KDM6B, using GSKJ4, JMD2, using ML324, or
KDM5B, using PBIT, also increased LC3B-II levels and autophagy in U2OS bone osteosarcoma cells [35].
Similarly, in yeasts, Rph1 (KDM4 homolog) negatively regulated autophagy, in a demethylation
independent manner, a process that could also be important in mammals to block autophagy in
nutrient-rich conditions [131].

4.6. SKP2-Dependent Repression of CARM1(Coactivator-Associated Arginine Methyltransferase 1) Inhibit
Autophagy at the Transcriptional Level in Cancer Cells

Nutriment starvation is a well-known autophagy inducer. Indeed, starvation led to
AMPK-dependent phosphorylation of FOXO3a in the nucleus, and consequently to the repression of
the SKP2 (S-phase kinase-associated protein 2) [132]. SKP2 expression was shown to be increased in
HCC as compared with normal adjacent tissues and a high expression of SKP2 in cells was correlated
to increased proliferation and migration [133]. Since SKP2 is a subunit of an E3 ubiquitin ligase
regulating the stability of the nuclear methyltransferase CARM1, starvation-mediated repression of
SKP2 resulted in an increase in CARM1 levels and its target, the permissive mark H3R17me2 [132,133].
The concomitant presence of this epigenetic mark with the autophagy transcription factor TFEB on
ATG-related genes contributed to the activation of autophagy [132]. Indeed, among these targets,
transcription of MAP1LC3B and ATG14 genes are directly controlled by this CARM1/TFEB during
starvation, a process that could be also involved in cancers when cancer cells are frequently deprived.

5. Other Epigenetic Regulators Involved in the Control of Autophagy

5.1. The H2Bub1 Mark Positively Regulates Autophagy

A recent, and very elegant, paper revealed the role of the mono-ubiquitination of H2B (H2Bub1)
and detailed the multi-epigenetic steps during starvation-induced autophagy [134]. Indeed, the authors
showed that starvation in HEK293T cells induced a loss of expression of de novo DNMT3a and
DNMT3b, but not of DNMT1, leading to the demethylation of the gene and the expression and
activation of the deubiquitinase USP44. This increase in USP44 induced the degradation of H2Bub1
and the decrease in its recruitment onto ATG-related genes resulting in their activation. Interestingly,
H2Bub1 acted upstream of hMOF since the inhibition of H2Bub1 provoked the inhibition of the
acetylation of H4K16, a process associated to induced autophagy, but the inhibition of hMOF failed to
modify the levels of H2Bub1.

5.2. BRD4 (Bromodomain and Extra-Terminal Domain) Represses Autophagy at the Transcriptional Level

In KP-4 cells, basal autophagy was associated with the repression of ATG-related genes
mediated by BRD4 (bromodomain-containing protein 4) [31]. Indeed, BRD4 bound acetylated
residues and, particularly, the positive mark H4K16ac processed by hMOF and, then, recruited the
histone methyltransferase G9a in order to repress the expression of many different autophagy genes
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(BECN1, VMP1, PIK3C3, WIPI1, ATG2A, ATG9B, MAP1LC3B, SQSTM1, OPTN, MAP1LC3C, TECPR2,
and SEC24D) via the addition of the repressive mark H3K9me2 on their promoters [31]. In contrast,
the inhibition of BRD4, using specific siRNAs or the BET inhibitor JQ1, restored the expression of
ATG-related genes. Although BET inhibitors are promising drugs for acute myeloid leukemia treatment,
leukemia stem cells (LSC) appeared highly resistant, therefore, compromising the efficiency of these new
protocols. Indeed, in JQ1-resistant leukemia stem cells, BECN1 expression, LC3B-II levels, and global
autophagy were increased [135]. Chemical inhibition of autophagy, transfection of siRNA BECN1,
or AMPK inhibition using compound C restored apoptosis in leukemia stem cells treated with JQ1
suggesting that, in these cells, autophagy acted as a pro-survival process which could be counteracted
by a combined treatment [135].

6. Conclusions

Although autophagy has been considered for a long time to be mostly regulated at the
post-translational level, it is now widely accepted that gene regulation is also determinant for
the regulation of autophagy. Moreover, epigenetic modifications, DNA methylation, as well as
post-translational histone modifications, events which are also highly involved in cancer promotion and
regulation, are more and more linked to autophagy regulation (Figure 3). Indeed, HDACs appeared to
repress autophagy signaling while HDACi could improve pro-survival signals mediated by autophagy,
as well as autophagy-linked cell death. These data suggested that the inhibition of autophagy in
combination with HDACi can be used against tumor cells still capable of apoptosis. Additionally, G9a,
EZH2, and LSD1, which are key epigenetic repressors frequently overexpressed in cancer cells and
associated with cancer-related phenotypes, have been recently suggested as new potential targets to
restore autophagy cell death. Considering the importance of the autophagy-epigenetics links in cancer,
it is more than likely that new specific treatments combining autophagy and epigenetic targets will be
developed in the near future in order to improve anticancer therapies.
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Figure 3. Epigenetic regulation of autophagy in cancer cells. Epigenetic actors and their action on
autophagy and cell death are summarized in this figure. A direct transcriptional regulation could be
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mediated by epigenetic modifiers to promote or inhibit ATG-related genes. An indirect regulation
can also be mediated by histones deacetylases and their action on the autophagy process and ROS
production. (A) Effects of autophagy inducers/inhibitors or ROS on autophagy-linked cell death or
survival; (B) Effects of HDACi and acetylation/deacetylation signaling on autophagy-linked cell death
or survival; (C) Effects of histone and DNA methylation regulation and histone ubiquitinylation on
autophagy-linked cell death or survival. Inhibitors and miRNA specific of epigenetic modifiers are
indicated when their roles have been described in the regulation of autophagy. Arrows represent
a positive action on the target whereas bar-headed arrows represent an inhibition. Dotted lines are
indicated when the action on the target seems indirect. (clear green: inhibitors; yellow: HDACs;
blue: HMTs, pink: HATs; grey: HDMs, purple: other epigenetic proteins).
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1), LAPTM5 gene (Lysosomal-associated protein multispanning transmembrane 5), (loss of heterozygosity),
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