

Supplementray Material: Loss of the Tks4 scaffold protein induces epithelial-mesenchymal transition-like changes in human colon cancer cells

Figure S1. Genotyping with Eco72I. (**A**) Schematic representation of Eco72I digestion in wild-type alleles. Upon digestion PCR products with unmodified exon2 sequences are halved into two 673 basepair long fractions. (**B**) Comparison of WT and KO, undigested and digested sequences. Wild type sequences are effectively halved, while KO sequences remainintact. M= Quick-Load® Purple 1 kb Plus DNA Ladder (New England Biolabs).

Α

Allele1:

ATGO	CGCCC	GCGGCG	GCAGO	CATCG	GGAG	GTGAA	GGTG	CTAGA	CGTG	CAGA	AGC	GGC	GGGT	GCC	CAA	CAA	GCA	TTA	TGT	СТАС	CATCA	٩TC	CGGG	TCGC	GC	GAGC	CCC	TGA
М	P P	RF	S S		/)E	V K	 V 	LD	V	QI	ΚI	R	R \	/ P	۲ (K	H	\ \	() V	Y	I	Ι	R	VA		R A	P	D
	Exon1																						Exon2					<u> </u>
TGCT	сттс	GTCCAG	GATCA	тссто	GATCG	ACAAG	GACCG	GCTTC	CATC	CGAG	TAC	GTG	СТСС	стс	GAT	GCG/	ATG	TTI	CGC	TTGG	GTGGT	ГCG	AATG	GGCA	GG	TAGC	CGG	ATC
A	L	R P	DH	I)P	DR	Q	DR	L	P S	E	Y	۷	L	A	R	C	כ כ	V	S	L	G	R	M	G	R	*		
}»											Ex	(on2	2															<u> </u>
${\tt AAGCGTATGCAGCCGCCGCATTGCATCAGCCATGATGGATACTTTCTCGGCAGGAGCAACGTGGTCCAGTGGCTCCACCGAGGCCATTTACCGGCGCTACAGCAAGT}$															AGT													
}»											Ex	(on2	2															<u> </u>
TTTTTGACCTCCAG																												
Exon2 STOP(*) codon distance from the final exon-junction complex: 1163bp																												
В																												
Alle	le2:																											
ATGCCGCCGCGGCGCAGCATCGTGGAGGTGAAGGTGCTAGACGTGCAGAAGCGGCGGGTGCCCAACAAGCATTATGTCTACATCGTGGTCCAGCGGCTCCACC														ACC														
M P P R R S I V E V K V L D V Q K R R V P N K H Y V Y I I R G P A A P P														P														
							Ex	(on1															Exo	n2				<u> </u>
GAGGCCATTTACCGGCGCTACAGCAAGTTTTTTGACCTCCAGATGCAGATGTTGGACAAATTTCCCATGGAAGGAGGACAGAAGGACCCCAAGCAGCGGATCATCCC														200														
			0 /		<u> </u>	-		5			C				<u> </u>	•								5	5	U	5	5
<u>}</u> »				Exon2														Exe	on3									<u> </u>
CTTT	CTCC	ACCTA	ACAT	тотот	TCAC		CCC 4	CATCO		CCTC	CCT	CTC			TCA	TAC	~	TT (ATC		CTCI		<u>_</u>					
PFCQVRFSSTANGATETTTENAACGAAGCAAGCCACATCGGGACGTGGCTGTCAAACGCCTGATACCCATTGATGATACTGTAAG																												
> E.	(0)2									Exo	n4																	

STOP(*) codon distance from the final exon-junction complex: 1059bp

Figure S2. CRISPR/Cas9 modified alleles of *SH3PXD2B* gene pasted into the wild type open reading frame. (A) The modified second exon in Allele1 causes a premature STOP codon 1163 bases upstream from the final exon-junction complex. (B) The modified second exon in Allele2 causes a premature STOP codon 1059 bases upstream from the final exon-junction complex.

Figure S3. Original uncropped western blot pictures of membranes displayed in Figure 1

Figure S4. Original uncropped western blot pictures of membranes displayed in Figure 2.

Figure S5. P-values of cell motility measurements and spheroid analysis experiments. (**A**) P-values of experimental data displayed in Figure 3A. Significance (p-value) of difference between the average speeds of wild type and Tks4-KO cells, calculated for each time point of two dimensional random motility assays. P-values were obtained using unpaired Student's t-tests, calculated for a pool of n=27 microscopic fields. (**B**) P-values of experimental data displayed in Figure 3B. Significance (p-value) of difference between the average net cell displacements of wild type and Tks4-KO cells, calculated for each time point of two dimensional random motility assays. P-values were obtained using unpaired Student's t-tests, calculated for a pool of n=20 manually followed cells. (**C**) P-values of experimental data displayed in Figure 4B. Significance (p-value) of difference between the average and Tks4-KO cells, calculated for each time point of spheroid formation assays. P-values were obtained using unpaired Student's t-tests, calculated for a pool of n=9 microscopic fields. (**D**) P-values of experimental data displayed in Figure 4B. Significance (p-value) of difference (p-value) of difference between the average speeds of wild type and Tks4-KO cells, calculated for a pool of n=9 microscopic fields. (**D**) P-values of experimental data displayed in Figure 4B. Significance (p-value) of difference between the average speeds of wild type and Tks4-KO cells, calculated for each time point of spheroid formation assays. P-values were obtained using unpaired Student's t-tests, calculated for each time point of two experimental data displayed in Figure 4D Significance (p-value) of difference between the average speeds of wild type and Tks4-KO cells, calculated for each time point of three dimensional collagen invasion assays. P-values were obtained using unpaired Student's t-tests, calculated for a pool of n=3 wild type and Tks4-KO microscopic fields.

HCT116-Tks4 cells

Figure S6. Average confluency of Tks4-WT and Tks4-KO HCT116 cultures, as a function of time. Solid lines represents an average of n=3 independent measurements, each containing 27 microscopic fields. shaded area represents SEM.

Figure S7. Time development of cluster size distribution in Tks4-WT and Tks4-KO monolayer cultures. The shade of color indicates cluster counts according to the calibration palette. Single cells and small cell clusters are prevalent in Tks4-KO cultures, as reflected by the persistent peak of the distribution at 1000 μ m² (arrowhead).

Figure S8. Number of invading cells from the central aggregate at 3.5 days. Error bars represent SEM, sample size is n=18 and n=14, for wild type and Tks4-KO spheroids respectively. Statistical analysis yielded p<0.0036, by using unpaired Student's t-test.

Figure S9. Original uncropped western blot pictures of membranes displayed in Figure 5C.

Figure S10. Original uncropped western blot pictures of membranes displayed in Figure 5D.