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Abstract: The proteins of the BCL2 family are key players in multiple cellular processes, chief amongst
them being the regulation of mitochondrial integrity and apoptotic cell death. These proteins establish
an intricate interaction network that expands both the cytosol and the surface of organelles to dictate
the cell fate. The complexity and unpredictability of the BCL2 interactome resides in the large number
of family members and of interaction surfaces, as well as on their different behaviours in solution and
in the membrane. Although our current structural knowledge of the BCL2 proteins has been proven
therapeutically relevant, the precise structure of membrane-bound complexes and the regulatory
effect that membrane lipids exert over these proteins remain key questions in the field. Here, we
discuss the complexity of BCL2 interactome, the new insights, and the black matter in the field.
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Perspective in BCL2 Universe

The proteins of the BCL2 family are the main regulators of the intrinsic apoptotic pathway and
constitute a fundamental part of tumorigenic cell dismissal and cancer treatment effectiveness [1,2].
Apoptosis effectors, or BAX-type proteins, are the most effective removers of damaged cells, while
their antiapoptotic counterparts, or BCL2-type proteins, inhibit apoptotic cell death and play a role in
chemotherapeutic resistance [3,4]. The opposing forces between BAX- and BCL2-type proteins are
tuned by the so-called BH3-only proteins, a third subgroup of this family of proteins that promotes
apoptosis by activating BAX-type proteins and/or blocking antiapoptotic proteins [5].

The proteins of the BCL2 family interact with each other by a BH3-into-groove mechanism, where
the BH3 domain of one protomer binds to the hydrophobic groove of another protomer, thereby
forming homo and heterodimers to control their apoptotic function. Under this premise several
models have emerged, with differences in binding affinities amongst subgroups and the relevancy
of the membrane environment. These models propose that antiapoptotic proteins repress apoptosis
neutralizing either BH3-only activators (direct model, MODE 1) or BAX-type proteins (indirect model,
MODE 2) [6–14]. In addition, retrotranslocation or inhibition MODE 0 postulates that BCL2-type
proteins inhibit apoptosis by keeping BAX-type proteins inactive through continuous retrotranslocation
from the mitochondrial surface into the cytosol [15–19]. These models, however, do not consider an
enigmatic property shared by all BCL2-type proteins, which is their ability to promote, rather than
inhibit, apoptosis under specific conditions (PRODEATH MODE) [15,20–22]. The complex interaction
network that orchestrates these proteins’ actions is commonly termed the BCL2 interactome, which
constitutes an intricate puzzle yet unresolved (Figure 1).
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membrane. The membrane and its constituting lipids affect the pieces of the BCL2 puzzle by 
modulating the affinities between the different family members [23,24] or by altering their canonical 
phenotype or function, for example switching their antiapoptotic nature to proapoptotic activity [15]. 
In addition to the membrane environment, posttranslational modifications have also been shown to 
modify the affinity and function of the BCL2 family members [13,25,26]. These modifications include 
phosphorylation, proteolytic cleavage, ubiquitination, and proteosomal degradation [14,25]. Second, 
despite common consensus on the importance of the BH3:groove in mediating the interaction 
between proteins, additional non-canonical surfaces exist that regulate the BCL2 interactome (e.g., 
rear binding site, N-terminal alpha helix 1 and tail anchoring domain) [27–31]. Third, these proteins 
can assemble into defined supramolecular structures that expand their role in cell death beyond 
cytochrome c release [32,33]. Indeed, the oligomeric apoptosis effectors BAX and BAK are able to 
mediate mitochondrial DNA (mtDNA) release and an immunological response [34–36]. Finally, some 
of the BCL2 puzzle’s pieces participate in other cellular puzzles, as BCL2 proteins are reported to 
have many other functions which are not directly related to apoptotic cell death. For example, these 
proteins elicit critical roles in normal cell physiology related to metabolism, mitophagy, 
mitochondrial dynamics and energetics, and calcium homeostasis, amongst others [37–40]. 

 
Figure 1. The BCL2 puzzle. Canonical BAX/BAK activation. Activation of BAX-type proteins at the 
mitochondrial outer membrane (MOM) by the BH3 only proteins induces their oligomerization, 
formation of supramolecular structures (lines, arcs and rings) and pore formation with the consequent 
release of apoptogenic factors. The apoptotic repressors, block this process by either interacting with 
BH3 only proteins (MODE1) or with BAX-type proteins in the membrane (MODE 2) or translocating 
them to the cytosol (MODE 0). Non canonical cell death or PRODEATH MODE of BCL2-type proteins. Under 
cellular stress, BCL2-type proteins can switch their antiapoptotic phenotype, directly eliciting rather 
than inhibiting membrane permeabilization. PL: phospholipids; grey balls: apoptogenic factors. 

Years of extensive research efforts have shed light on important mechanistic and structural 
details of the BCL2 family proteins [41–43]. Understanding the atomic structure and interaction 
network of these proteins has provided fundamental opportunities for the rational design of drugs 
that specifically target them. These compounds, commonly known as BH3 mimetics, are molecules 
based on the BH3 domain of BH3-only proteins designed to interact with specific BCL2 family 
members [44]. BH3 mimetics exhibit enhanced lethal activity in primed cells, which contain high 
levels of antiapoptotic and proapoptotic effectors [44–46]. Chief amongst them is Venetoclax (or ABT-
199); based on the BH3 only protein BAD, this compound efficiently neutralizes BCL2, thereby 

Figure 1. The BCL2 puzzle. Canonical BAX/BAK activation. Activation of BAX-type proteins at the
mitochondrial outer membrane (MOM) by the BH3 only proteins induces their oligomerization,
formation of supramolecular structures (lines, arcs and rings) and pore formation with the consequent
release of apoptogenic factors. The apoptotic repressors, block this process by either interacting with
BH3 only proteins (MODE1) or with BAX-type proteins in the membrane (MODE 2) or translocating
them to the cytosol (MODE 0). Non canonical cell death or PRODEATH MODE of BCL2-type proteins.
Under cellular stress, BCL2-type proteins can switch their antiapoptotic phenotype, directly eliciting
rather than inhibiting membrane permeabilization. PL: phospholipids; grey balls: apoptogenic factors.

There are multiple reasons why, in spite of the pieces of this puzzle being defined long ago,
it remains impossible to unequivocally model BCL2-mediated cell fate. First, BCL2 proteins perform
their function, that is, regulating mitochondrial outer membrane (MOM) permeabilization (MOMP)
to release apoptogenic factors into the cytosol and therefore induce apoptosis, when targeted to
the membrane. The membrane and its constituting lipids affect the pieces of the BCL2 puzzle by
modulating the affinities between the different family members [23,24] or by altering their canonical
phenotype or function, for example switching their antiapoptotic nature to proapoptotic activity [15].
In addition to the membrane environment, posttranslational modifications have also been shown
to modify the affinity and function of the BCL2 family members [13,25,26]. These modifications
include phosphorylation, proteolytic cleavage, ubiquitination, and proteosomal degradation [14,25].
Second, despite common consensus on the importance of the BH3:groove in mediating the interaction
between proteins, additional non-canonical surfaces exist that regulate the BCL2 interactome (e.g.,
rear binding site, N-terminal alpha helix 1 and tail anchoring domain) [27–31]. Third, these proteins
can assemble into defined supramolecular structures that expand their role in cell death beyond
cytochrome c release [32,33]. Indeed, the oligomeric apoptosis effectors BAX and BAK are able to
mediate mitochondrial DNA (mtDNA) release and an immunological response [34–36]. Finally, some
of the BCL2 puzzle’s pieces participate in other cellular puzzles, as BCL2 proteins are reported to
have many other functions which are not directly related to apoptotic cell death. For example, these
proteins elicit critical roles in normal cell physiology related to metabolism, mitophagy, mitochondrial
dynamics and energetics, and calcium homeostasis, amongst others [37–40].
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Years of extensive research efforts have shed light on important mechanistic and structural details
of the BCL2 family proteins [41–43]. Understanding the atomic structure and interaction network of
these proteins has provided fundamental opportunities for the rational design of drugs that specifically
target them. These compounds, commonly known as BH3 mimetics, are molecules based on the
BH3 domain of BH3-only proteins designed to interact with specific BCL2 family members [44]. BH3
mimetics exhibit enhanced lethal activity in primed cells, which contain high levels of antiapoptotic
and proapoptotic effectors [44–46]. Chief amongst them is Venetoclax (or ABT-199); based on the BH3
only protein BAD, this compound efficiently neutralizes BCL2, thereby leading to BAX/BAK activation
and to MOMP to induce apoptosis [47,48]. Although this drug has been recently approved to treat
chronic lymphoid leukaemia (CLL), acute myeloid leukaemia (AML) and small lymphocytic lymphoma
(SLL) [47–54], its applicability for cancer treatment is limited and chemotherapy still remains the
most frequent alternative [55]. There are many possible explanations for the partial efficiency of BH3
mimetics, including cancer heterogeneity, the lack on specific BH3-mimetics optimized for the different
BCL2 members governing cell death resistance in the tumor, and mutations or posttranslational
modification in the BCL2 family members that alter their canonical function and structure [45,49,55].
On the other hand, these drugs were designed based on solution studies where the regulatory role of
the membrane is neglected. Moreover, some BH3-only proteins like BIMs, a shorter isoform of the
BH3-only protein BIM, are reported to kill mainly due to their membrane targeting, rather than due to
interaction with the antiapoptotic family members [56].

The exact pattern of interactions comprising the BCL2 interactome and the precise structure
of the membrane-bound complexes, particularly considering the MOM environment, remains
controversial [14,57,58]. Regarding the proapoptotic effectors BAX and BAK, there is solid evidence
suggesting that their active conformations arrange into toroidal pores of proteo-lipidic nature and
tunable size [59–62]. The structural reorganization driving BAX-type proteins from the inactive to the
fully activated conformation at the MOM is considered the “holy grail” of apoptosis research [63]. These
events are usually divided into: (i) early activation steps; involving TM dislodgement and N terminal
exposure [64–66], (ii) BH3 domain exposure, which occurs due to BAX/BAK reorganization in two
different parts (dimerization and piercing domains) [5,67–70], (iii) oligomerization and redistribution
into apoptotic foci [33,70–73] and (iv) pore formation [59,74] (Figure 2). Importantly, these events are
regulated, at least partially, by mitochondrial membranes. Although there is literature describing the
topology of active BAX/BAK in the membrane [70,71,73], we still fail to understand the contribution of
mitochondrial lipids in modulating their activation, oligomerization and formation of supramolecular
structures at apoptotic foci during and after MOMP. BAX was recently reported to induce mtDNA
release [34,36]. This renders mitochondrial apoptosis an unexpected immunological relevance, which
changes the current paradigm and expands the horizons of BCL2-based therapeutics.

Concerning the antiapoptotic members of the BCL2 family, membrane lipid composition can
enhance their binding affinity for the proapoptotic members [24,75] or ablate their inhibition capacity
and release a hidden pore forming activity [15,20,21,76]. Although the transition of antiapoptotic
BCL2 members to pro-death molecules remains poorly understood, the therapeutic potential of this
phenotypic reversion should not be neglected, given that their overexpression is key in promoting
resistance to chemotherapy. The membrane permeabilizing activity of BCL2-type proteins has
similarities and differences to that of BAX-type proteins. Structurally, the pores formed by BCL2-type
proteins are smaller, and do not require canonical BH3:groove interactions for oligomerization and pore
opening [15,20,77]. Similarly to BAX-type proteins, the amphipathic alpha helix 5 of some antiapoptotic
member has been reported to mediate their membrane-permeabilizing function [15,20]. Mechanistically,
stimulation of the phenotypic reversion of BCL2- type proteins is diverse, including changes in pH,
caspase and µcalpain cleavage, and membrane lipid composition amongst others [15,76,78,79].
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Figure 2. BAX/BAK structural organization during their activation process. (a) Protein disposition in 
solution. BAX is represented with nine cylinders corresponding to its nine α-helixes and based on [41]. 
(b) BAX/BAK early activation steps: including TM dislodgement and N terminal exposure (depicted in 
green and cyan respectively). (c) BAX/BAK reorganization in two different parts (dimerization and 
piercing domains) and BH3 domain exposure (depicted in orange). (d) Oligomerization and pore 
formation, structural representation of membrane embedded BAX/BAK in the context of toroidal pore 

Figure 2. BAX/BAK structural organization during their activation process. (a) Protein disposition in
solution. BAX is represented with nine cylinders corresponding to its nine α-helixes and based on [41].
(b) BAX/BAK early activation steps: including TM dislodgement and N terminal exposure (depicted in
green and cyan respectively). (c) BAX/BAK reorganization in two different parts (dimerization and
piercing domains) and BH3 domain exposure (depicted in orange). (d) Oligomerization and pore
formation, structural representation of membrane embedded BAX/BAK in the context of toroidal pore
(clamp model, based on [70]). One monomer is showed in grey (α1–9) and the other is depicted in dark
grey (α1′–9′). The relative orientation of the helices 9 remains unresolved.

Particularly, the mitochondrion-specific lipid cardiolipin (CL) has been postulated as a key
regulatory element in BCL2 protein activity [15,24]. CL is implicated in many mitochondrial
functions such as normal organelle ultrastructure, mitochondrial dynamics, energy metabolism
and apoptosis [80,81]. Indeed, different lines of evidence indicate that the net content of CL at the
MOM increases during apoptosis [82,83]. Because of its unique structural properties (e.g., two negative
charges, a relatively small head group and four acyl chains), CL can form highly-curved inverted
hexagonal structures [84–86] and laterally segregate into defined nanodomains [87,88]. These elements
support the concept that CL potentially creates a unique environment for BCL2 family proteins and
promotes mitochondrial membrane alterations that facilitate bilayer structure remodeling, deformation,
and ultimately permeabilization. Moreover, the peroxidized isoform of CL (CLox) weakens the
interaction of cytochrome c with the MIM, a process that may also contribute to ease MOMP [82,89,90].

Beyond their role in cell death, BCL2 family proteins participate in several cellular processes,
including the regulation of mitochondrial dynamics [91]. New insights into the link between shape
and function of mitochondria in health and disease (mitopathology) is beginning to unravel on several
fronts [92]. A new connection between mitochondrial dynamics and not only cellular metabolism but
also cell fate pathways may emerge from the intersection of BCL2 family proteins and mitochondrial
reshaping machinery [91]. In vertebrates, the fundamental protein for mitochondrial fission is a
large GTPase termed dynamin-related protein 1 (DRP1) [93]. The localization of DRP1 at constriction
points to induce membrane fission is not random, but it seems to be mainly associated with MERCS
(mitochondria ER contact sites) and to colocalize to apoptotic foci with the proapoptotic effectors
BAX/BAK [94,95]. BCL2 proteins have been also related to Mitofusins 1 and 2 (MFN1/2), dynamin-like
proteins involved in mitochondrial fusion [96]. Finally, mitochondrial cristae remodeling appears to
be a fundamental step for the BAX-induced differential release of apoptotic factors at the apoptotic
foci [34,36,97]. OPA1 is a key regulator of mitochondrial cristae remodeling [98], and its function
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appears to be regulated by the BH3 only protein tBID [99–101]. Thus, it is conceivable that BCL2 family
proteins can elicit a direct regulatory effect over mitochondrial dynamics with diverse effects on cell
death and survival.

All in all, it is striking that, after more than 30 years of BCL2 research, it is still unclear how
these proteins behave specially at the membrane and how we could efficiently guide them in death
and disease. Although many important mechanistic details have been uncovered during these years,
the puzzle remains challenging to complete. However, we should not forget that therapeutic-regulation
of apoptosis particularly by modulating the BCL2 interactome has strong therapeutic potential to combat
human disease, including cancer and neurodegenerative disorders. Indeed, the design of Venetoclax
based on BCL2 knowledge is the best evidence that a treatment targeting apoptotic proteins can get
us closer to curing cancer. In spite of this, BCL2 regulation and drug targeting at the mitochondrial
membrane remain intangible. Mitochondrial lipids regulate BCL2 proteins, both indirectly by changing
the mechanical properties of the membrane, or directly by specifically modulating protein targeting,
structure and function. Therefore, the understanding of BCL2 action in the membrane context appears
to be compulsory, particularly in the light of two recent activities unveiled by these proteins that occur
in the membrane, supramolecular organization into defined structures and mtDNA release [32–34,36].
In this context, it remains to be understood if the phenotypically-reverted antiapoptotic proteins share
these activities with the proapoptotic effector BAX. On the other hand, function and abundance of
BCL2 proteins are influenced by posttranslational modifications. As many of these modifications are
governed by enzymes, their modulation could be efficiently achieved using small molecules, a suitable
scenario for drug design and therapy. Moreover, there is a growing body of evidence suggesting
that BCL2 proteins regulate metabolism and mitochondrial function, which are dysregulated in
many disease pathologies [39,92,102]. The role of BCL2 in mitopathology, or mitochondria-related
diseases, also provides new therapeutic opportunities [92,102]. Finally, as BCL2 proteins are all
highly overexpressed in cancers, they represent prime candidates as antigens for anti-cancer therapy.
Importantly, cellular immune responses against the BCL2 family proteins have been reported as
common features in cancer patients, highlighting that these proteins are natural targets for the immune
system and tumor microenvironment [103,104]. Taken together, comprehensive knowledge of the
BCL2 family proteins is a highly reliable option to rationally design specific treatments that can cure
on demand, alone or combined, adjusted depending on the specific BCL2 profile of patients. As BCL2
family proteins are reported to mediate many cellular processes in healthy and pathological situations,
their targeting holds the potential to be unmatched.
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