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MOMF Deconvolution Method
1. Model

We directly model the count nature of both scRNA-seq data and bulk RNA-seq data through Poisson
models to jointly deconvolute bulk RNA-seq data. Specifically, we denote the expression count matrix for

scRNA-seq data as X and denote the expression count matrix for bulk RNA-seq data as Y.

For bulk RN A-seq data, we consider
Yi; ~ Poisson(p};),i = 1,2, ,ny;j = 1,2,-,p, (1)

where Y;; is the number of reads that measure the gene expression levels for j'th gene and i’th
individual; n, is the number of individuals; [J?} is an unknown Poisson rate parameter that represents the
underlying mean gene expression level for the i'th individual and j’th gene; and p is the number of genes;
Poisson(+) represents the Poisson distribution.
For scRNA-seq data, we consider

Xy ~ Poisson(pui;), k = 1,2,,ny5j = 1,2,,p, @)
where X, ; is the number of reads that measure the gene expression level for j’th gene and k’th cell; n, is
the number of cells; pj; is an unknown Poisson rate parameter that represents the underlying gene
expression level for the i'th cell and j'th gene; and p is the number of genes; Poisson(:) represents the
Poisson distribution.
In above models, we further decompose the unknown parameters ﬂg;- and py; into two low-dimension

matrices, i.e.,

uiyj = Z;‘I’ic W+ Eiyj,i =12,,ny;j=12,-,p, 3)
where W, is the cell type specific proportion for the i'th individual and c’th cell type; C is the number of
cell types.

c
My = Zc:lAkC W+ Eg k=12, ,n:j=12,,p, 4)
where Ay, is the low-dimension structure for the k’'th cell and c’th cell type; C is the number of cell type; the
parameter W; is the element in the factor loading matrix that represents the underlying true cell-type
specific gene expression level; the factor loading matrix W is shared between bulk RNA-seq and scRNA-
seq data, allowing us to jointly model both data types and bypassing the estimation uncertainty inevitably
occur in previous deconvolution methods; Ef; and E§ ; are the residual terms that account for over-

dispersion commonly observed in sequencing studies for bulk RNA-seq data and scRNA-seq data,
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respectively.

2. ADMM algorithm

To utilize the ADMM algorithm, we first construct the objective function:

L= D) + Tr(U? (@ — ¥W)T) + 2 1w = WWIE + Tr(U¥ (¥ - ¥,)7) +
2N = W12 + DOXIH) + Tr(U™ (et — AW)T) + £l — AW +

p P
Tr(UA (A= A)") + 514 = ALl + Tr(@" W — H)T) + 5 [W — HII;,

(5)

where D(y|x) = ylog G) —y + x is the Kullback-Leibler (KL) divergence; UY, U*, U¥, U and UY are

element-wise coefficients; ¥, and A, are the non-negative matrix for ¥ and A, respectively; p is the

penalty parameter; H is reference gene expression panel; W is underlying true gene expression panel; Tr(-)

denotes the trace of a matrix. .

2.1 Update p* and p”
When 8 =1 and D(y|x) = ylog G) —y +x, we update p* and p?, respectively.
For bulk RNA-seq data, we consider
Y
Dp—, (Y1) = Ylog W Y +p

0Dp=1 (¥) _

Y
—— 414U Y —@Ww) =0
o ”y+ +U0V +p(p )

2
P W, — Uy — 1+ J(pwijwcj — U —1) +4pv;

y
1 2p

For scRNA-seq data, we consider
X — X X
Dg_1(X|p¥) = Xlog—ux -X+n

0Dp-1(X) _

X
G = Tt LU A - AW) = 0

2
pAGW; — Ui — 1+ \/(p/lkjwcj — Ui —1)" +4pXy;

ﬂij = 2p

(6)

(7)
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2.2 Update ¥ and 4

Taking the derivative of £ with respect to ¥;; and A;;, we have

9k _

i —UYW —p[Y —YWIWT +U¥ + p(W —¥,)=0

1
Y=WwwT+n1 {YWT +¥, + ; [vywrt — U""]}

oty _

i —U*W —p[X —PWIWT + U +p(A—A) =0

1
A=WwWw'+ D™t {XWT +A, + B [w' — UA]}
2.3 Update W
Taking the derivative of £ with respect to W, we have

2

W {(—=9TUY — p®PT[Y —PW] —ATU* — pAT[X — AW} + U + p(W —W,) =0

1
W=[PTW + ATA+ 17! {‘I’TY +ATX + W, + - [PTUY + ATU* — UW]}
2.4 Updating ¥, and 4,
1 1
Y, = 7‘nax(‘ll+;Uy,0>,/Lr = max<A+;U",O>

2.5 Updating U, U* and U"

UY « UY + p(uy —WYW),U* « U*+ p(u* — AW),U" « UY + p(W — H)

(8)

9)

(10)

(11)

(12)



77  Supplementary Figure 1. The correlation of cell type proportion estimated by MOMF with two
78  independent runs on CRC data. The scatter plot shows the robustness of MOMF. The square of correlation

79  coefficient (R?) of the cell type proportion matrix is displayed within the scatter plot.
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Supplementary Figure 2. An example to show the distortion of normalized gene expression caused by
logarithm transformation. We used the histogram of gene expression for gene ENSG00000180725 from CRC
scRNA-seq data to show the artificial difference from the logarithm transformation. (A) the histogram of
raw counts of gene ENSG00000180725. (B) the histogram of gene expression after CPM normalization. (C)

the histogram of gene expression after log,(CPM + 1) normalization.
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Supplementary Figure 3. Simulation results with 2 cell types. (A) The scatter plot of ground truth and cell
type proportion estimated by MOMF; (B) The boxplot to show the difference between ground truth and
cell type proportion estimated by MOMEF (C) The scatter plot of ground truth and cell type proportion
estimated by MuSiC; (D) The boxplot to show the difference between ground truth and cell type proportion
estimated by MuSiC (E) The scatter plot of ground truth and cell type proportion estimated by CIBERSORT;
(F) The boxplot to show the difference between ground truth and cell type proportion estimated by
CIBERSORT. R: Pearson correlation.
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Supplementary Figure 4. Simulation results with 5 cell types. (A) The scatter plot of ground truth and cell
type proportion estimated by MOMF; (B) The boxplot to show the difference between ground truth and
cell type proportion estimated by MOMEF (C) The scatter plot of ground truth and cell type proportion
estimated by MuSiC; (D) The boxplot to show the difference between ground truth and cell type proportion
estimated by MuSiC (E) The scatter plot of ground truth and cell type proportion estimated by CIBERSORT;
(F) The boxplot to show the difference between ground truth and cell type proportion estimated by
CIBERSORT. R: Pearson correlation.
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