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Abstract: Fibrosis is the main consequence of any kind of chronic liver damage. Coagulation
and thrombin generation are crucial in the physiological response to tissue injury; however,
the inappropriate and uncontrolled activation of coagulation cascade may lead to fibrosis
development due to the involvement of several cellular types and biochemical pathways in response
to thrombin generation. In the liver, hepatic stellate cells and sinusoidal endothelial cells orchestrate
fibrogenic response to chronic damage. Thrombin interacts with these cytotypes mainly through
protease-activated receptors (PARs), which are expressed by endothelium, platelets and hepatic
stellate cells. This review focuses on the impact of coagulation in liver fibrogenesis, describes receptors
and pathways involved and explores the potential antifibrotic properties of drugs active in hemostasis
in studies with cells, animal models of liver damage and humans.

Keywords: thrombin; protease-activated receptors; endothelial dysfunction; von Willebrand factor;
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1. Introduction

Fibrogenesis is a complex biochemical process that represents the hallmark of damage for the
most common chronic diseases of the liver. The activation of hepatic stellate cells (HSC) is the key
pathogenic mechanism for the initiation, progression, and regression of liver fibrosis. Several studies
have gone into more depth on the complex and tightly regulated cross talk at the level of hepatic
microcirculation owing to sinusoidal endothelial cells (SEC), Kuppfer cells (KC), and hepatocytes with
HSC. This underlines the participation of several hepatic cellular types in fibrogenesis. Our manuscript
offers an overview on the pathogenic role played by coagulation and thrombin generation in this
complex cellular cross talk by considering fibrosis a wound healing process secondary to micro-thrombi
in small hepatic and portal venules, sinusoidal ischemic injury and hepatocyte injury. In addition,
thrombin may participate in fibrogenesis by interaction with HSC via protease-activated receptors
(PAR-1 and PAR-4), promoting a myo-fibroblast phenotype, fibronectin fibril assembly, and may act as
a chemoattractant for inflammatory cells. Altogether, these observations suggest that drugs interfering
with the coagulation process have potential as antifibrotic drugs at any stage of chronic liver disease.
The in vitro and in vivo studies on these aspects are the main focus of the review.
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2. Coagulation in Fibrosis and Disease Progression

2.1. Hepatic Stellate Cells, Endothelium and Fibrosis: Role of PARs

During coagulation, the conversion of fibrinogen into fibrin is a key reaction catalyzed by
thrombin, a serine protease which is generated on the surface of activated platelets in response
to vascular or tissue injury [1]. Thrombin generation is a tightly regulated process, as it is the
expression of the delicate balance between pro-coagulant and anti-coagulant factors. Besides its
hemostatic function, thrombin orchestrates cell recruitment in response to any kind of tissue injury
and activates endothelium [2–4]. Its interaction with inflammatory and mesenchymal cells is part
of the wound healing process, in which hemostasis precedes and initiates tissue repair by fibrin
deposition [5]. In 1991, the discovery of protease activated receptors (PARs) clarified the biological
pathway of thrombin [6]. PARs are a family of receptors with proteolytic activity, which mediate
thrombin (PAR 1, 3, 4)- or tryptase (PAR 2, 4)-induced cellular response. PARs are G-protein-coupled
receptors and are activated by irreversible proteolytic cleavage of their N-terminal domain. They are
expressed by several cellular types involved in fine regulation of vascular homeostasis and their
signaling pathways are complex, as they are potentially coupled to G-proteins with different functions
(Figure 1). As a result, they interact with a plethora of signaling transducers (e.g., Rho/Rho-kinase,
c-Jun N terminal kinase, IP3, PI3K, JAK-STAT), with consequent pleiotropic effects [7,8]. Endothelium
(via PAR1, PAR2) and platelets (PAR1, 4), are the main cells involved in the regulation of vasomotor
function and hemostasis exerted by PARs [9]. At low concentrations, thrombin may induce a barrier
protective response by endothelium, this effect is mediated by PAR-1 [10]. On the contrary, at high
concentrations, thrombin induces a pro-inflammatory, pro-hemostatic and contracting phenotype
of endothelium, as it increases the expression of TF, plasminogen activator inhibitor-1 expression
(PAI-1), pro-inflammatory cytokines (IL6, IL8) and endothelin-1, among others [7]. This bi-modal
effect of thrombin suggests that a disrupted regulation of thrombin generation, as occurs in
pro-coagulant conditions, may overcome its physiological interaction with the endothelium and may
induce significant tissue injury. Alongside endothelium, platelets are activated by PAR-1 and PAR-4,
and inhibition of these receptors is a potent anti-platelet mechanism, confirming the important role
played by these receptors on platelet function [11,12]. Thrombin is produced on the surface of activated
platelets and its interaction with PARs may initiate and maintain the hemostatic process, leading
to thrombus formation when anticoagulant factors are not able to counterbalance this process [1,7].
In recent years, the transcription factor Kruppel-like factor 2 (KFL2) has been recognized as a key
regulator of endothelium homeostasis in response to inflammatory stimuli (e.g., tumor necrosis factor,
TNFα, and interleukin 1) and hemodynamic forces like laminar shear stress [13,14]. Interestingly,
Marrone et al. demonstrated that KLF2 overexpression in SEC and HSC proceeding from cirrhotic
rats reduces HSC activation and ameliorates paracrine cross-talk with SEC [15,16]. This is in line
with the reduction of fibrosis and portal pressure observed in animal studies in association with
KFL2 expression [17]. In 2005, Li et al. demonstrated that KLF2 induction blunts the pro-inflammatory,
pro-hemostatic transcriptional response of the endothelium exposed to noxious stimuli (e.g., TNFα),
as it reduces tissue factor, Von Willebrand Factor (VWF) and PAI-1 [18]. Interestingly, ADAMTS-13,
a metalloproteinase which regulates the pro-hemostatic function of VWF by its cleavage, is produced by
HSC in physiological conditions and its activity declines alongside liver dysfunction [19,20]. Absolute
deficiency of ADAMTS-13 leads to diffuse microvascular occlusion due to high molecular weight VWF
multimers which promote platelet aggregation and microthrombi formation; therefore, low levels of
ADAMTS-13 are of increasing interest in thrombotic-microangiopathies and those clinical conditions
like sepsis in which liver failure, as well as other organ dysfunctions are frequently observed [21,22].
All these observations emphasize the role of HSCs-SEC interaction to maintain an anti-thrombotic
phenotype at sinusoidal level in physiology, with a potential protective role of KFL2 due to its control
of VWF and platelet aggregation. Moreover, KFL2 may also have a direct role in the direct control of
hemostasis by the endothelium, since it inhibits PAR-1 expression on endothelial cells. This shows
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a direct link between KLF-2-induced regulation of endothelial physiology and the biological response
of this cytotype to thrombin. Whereas in vascular medicine studies on PARs focus on platelets and
endothelium, PARs expression by HSCs is central in liver fibrogenesis [17]. The progression of any
chronic liver disease is characterized by the acquisition of a contractile and pro-fibrogenic phenotype
by HSCs, along with an imbalance between vasoconstrictors and vasodilators produced by SECs.
As a consequence, the liver parenchyma is distorted by the development of interstitial fibrosis and
the constriction of sinusoids which, in turn, lead to the increase of portal pressure owing to the
mechanical and functional increase of liver resistance to the portal blood flow [23]. Several studies
have explored thrombin-PARs interaction on HSC in the process of liver fibrogenesis. They are
summarized in Table 1. The action of thrombin on PARs (mainly PAR-1) induces fibrogenic response
in the liver by reprogramming HSCs with the induction of a pro-fibrotic, activated phenotype [24–26].
Incremental doses of thrombin progressively transform HSCs into myofibroblasts, with increase of
αSMA, pro-collagen, TGFβ-1 and other key cellular signals which are crucial in the wound healing
response [24]. The uncontrolled persistence of a thrombin-related signaling through PARs, due to
a pro-hemostatic milieu, is considered the main mechanism that binds hemostasis and fibrosis [27].
In line with this theory, experimental inhibition of PARs prevents the fibrogenic response of HSCs and
the progression of fibrosis as demonstrated in pre-clinical studies with animal models of liver disease
and cell cultures [26,28]. In addition to PAR-1, PAR-2 showed similar pro-fibrotic effects by inducing
HSC contraction, collagen production and MMP-2 expression, this last promoting liver fibrosis
due to extracellular matrix remodeling [25,29–31]. Furthermore, studies with PAR−/− transgenic
mice confirmed the importance of this receptor in several models of liver fibrosis (xenobiotics,
carbon-tetrachloride, CCL4, and thioacetamide, TAA) [30,32,33] and, recently, even in a model fatty
liver disease [34]. To our knowledge, just one study explored PAR-1 genotype and liver fibrosis in
patients with chronic HCV infection. In this biopsy-proven study, a particular PAR-1 polymorphism
(1426 C/T) correlated with increased liver fibrosis, thus confirming the above-mentioned results
from pre-clinical studies [35]. Alongside PARs, tissue factor (TF) has been often investigated in liver
fibrosis, since TF is a potent activator of hemostasis via factor VII (FVII) [36]. Interestingly, transgenic
mice lacking of TF show a reduced rate of fibrosis development after exposure to various chronic
damage stimuli, thus confirming a potential connection between the pro-hemostatic role of TF and
liver fibrosis [31,34]. Recently, Ratou et al., in a study with mice after bile duct ligation (an animal
model of liver fibrosis), demonstrated an increase of thrombin-antithrombin complexes, which are
biomarkers of a pro-coagulant condition. This increase was prevented in mice lacking in TF. However,
this anti-coagulant phenotype was not associated with a significant reduction of fibrosis [37], in contrast
to other studies [30].
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Table 1. Studies exploring the impact of coagulation on liver fibrosis.

Reference Experimental Model Pathway Explored Methods Results

Chambers 1998 [24] human fetal lung fibroblasts PAR-1
Exposure to incremental dose of thrombin; TRAPs
(thrombin receptor-activating peptide) +/− inhibitors
(hirudin/Phe-Pro-ArgCH2CL)

Thrombin ↑ αI-procollagen mRNA through PAR-1
activation

Gaça 2002 [25] Cultured stellate HSEC Thrombin, tryptase/PAR 1–2 PAR 1/2 mRNA RT-PCR analysis + northern blotting in
lysate of HSEC. Use of PD98059 (kinase inhibitor)

↑ PAR-1/2 while fibroblast transforms in myofibroblast
phenotype
↑ HSC proliferation by PARs

Fiorucci et al. 2004 [26] rat HSC cell line; BDL cirrhotic rat Thrombin-PARs

type I collagen mRNA expression; quantitative
morphometric analysis; hepatic and urinary excretion of
hydroxyproline

Thrombin triggers HSC activation and collagen deposition
via PARs, prevented by PAR1 antagonist

J Gillibert Duplantier et al.
2007 [38] Human hepatic myofibroblasts PAR-1; COX-2; Akt-1; platelet

derived growth factor (PDGF)

Cell migration; RNA isolation and analysis for
Prostaglandin E2 receptor; analysis of Akt-1
phosphorylation and PDGF-receptor phosphorylation.

Thrombin inhibits human hepatic myofibroblast migration
via PAR-1;
Thrombin inhibits PDGF induced migration (inhibition
of PI3K)

Martinelli 2007 [35] Patients with HCV (287 european, 90 brazilian) PAR1
Cross-sectional study; fibrosis evaluated by liver biopsy;
polymorphism of PAR-1 gene analysis (−1426 C/T, IVS-14,
−506 I/D

↑ fibrosis in TT genotype of 1426 C/T polymorphism

Rullier 2008 [32] PAR-1 −/− and +/−mice exposed to CCL4 PAR1 Histology; RT-PCR for type I collagen, MMP-2, PDGFβ-r,
MP-1, mRNA

↓ fibrosis and activated fibrogenic cells
↓ type I collagen, MMP-2, PDGFβ-r mRNA
↓ T lymphoctyes infiltration

B. P. Sullivan et al. 2010 [33]

Bile duct epithelial cells (BDECs); PAR1−/−,
TF +/−, mice with low levels of human TF
expression. All mice were fed with BDEC

toxicant (ANIT); Human Liver Samples from
patients with PBC/PSC

TF, PAR-1, αVβ6
Real-Time PCR of snap-frozen liver
or adherent cells; immunofluorescence on liver frozen
sections for αVβ6

TF and PAR-1 deficiency ↓ Liver Fibrosis/αVβ6 mRNA
↑ TGF-β1 related αVβ6 expression by PAR-1
αVβ6 inhibition ↓ fibrosis
↑ TF and PAR-1 mRNAs in livers from PBC/PSC patients

V. Knight et al. 2012 [31] HSC cells; HSEC cells; (PAR-2 knockout mice;
C57BL/6 mice; CCl4 cirrhotic mice PARs

Hepatic hydroxyproline content in frozen liver tissue; PCR
analysis of MMP-2, TIMP-1 and PAR-1/2; identification of
α-SMA, F4/80 and CD68; TGF-β1 Production In Vitro; HSC
Proliferation in Response to PAR Activation; Hepatic
TGF-β1 Content

PAR-2 Deficiency ↓ Fibrosis/ procollagen
mRNA/Hydroxyproline
Content/
Stellate Cell Activation/
Hepatic TGF-β1 Expression/MMPs/ Activated Hepatic
Macrophages;
PAR 1/2 ↑ HSC Collagen Production/TGF-β1

R. Nault et al. 2016 [34] PAR-1 −/− and +/− mice exposed to to TCDD
(progression to NASH)

PAR-1; Identification of Fibrin(ogen) TCDD Exposure Activates the Coagulation Cascade;
↓ inflammation and collagen deposition in PAR-1 −/−

V. Knight et al. 2017 [30]
PAR-1 −/− mice;

HSC cells;
CCl4 treated mice

TF and PARs
Hepatic fibrosis assessment; Hepatic collagen content; Gene
expression of TGF-β1, MMP-2, TIMP 1, PAR1 and 2;
expression TGF-β1

↓ fibrosis/MMP2/activated macrophages in TF and PAR-1
−/−
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In summary, hemostasis may drive a pro-fibrotic HSC phenotype via PARs. The cellular cross
talk between HSCs and SECs and the expression of KLF2 may somehow reduce the fibrogenic process
associated with a pro-coagulant imbalance under chronic conditions of liver damage.

Cells 2018, 7, x FOR PEER REVIEW  5 of 19 

Cells 2018, 7, x; doi: FOR PEER REVIEW  www.mdpi.com/journal/cells 

In summary, hemostasis may drive a pro-fibrotic HSC phenotype via PARs. The cellular cross 
talk between HSCs and SECs and the expression of KLF2 may somehow reduce the fibrogenic process 
associated with a pro-coagulant imbalance under chronic conditions of liver damage.  

 
Figure 1. Schematic representation of PAR signaling. 

2.2. Parenchymal Extinction: From Clot Generation to Liver Damage 

An important step in the knowledge of coagulation as a mechanism of liver damage was the 
study by Wanless et al., who conducted a histological analysis by comparing 61 cirrhotic livers of any 

Figure 1. Schematic representation of PAR signaling.

2.2. Parenchymal Extinction: From Clot Generation to Liver Damage

An important step in the knowledge of coagulation as a mechanism of liver damage was the
study by Wanless et al., who conducted a histological analysis by comparing 61 cirrhotic livers of
any etiology removed at the time of transplantation with 24 livers from autopsy of normal subjects
as controls [39]. The main purpose of the study was to confirm the previous observation that fibrosis
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co-localizes with vascular lesions of the hepatic venous system [40]. First, they distinguished origin
(hepatic or portal), caliber (small, medium or large) and size (% of luminal narrowing) of vascular
lesions. Second, they graded fibrosis with description by optical microscope and defined focal
parenchymal extinction as a region of parenchymal loss filled by fibrosis. Hepatic and portal vein
intimal fibrosis, highly suggestive of previous occlusion, were respectively evident in 70% and 36%
of livers. In morphometric data on 534 hepatic veins pooled from 10 livers, hepatic vein occlusions
were frequent in small veins and co-localized with a greater extent of fibrosis. The existence of
a “post thrombotic syndrome” was also inferred by patchy distribution of fibrotic areas, multiple
layers of fibrosis and the severe occlusion of the smallest veins. In another study, the same group
analyzed 13 autopsy livers with congestive fibrosis, with another 12 livers as controls [41]. In this
model, venous stasis was associated with thrombosis of sinusoids and terminal hepatic venules,
with formation of fibrotic septa and sinusoidal fibrotic thickening. These changes were associated with
the extension of thrombosis to larger veins, necrosis and parenchymal loss. Recently, Simonetto et al.
confirmed these results in an animal model of congestive hepatopathy (partial inferior vena cava
ligation), showing hepatic sinusoidal thrombosis with increase of liver stiffness and portal pressure [42].
Interestingly, fibrosis was accompanied by minimal inflammation, whereas mechanical forces seemed
to prevail with stretch-induced fibronectin-fibrils assembly. Of note, tissue factor pathway inhibitor or
warfarin treatment blunted sinusoidal thrombosis and fibrosis deposition, confirming the existence of
a hemostasis-driven fibrogenesis in this model of liver congestion. They also analyzed liver specimens
of patients with congenital heart failure due to chronic myocardial dysfunction or Fontan cardiac
surgery, which is a set of surgical techniques causing venous hypertension after deriving the systemic
venous flow directly into the pulmonary artery. In these patients, immunochemistry analysis revealed
fibrin deposition within sinusoids, confirming the association between microthrombosis and fibrosis.
The lack of inflammation in this study is apparently in line with the pre-clinical study by Cerini et al.
who demonstrated a minimal anti-inflammatory effect of heparin, alongside a potent anti-fibrotic
impact prevalently due to the anticoagulant properties of the drug. These results are in line with
a recent work by Miyao et al., who demonstrated in a mice model of non-alcoholic fatty liver disease
that sinusoidal endothelial injury may precede the activation of Kupffer cells, HSC, inflammation and
fibrosis [43]. Therefore, despite inflammation being a cardinal element in development of a biological
response to every kind of noxious stimuli, its link with hemostasis probably cannot explain alone
the consequent fibrogenic response. Recent evidence, elsewhere reviewed by De Ridder et al. [44],
focuses on the precise site of thrombin generation, identified in the intravascular or the interstitial
anatomical space. Whereas intravascular activation is easily understood and studied in micro and
macrovascular medicine, thrombin activity in the interstitial space is intriguing and often neglected [44].
However, liver fibrosis is, by definition, an interstitial process, and it is conceivable that thrombin
exerts an important and complex action on fibrogenic response, for example by activating pro- [45]
and anti-fibrotic [46]. metalloproteinases present in the extracellular matrix. The exact link, if it exists,
between the intravascular and interstitial generation of thrombin during chronic hepatitis is certainly
an open question, which is even more of interest for hepatologists, as recent studies have shown that
anti-coagulation per se may favorably impact the natural history of cirrhosis [47,48].

In conclusion, parenchymal extinction theory represents the bridge between pre-clinical studies
demonstrating a role of hemostasis on liver fibrogenesis and the pathological observations of liver
parenchymal loss due to vascular occlusion, progressive necrosis and fibrosis replacement in humans.
However, as thrombin explains its action also in the interstitium, further studies are warranted to
confirm and define precisely the weight of microvascular and interstitial changes due to the activation
of thrombin as consequence of a chronic liver damage.
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2.3. Procoagulant Imbalance and Disease Progression: Clinical Observations

2.3.1. Common Inherited Pro-Hemostatic Genotype and Risk of Fibrosis Development

Unprovoked venous-thromboembolic events are often linked with pro-hemostatic mutations of
clotting factors. FV Leiden and FII G20210 mutations are associated with thrombotic events in the
general population, with relative common frequency (0.4–5% and 3%, respectively) [49–51]. FV Leiden
missense mutation (ArG506Gln) leads to an intrinsic resistance to the anticoagulant action of protein
C, whereas FII G20210 increases prothrombin levels and inhibits fibrinolysis by the reduction of the
thrombin-activatable-fibrinolysis-inhibitor [52,53]. The potential impact on fibrosis development of
a constitutional pro-thrombotic imbalance has been hypothesized and explored by several authors.
In 2003 Wright et al. conducted a retrospective, biopsy-proven study aimed to describe the degree of
association between the most common thrombophilic factors and the severity of liver fibrosis. In this
study, FV Leiden, but not FII G20210 mutation was associated with accelerated fibrosis and cirrhosis
development in patients with HCV infection [54]. In contrast, Maharshak et al. demonstrated an
association between faster fibrosis and FII G20210 mutation with no evidence for FV Leiden [55].
These divergent results resemble subsequent data showing a potential [54–58] or doubtful impact of
thrombophilia on the risk of liver fibrosis development [57,59,60]. A recent retrospective population
study on 1055 patients demonstrated an association between FV Leiden and FII G20210 mutation
and a significant increase in liver stiffness, which is a widely used non-invasive marker of liver
fibrosis [56]. Moreover, in this study, non-0 blood group showed the highest liver stiffness in patients
with pro-hemostatic mutations. These data are in line with a previous observation of an association
of non-0 blood group and fibrosis severity in HCV-infected patients [61,62]. Interestingly, AB0 blood
group is a major determinant of VWF and factor VIII (FVIII) levels in normal subjects, both potent
pro-hemostatic factors, and non-0 blood group has been associated with increased levels of VWF
and FVIII with increased risk of venous-thrombo-embolism [63,64]. In summary, a pro-hemostatic
genotype may have a role in the development of fibrosis. However, evidence is limited to observational
studies. The clinical question if thrombophilic inherited mutations may identify clusters of patients
with high risk of fibrosis progression is appealing. Thus, it advocates proof of concept studies to clarify
the impact and the magnitude of these mutations on fibrosis development.

2.3.2. Hemostatic Balance in Advanced Liver Disease

Every stage of liver disease results in a different degree of change in the hemostatic balance [65].
For years, the alteration of conventional coagulation tests (e.g., prothrombin time, partial activated
thromboplastin time, bleeding time) disguised the coagulopathy of liver disease under a bleeding
mask, represented by the assumption of spontaneous bleeding among patients with cirrhosis, the final
grade of any chronic liver disease [66]. This is true in terms of spontaneous gastro-intestinal bleeding,
but today we know that this is a consequence of portal hypertension and not of a disease-related
reduction of plasma activating the coagulation cascade [48,67]. Indeed, in cirrhosis, the reduction of
liver-dependent pro-hemostatic clotting factors (FII, V, VII, IX, X and XI) is counterbalanced by the
reduction of anticoagulant factors and similar contrasting alterations in the fibrinolytic system [65].
As a result, the evaluation of the plasmatic hemostatic balance by the in vitro thrombin generation test,
which takes into account both pro- and anti-coagulant factors, showed normal thrombin generation
in these patients [68]. Therefore, the first seminal study by Tripodi et al. [68] allowed a shift from the
old paradigm of an intrinsic bleeding tendency, to the concept of “re-balanced hemostasis” in patients
with chronic liver disease [69,70]. Moreover, the same research group demonstrated a resistance to the
action of thrombomodulin, a strong anticoagulant, which parallels disease severity and a progressive
pro-coagulant imbalance of clotting factors [71,72]. The hypothesis of a pro-coagulant plasmatic milieu
in cirrhosis is intriguing, as thrombotic events are common in this population [73]. Thrombosis of
portal and splanchnic venous vessels ranges from 5 to 20%, and the highest rate is observed in the
advanced stages of the disease [74,75]. Moreover, retrospective studies have shown that cirrhosis may
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represent a risk factor for venous-thrombo-embolic events in hospitalized patients [76–78]. The increase
in FVIII, VWF and the resistance to the action of thrombomodulin due to protein C reduction
are the best-described pro-hemostatic features, and worsen along with disease severity [72,79,80].
Interestingly, they were all independently associated with increased portal hypertension and worse
prognosis, suggesting a potential impact on the pathogenesis of this clinical condition [81–85]. However,
the design of these studies does not allow the uncovering of a cause-effect relationship between fibrosis
and pro-hemostatic changes, despite an interesting role for VWF as a noninvasive marker of fibrosis in
two studies [86,87]. Nevertheless, a potential impact of coagulation on fibrogenesis and parenchymal
extinction is fascinating and is currently under investigation by several research groups. One potential
limitation is the lack of a study investigating hemostasis in liver disease far from advanced stages
or cirrhosis. Recently, two distinct leading groups in this field have published contrasting evidence
on this topic in the clinical setting of non-alcoholic liver disease, which is expected to be the main
increasing etiology of cirrhosis in next few years [88–91]. The recent debate that has risen on this
topic [92,93] demonstrates the need of further investigations on the impact of hemostasis even in the
earliest stages of any chronic disease of the liver.

3. Anticoagulation as Anti-Fibrotic Strategy

3.1. Heparin

In the era of etiological therapies, which will hopefully erase the burden of chronic viral
hepatitis [94], powerful antifibrotic drugs are still lacking [95,96]. However, the increasing incidence
of metabolic liver disease calls on such therapies, while etiologic treatments for NAFLD/NASH
are not yet satisfactory [90]. Several studies have explored antifibrotic proprieties of drugs active
on hemostasis (Table 2). Low molecular weight heparins (LMWH) inhibit factor X indirectly via
antithrombin, thus lowering thrombin generation [97]. In a histological study in rats exposed to
carbon-tetrachloride (CCL4), LMWH reduced fibrosis and collagen deposition, while ultrastructural
analysis on transmission electron microscope (TEM) showed reduced sinusoidal swelling and less
distorted parenchymal architecture [98]. Dalteparin also showed fibrosis reduction in CCL4 chronic
damage, while increasing hepatic-growth factor and blunting pro-fibrotic expression of TGF-β1
and deactivating HSC (αSMA reduction). Interestingly, no effect on necrosis and inflammation
was observed, with unchanged levels of TNF [99]. These results were confirmed in a study by
Cerini et al., who explored enoxaparin in different rat-models of liver damage: CCL4 (acute/short/long
exposure) and TAA exposure [100]. Fibrosis and pro-fibrogenic stimuli were analyzed with histology,
immunochemistry and HSC isolation. Additionally, portal pressure and hepatic vascular resistance
were analyzed with isolation and perfusion of the liver. Enoxaparin markedly reduced fibrosis,
with anti-fibrotic reprogramming of HSC with αSMA and pro-collagen I reduction. Moreover, it also
reduced portal pressure without altering hepatic blood flow, thus reducing hepatic resistance in
accordance to ohm’s law (pressure = flow x resistance). These results were confirmed in both CCL4

and TAA damage induction. Indeed, enoxaparin disclosed antifibrotic effects in chronic but not acute
liver damage and this occurred without any anti-inflammatory action. Therefore, this solid biological
background allows to promote LMWHs as potential antifibrotic strategy. Along these lines, relevant
clinical data derive from the trial by Villa et al. [47] who randomized 70 patients with decompensated
cirrhosis to receive, or not, enoxaparin in order to prevent de novo portal vein thrombosis. Surprisingly,
the treatment arm prevented de novo portal vein thrombosis without any increase of the bleeding rate,
and patients showed better clinical outcomes in term of new decompensating events (mainly ascites
development) and survival. When treatment was interrupted, both arms turned to similar rates of
clinical events and portal vein thrombosis development. This study was the first randomized clinical
trial demonstrating the potential impact of anticoagulant on the natural history of cirrhosis, although
as of today, no data exist to conclude that the beneficial effect of anticoagulation was mediated by the
antifibrotic properties demonstrated in the above-mentioned pre-clinical studies.
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Table 2. Main studies exploring anticoagulant-antifibrotic strategies.

Reference Drug Animal Model Fibrosis/Cirrhosis
Induction Fibrosis Assesment Results

Duplantier 2004 [28] Wistars rat Thrombin antagonist
SSR182289

CCL4 (three or seven
week exposure)

Histology; immunohistochemistry (IHC) for αSMA
collagen type I, MMP-2, TIMP-1, and TIMP-2
mRNAs by RT-PCR

↓ 30% fibrosis (7 week CCL4 exposure)
Early ↓αSMA positive cells/TIMP-1 mRNA

Abe 2007 [99] Dalteparin Female Wistars Rats CCL4 Histology; IHC
↓ fibrosis, ↑HGF
↓TGF-β1, COL1A1, αSMA
↓ PDGF induced HSC proliferation

Anstee 2008 [101] Warfarin
FV Leiden mutant mice,
C57BL/6 control animals
anticoagulated mice

CCL4
Histology; Liver Hidroxiproline content; αSMA
mRNA expression

↑ fibrosis 80% in male FV mutant
Warfarin effect:
↓ Hidroxiproline content ↓ fibrosis scores
Effect blunted in FV mutant

Kassel 2012 [102] Argatroban (via
micro-osmotic pump) LDLr−/− mice Western diet

Histology); real time PCR hepatic mRNA expression
of αSMA, COL1A1, PDGFβ, TIMP1/2, TGF-β1;
IHC (anti CD68, F4/80, αSMA); MCP-1 Elisa

No change in collagen deposition
↓ αSMA, COL1A1, PDGFβ, TIMP1/2
No ↓TGF-β1
↓inflammation (↓neutrophil/macrophage accumulation)

Cerini 2016 [100] Enoxaparin Male Wistars Rats CCL4 (acute vs short vs
long term exposure); TAA

Histology; IHC (anti FBN/αSMA/CD68);
expression of procollagen I/ αSMA on isolated HSC

↓25–26% in short and long term CCL4 exposure; ↓ 41% in TAA
↓PP and HVR
↓αSMA, procollagen I in HSC
No change on inflammation

Vilaseca 2017 [103] Rivaroxaban Cirrhotic wistar rats CCL4; TAA

Histology; TEM analysis; Liver Hidroxiproline
content; IHC (anti fibrinogen/αSMA/CD68) and IF
(anti FBN, anti VWF); real time PCR hepatic mRNA
expression of αSMA, COL1A1, PDGFβ, TIMP1/2,
TGF-β1; in vitro thrombin action on HSC

No ↓in CCL4, ↓25% TAA
improved sinusoidal
architecture
↓Hidroxiproline content/collagen/fibrin deposition
↓PP and HVR
↓HSC activity of profibrotic genes
↓VWF expression in vasculature
No direct activity on HSC (in vitro studies)

Li 2017 [98] Aspirin (low/high
dose), enoxaparin Sprague-Dawley rats TAA Histology (METAVIR score) ↓ in all treatment group (> for high dose aspirin)
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3.2. Oral Anticoagulants: From Vitamin K Antagonists to Direct Oral Anticoagulants (DOACs)

Warfarin is an oral anticoagulant which inhibits the production of clotting factors, thus indirectly
abolishing thrombin generation [104]. The laboratory testing of INR (a standardized measure derived
from prothrombin time) is specifically designed to monitor the anticoagulant effect of vitamin k
antagonists [105,106]. In 2008, Anstee et al. studied the effect of warfarin in mice with prothrombotic
mutation of FV Leiden exposed to CCL4 [101]. In this animal model, warfarin significantly reduced
fibrosis progression and liver hydroxyproline content, while mice carrying FV mutation exhibited
fibrosis progression with blunted effect of warfarin. In recent years, DOACs have radically changed
management in hemostasis modulation [107]. This class of drugs directly inhibits the action of clotting
factors (FX and FII), thus reducing thrombin generation [107]. The oral assumption and the lack of
need of laboratory monitoring are progressively prompting the repeal of vit k antagonists in favor of
this class of drugs, which is currently used in various thrombotic diseases [108]. In 2012, Kassel et al.
studied the effect of argatroban, a direct inhibitor of FII, in LDLr−/− fed with a western diet [102].
Argatroban reduced hepatic mRNA expression of αSMA, COL1A1, PDGFβ, TIMP1/2, with no effect
on TGF-β1 or collagen deposition. In this model of metabolic-induced damage, argatroban significantly
reduced inflammation and neutrophil accumulation in the liver, globally showing early change to
an anti-inflammatory, anti-fibrotic phenotype. In a recent study, Vilaseca et al. treated rats with chronic
liver damage induced by CCL4 and TAA with rivaroxaban, an FX direct inhibitor, which reduces
thrombin generation [103]. In this study, rivaroxaban reduced portal pressure and hepatic vascular
resistance, confirming the amelioration of liver microcirculation. In in vitro experiments on HSC,
there was no clear thrombin-related activating effect. Otherwise, rivaroxaban treatment exerted an
anti-fibrotic effect on mRNA expression of αSMA, COL1A1, PDGFβ, TIMP1/2 and TGF-β1. Moreover,
rivaroxaban reduced fibrin deposition and ameliorated sinusoidal architecture, as seen in TEM analysis,
thus suggesting a direct effect on microthrombosis.

In summary, preclinical studies suggest a direct anti-fibrotic effect of oral anticoagulants,
which ameliorates liver microvascular perfusion, with an anti-fibrotic reprogramming on HSCs and,
at last, reduced fibrin and collagen deposition. However, scant data exist on the use of direct oral
coagulant in cirrhotic patients, and prescription is currently limited in this population, with few
exceptions in patients with compensated disease [109]. Some registry-based studies are exploring the
use of DOACs with promising results [110–112]; however, high-quality evidence in the form of clinical
trials is eagerly awaited to confirm the safety profile of these drugs and, potentially, their impact on
the natural history of the disease.

4. Future Directions: Hemostasis as Immune Response

The use of confocal microscopy recently shed a light on mechanisms of cell interactions in sterile
or septic injury, due to the in vivo visualization allowed by the instrument [113,114]. The study
of hepatic microcirculation, by in vivo visualization of sinusoids, confirmed a central role of the
liver in the clearance of bacteria, as demonstrated after inoculation of S. aureus in a murine
model [115–117]. Kupffer cells first gather in liver sinusoids after bacteria inoculation, and afterwards,
neutrophils and platelets assemble and remain in the liver vasculature by VWF secretion and
binding [116,118]. The platelet–neutrophil interaction leads to the organized destruction of neutrophils
and the release of neutrophil extracellular traps (NETs), which are networks of neutrophil DNA and
histones which entrap and kill bacteria gathered in the sinusoids [119]. This organized neutrophil
death program is different from necrosis and apoptosis, and has been called NETosis [120]. While it is
crucial in innate immune response, its uncontrolled activation may lead to tissue injury, and several
experiments have demonstrated colocalization of NETs and subsequent necrosis. Hemostasis directly
interact with NETosis by activated platelets and activation of coagulation in the site of the immune
response [118,121,122]. Moreover, the demonstration of a VWF binding to histones, which precedes
the discovery of NETs, suggests a continuum in hemostasis activation and tissue response to
bacteria [123]. Therefore, in recent years, hemostasis has been revised as a direct effector of
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immune innate response, and in 2013, Engelmann used the term “immunothrombosis” to define
thrombosis as an uncontrolled, deranged immune response to tissue injury [124]. Moreover, several
studies have demonstrated an association between NET production and thrombosis [125–128].
Recently, McDonald et al. demonstrated an in vivo intravascular coagulation into sinusoids
in response to sepsis (LPS administration and S. aureus inoculation in mice), which colocalize
with NETs formation and tissue injury [129]. Interestingly, in this experiment, NET inhibition
reduced thrombin activation and organ damage, while anticoagulation with argatroban alone
did not reveal any effect on tissue injury. Collectively, these results confirm that the interaction
between immune responses, platelets and coagulation is crucial in organ homeostasis in response to
exogenous damage stimuli [122]. Therefore, immunothrombosis may represent a global mechanism
which mediates tissue injury in response to acute and chronic damage and precedes fibrosis.
In hepatology, increasing evidence advocate a pathogenic role for bacterial translocation from gut to
general circulation [130,131]. Bacterial translocation is due to the increase of portal hypertension
alongside liver disease severity, thus increasing gut permeability and disrupting the intestinal
barrier [132]. This chronic exposition of enteric pathogens is associated with a progressively worsening
inflammatory state, which has been recently presumed to be one of the main pathophysiological
events in the development of cirrhosis-related complications [132–134]. Bacterial translocation is also
associated with VWF, FVIII increase and platelet hyperactivation, thus confirming a pro-hemostatic
role [79,135–138]. As immunothrombosis may originate from excessive response to bacteria in the liver
vasculature, the existence of a chronic pathogen exposition may be crucial in sustaining inflammation,
micro-thrombosis and consequent parenchymal extinction. Studies on the potential link with immune
response, hemostasis activation and consequent fibrosis and disease progression are intriguing and
highly anticipated.

5. Conclusions

Hemostasis has a non-negligible impact on liver fibrosis, as it induces a pro-fibrotic, activated
HSC phenotype through thrombin–PARs interaction. Moreover, the increasing comprehension of liver
immunology elucidates the crucial role of hemostasis in tissue injury mechanisms and may offer new
potential druggable pathways by further defining this complex interplay. A pro-hemostatic milieu
in liver microcirculation due to repetitive harmful stimuli may drive sinusoidal microthrombosis,
which leads to parenchymal extinction and disease progression (Figure 2). As a result, an inherited or
acquired pro-hemostatic imbalance is associated with fibrosis progression in pre-clinical and clinical
studies. Moreover, anticoagulant drugs reduce fibrosis development, and may impact the natural
history of liver disease, even in late stages of cirrhosis, which display a complex hemostatic balance.
Therefore, the ever more precise understanding of the mechanisms that regulate hemostasis and its
interactions with the pathophysiology of tissue damage will make it possible to better define new
therapeutic targets in the clinical challenge of dampening liver fibrosis.
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