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Abstract: Prediabetes and colorectal cancer (CRC) represent compelling health burdens responsible for
high mortality and morbidity rates, sharing several modifiable risk factors. It has been hypothesized
that metabolic abnormalities linking prediabetes and CRC are hyperglycemia, hyperinsulinemia,
and adipokines imbalance. The chronic stimulation related to these metabolic signatures can favor
CRC onset and development, as well as negatively influence CRC prognosis. To date, the growing
burden of prediabetes and CRC has generated a global interest in defining their epidemiological and
molecular relationships. Therefore, a deeper knowledge of the metabolic impairment determinants is
compelling to identify the pathological mechanisms promoting the onset of prediabetes and CRC. In
this scenario, this review aims to provide a comprehensive overview on the metabolic alterations of
prediabetes and CRC as well as an overview of recent preventive and therapeutic approaches for
both diseases, focusing on the role of the metabolic state as a pivotal contributor to consider for the
development of future preventive and therapeutic strategies.
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1. Introduction

Prediabetes is a transition phase in the progression from a normal glucose tolerance
to diabetes mellitus (DM), with high incidence and prevalence rates worldwide and most
cases left untreated [1]. Three clinical criteria are applied for prediabetic diagnosis: (i) im-
paired glucose fasting (IGF), with fasting glycemic levels between 100 and 125 mg/dL;
(ii) impaired glucose tolerance (IGT), with plasma glucose levels ranging from 140 and
199 mg/dL after oral glucose tolerance test (OGTT); and (iii) glycated hemoglobin (HbA1c)
levels between 5.7% and 6.4% [1]. The global burden of prediabetes is rapidly growing in
developed countries, with IGT and IGF prevalence percentages of 9.1% and 5.8%, respec-
tively, in 2021, expected to increase by at least +1% by 2045 [2]. Population reports estimated
that 70% of prediabetic patients will develop into type 2 DM patients, with 5% to 10% of
prediabetic patients developing a clinical diabetic syndrome each year [3]. DM is a chronic
hyperglycemia condition caused by impairment in insulin secretion, response to insulin,
or both alterations [4,5], and is diagnosed by randomly measured glycemia ≥ 200 mg/dL,
fasting glycemia ≥ 126 mg/dL, glycemic levels ≥ 200 mg/dL after a 2 h OGTT, and
HbA1c ≥ 6.5% [6]. DM represents a heavy health burden, due to the high social and
healthcare costs as well as its systemic complications, including chronic renal disease,
diabetic retinopathy, non-traumatic limb amputations, heart failure, and increased cancer
incidence and lethality [7–9]. Prediabetes results from the interaction of different factors,
such as inflammatory and oxidative stress, obesity, and dysregulated hormonal pathways,
which concur with the onset of metabolic impairment, insulin resistance (IR), and β-cell
dysfunction [10]. Novel effective strategies targeting prediabetic metabolic damage would
be pivotal tools to oppose prediabetic pathogenesis and prevent the development of other
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diseases characterized by severe metabolic alterations, including colorectal cancer (CRC).
Indeed, evidence showed a correlation between the prediabetic and diabetic phenotype
and the onset of CRC [9,11,12]. This neoplasia represents the third most diagnosed cancer
worldwide, whose incidence and mortality rates are expected to increase over the years,
particularly in developed countries, mostly linked to physical inactivity and unhealthy di-
etary habits, also related to T2DM and prediabetes [7,13,14]. Cell metabolic reprogramming
during different stages of CRC carcinogenesis is associated with mutations in tumor sup-
pressors and promoters, such as adenomatous polyposis coli (APC), Wnt, and MYC [15–17].
Several studies investigated the role of DM and prediabetes as independent risk factors for
CRC development, identifying the existence of several diabetic pathways related to the im-
mune system and metabolic regulation leading to CRC carcinogenesis [9,11,12,18]. Herein,
an integrated and updated overview of the metabolic injuries characterizing prediabetes
and CRC will be presented, as well as emerging preventive and therapeutic approaches
targeting metabolic pathways in the pathogenesis of prediabetes and CRC.

2. Prediabetes: Risk Factors and Determinants

Insulin resistance (IR), characterized by impaired peripheral insulin activity, represents
a critical state in prediabetes pathogenesis. The prediabetic insulin-resistant phenotype
results from metabolic and inflammatory alterations, where complex interactions between
genetic and environmental determinants play crucial roles [19,20]. Several factors, such as
excessive nutrient intake, elevated dietary inflammatory index (DII), sedentary lifestyle,
obesity, and psychological stress, can activate multiple pathways causing metabolic dereg-
ulation and decreased insulin sensitivity in insulin-respondent tissues [21,22] (Figure 1).
Profound changes in pancreatic β-cells function and peripheral tissue insulin sensitivity,
as well as increased inflammatory cytokines levels, are indicative of an altered incretin
response and a chronic inflammatory state [23] (Figure 1). More recently, the contribution
of the host–microbiome interaction, along with the alterations in gut microbiota, were un-
veiled as fundamental determinants in prediabetes onset and development [24] (Figure 1).
In the following sections, the cornerstones of prediabetes pathogenesis will be extensively
discussed, providing the basis for a better understanding of the relationship between
prediabetes and CRC, and the definition of novel preventive and therapeutic strategies.
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Figure 1. Risk factors and determinants in prediabetes pathogenesis. The interplay among different
factors, including oxidative stress and inflammation, unhealthy lifestyle habits, hormonal dysregula-
tion, and microbiota alterations, results in the aberrant activation of different metabolic pathways
contributing to the pathogenesis of prediabetes.
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2.1. Chronic Inflammation

Inflammation and oxidative stress are crucial phenomena in the pathogenesis of
prediabetes and, to date, the association between impaired glucose homeostasis and inflam-
mation has been widely described [25,26]. Increased systemic inflammation assessed by
upregulated inflammatory protein levels, such as resistin, interleukin (IL)-1β, tumor necro-
sis factor α (TNF-α), IL-6, monocyte chemoattractant protein-1 (MCP-1), and the hepatic
marker C-reactive protein (CRP) to albumin ratio (CAR), has been reported in prediabetic
patients [27,28]. Gonzale Delgado et al. described the fundamental role of inflammation
in the pathogenesis of prediabetes, reporting that subjects with elevated inflammatory
markers and a high body mass index (BMI) undergoing renal transplantation were more
likely to develop prediabetes after kidney transplant [29]. Prediabetes is also character-
ized by systemic immune response dysregulation and inflammation in different tissues,
such as the pancreatic islets and liver, pivotal regulators of glucose homeostasis. Indeed,
prediabetic patients showed impaired immune response, with higher activation of the com-
plement cascade, and hemostatic disorders, such as an increased production of coagulation
factors [30]. Deregulation in the activity of cluster of differentiation (CD)+ T cells and of
regulatory T cells (Treg), modulating T effector cell functionality, has been also reported in
prediabetes. Particularly, Treg promoted T helper 17 differentiation and cytokine produc-
tion in prediabetes, but not in DM, and showed overexpression of the fatty acid importer
CD36, unveiling the critical role of host metabolome in controlling the immune response
in prediabetes [31]. The environmental pollutant has emerged as a novel determinant in
inflammation and the prediabetic state. Long-term exposure to air pollutants has been
associated with the activation of inflammatory pathways and glycemic disorders proper of
pediabetes [32], while the heavy metal cadmium reduced insulin secretion inducing β-cells
death via ferroptosis [33]. The endocrine-disrupting compound bisphenol A triggered
hypothalamic inflammation in a toll-like receptor 4 (TLR4)-dependent manner, promoting
prediabetic metabolic dysfunction [34].

Several inflammatory-related microRNAs (miRNAs) were altered in the prediabetic
state. Increased miR-27 and miR-195 levels related to the systemic inflammatory state
and impaired insulin sensitivity have been assessed in the serum of obese prediabetic pa-
tients [35]. Similarly, in prediabetic subjects, downregulated expression of anti-inflammatory
hsa-miR-146a-5p and upregulation of hsa-miR-1281 targeting hepatocyte nuclear factor 1
homeobox A (HFN1A), promoted hypoxia-inducible factor-1α (HIF-1α), vascular endothe-
lial growth factor A (VEGFA), and vascular damage [36]. Overall, the pharmacological and
lifestyle-based modulation of systemic inflammatory levels would impede the metabolic
damage progression of prediabetes, as well as of CRC [37].

2.2. Obesity and Sarcopenia

Obesity is a pathological condition characterized by an excessive volume of adipose
tissue, defined by a BMI value of higher than 30 kg/m2, and associated with several
metabolic alterations [38]. Closely dependent on dysfunctional lifestyle habits in developed
countries, obesity is a pandemic syndrome with high mortality and morbidity rates and is
able to promote the onset of severe diseases [39]. The massive prevalence of obesity has
been related to a concomitant increase in prediabetes [40]. An obesogenic diet results in
hyperproliferation and altered differentiation of intestinal stem cells and progenitors, de-
creased serotonergic and increased peptidergic enteroendocrine cytotypes, and promotion
of dysmetabolic pathways [41]. Abnormal nutrient intake represents a critical determinant
in obesity, associated with a condition defined as “nutri-stress” where metabolic alterations
induce an impaired heat shock proteins (HSPs) response, leading to mitochondrial dam-
age, dysfunctional energy metabolism, high glucose levels, and IR [42]. Upon metabolic
alterations, intestinal cells of prediabetic patients secrete higher levels of exosomal vesicles
related to lipid metabolism and oxidative stress, compared to non-prediabetic subjects [43].
In obese patients, dysfunctional adipose tissue releases reactive oxygen species (ROS),
inflammatory cytokines, and free fatty acids (FFAs), whose elevated plasmatic levels deter-
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mine ectopic fat accumulation in non-adipose tissues [44]. Atherogenic alterations with
increased free cholesterol, triglyceride, and saturated FFA levels have been also assessed
in prediabetes patients, thus generating a lipotoxicity state with dysfunctional organelles
and IR onset [44,45]. Evidence has suggested a pivotal role of mitochondrial dysfunction
and endoplasmic reticulum stress in the development of IR conditions, with lipid and ROS
accumulation [46]. A 2-week long high-fat diet was able to induce mitochondrial stress
and acute IR in a mouse model [47], while fatty acid metabolites, such as diacylglycerols
(DAGs), suppressed insulin signaling by activating protein kinase C(PKC)θ and PKCε, by
IRS serine phosphorylation, and glucose transport inhibition [48]. The accumulation of ce-
ramides altered mitochondrial chain function whilst sphingolipids led to PKCζ and protein
phosphatase 2A (PP2A) activation, thus inhibiting protein kinase B (Akt)-induced glucose
uptake [49]. Of note, the role of the mitochondrial guardian sirtuin (SIRT) 3 in insulin home-
ostasis and glucose and lipid metabolism has been reported in in vitro endothelial cells.
Specifically, SIRT3 expression was associated with an enhancement of metabolic alteration
induced by palmitic acid treatment and redox homeostasis [50]. Decreased SIRT6 and SIRT1
expression have been assessed in the abdominal fat of obese prediabetic patients, along
with upregulated NF-κB, peroxisome proliferator-activated receptor gamma (PPAR-γ), and
sterol regulatory element-binding transcription factor 1 (SREBP1) protein levels [51,52].
These results were corroborated by systemic inflammation, sustained by hyperglycemia
and elevated CRP and cytokine content, such as IL-6 and TNF-α [51,52].

Obese patients display an increased expression of metallothionein (MT) 1 in pancreatic
islets, which is negatively correlated with insulin secretin and β-cells failure [53]. Moreover,
dysfunctional Langerhans islets and insulin secretion have been related to altered intercel-
lular communications via Connexin36 (Cx36) gap junctions, which are downregulated in
obesity and prediabetes [54]. In vivo and in vitro studies identified a correlation among
miRNAs, obesity, and IR. Yu et al. described the ability of miR-27a to negatively regulate
PPAR-γ expression in skeletal muscle cells, thus altering glycemic homeostasis [55]. The
obesity-related sedentary life, along with dysregulated nutrition and excessive DII, are also
associated with the progressive loss of muscular strength and sarcopenia of prediabetes,
due to the fundamental role of myocytes in glucose homeostasis [56–58]. Grip strength and
chair-rising time tests evaluated the impact of muscle strength on the metabolic alterations
of prediabetic patients, correlating muscle strength to attenuated prediabetes evolution [59].
In addition, in prediabetic subjects, an increased DII score, defined by the individual in-
take of pro- and anti-inflammatory nutrients, is positively correlated with IR and reduced
skeletal muscle mass and function [57]. In this scenario, raising awareness of the hurdles
associated with poor nutrition and a sedentary lifestyle is pivotal to prevent the assessment
of harmful metabolic reprogramming, characterizing prediabetes and CRC [37].

2.3. Hormonal Dysregulation

Along with insulin signaling, other deregulated hormonal pathways are involved
in prediabetes pathogenesis [19,20]. The IGT condition of prediabetic patients has been
correlated with higher hepatic levels of CD26/dipeptidyl peptidase 4 (DPP4) compared
to normal glucose tolerant subjects, which determines massive degradation of glucagon-
like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), causing
dysmetabolism and IR [60]. In addition, increased FFA levels reduce the expression of
GLP-1 receptor and Cx-36, thus impairing insulin secretion [61]. Adiponectin and leptin
are adipose tissue-secreted hormones regulating metabolic and inflammatory pathways
at both peripheral and central levels [62]. Although in physiological conditions leptin
ameliorates insulin sensitivity, its overexpression has been associated with fasting insulin
plasma levels in obese and prediabetic patients, along with C1q/TNF-related protein 1
(CTRP1) [63]. The hepatokine fibroblast growth factor (FGF) 21 was also found elevated in
obesity and hyperglycemia [64], representing a metabolic regulator of glucose and lipid
homeostasis secreted by hepatocytes during nutritional stress [65]. A clinical study on
prediabetic subjects assessed the upregulated FGF21/adiponectin ratio, which correlated
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with the onset and development of the condition [66]. Adiponectin and insulin-like growth
factor binding proteins (IGFBP)-1 and IGFBP-2 levels directly reflect insulin sensitivity
in adipose tissue and liver. Evidence evaluating the association between altered IGFBP
levels and glucose homeostasis showed IGFBP-2 upregulation in women with pathological
glucose tolerance, while increased IGFBP-1 levels were detected in male subjects [67].
Reduced adiponectin and nefastin-1 levels in prediabetes were associated with an increased
risk of developing DM [68], whilst leucine-rich alpha-2-glycoprotein 1 (LRG1) expression
was related to insulin dysmetabolism [69]. Indeed, overexpressed LRG1 was found in
obese humans and mice, where it promoted hepatic steatosis, enhancing lipogenesis and
suppressing fatty acid β-oxidation, and inhibited IRS1 and IRS2, thus promoting IR and
prediabetes [69].

Thyroid hormones regulate glycemic homeostasis, modulating the insulin pathway
response and affecting adipogenesis. A study involving 4378 patients showed a negative
correlation between central thyroid hormone sensitivity, evaluated as an increased Thyroid
Feedback Quantile-based Index (TFQI), TSH Index (TSHI), Thyrotrope Thyroxine Resis-
tance Index (TT4RI), and prediabetes [70]. In addition, hypothyroid patients displayed
increased circulatory leptin levels, suggesting its contribution to the development of IR,
prediabetes, and DM [71].

Prediabetic subjects showed an altered insulin-antagonistic hormone axis with an en-
hanced responsivity to glucagon and cortisol and a reduced sensitivity to growth hormone
(GH) [72]. The osteoblast-derived hormone lipocalin-2 is able to suppress appetite and re-
duce adipose tissue accumulation, improving glucose metabolism in obesity conditions [73].
Lipocalin-2 silencing results in a worse outcome in obese mice, while its increase improves
insulin and glucose homeostasis, elucidating the physiological protective mechanisms of
this hormone against prediabetes [73]. Moreover, increased plasmatic β-amyloid (Aβ)40
and Aβ42 levels have been related to impaired liver and muscle insulin sensitivity and
pancreatic insulin secretion, fostering the onset of prediabetes [74]. Overall, the existence
of a systemic interplay involving heterogeneous factors is emerging promptly as a crucial
pathogenetic moment in the development of a dysmetabolic state. A better knowledge
of the multifaceted effects exerted by hormones would be helpful for enabling the early
diagnosis and strategical therapy of metabolic diseases.

2.4. Microbiota

The host–microbe relationship is promptly emerging as a crucial regulator of metabolic
homeostasis and a critical regulator in prediabetic pathogenesis [75]. The alterations in mi-
crobiota diversity, often associated with unhealthy nutritional habits, can impair intestinal
barrier integrity and permeability, leading to the state of endotoxemia, characterized by
increased lipopolysaccharide translocation and a chronic state of inflammation [76]. Predia-
betic patients show a deficiency in beneficial bacteria content, such as Lactobacillus and
Bifidobacterium, accompanied by an increase in the content of proinflammatory bacteria.
Patients display a reduced abundance of the mucin-degrading A. muciniphila as well as
Clostridium bacteria, inversely correlated with fasting blood glucose and triacylglycerol
levels, IR, inflammation, and obesity [75]. On the other hand, enhanced Dorea bacterial
content, which is directly associated with glucose concentration, was assessed in prediabetic
subjects [77].

Intestinal bacteria are able to produce different small-chain fatty acids (SCFAs), such
as butyric acid, displaying a crucial role in inflammatory attenuation, as well as amelio-
rating insulin sensitivity [78]. Prediabetic subjects showed a significant reduction of the
butyrate-producing bacterium Faecalibacterium prausnitzii, contributing to impaired glu-
cose metabolism [79,80], while a decrease in Candidatus Soleaferrea and an accumulation
of Parasutterella were associated with increased endotoxemia, chronic inflammation and
IR [81].

In addition, a high-fat high-sugar diet was associated with changes in the intestinal
microbiota with increased numbers of Erysipelotrichaceae bacteria, depleted effects of Th17
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lymphocytes, and IL-17-mediated lipid uptake [82]. Evidence indicates the important role
of microbiota in several diseases; furthermore, gut microbial dysfunctions have been also
demonstrated to be directly involved in CRC pathogenesis [83]. To this end, the assessment
of microbiota-targeting approaches could become an effective strategy against prediabetes,
and even more so against CRC.

3. Prediabetes as an Independent Risk Factor for Colorectal Cancer

Prediabetes represents a transition phase in the passage from euglycemia to hyper-
glycemia and DM, thus resulting in associated risk factors for all DM-related mortality and
morbidity events, such as cardiovascular diseases, dementia, and different tumors [84].
Indeed, glucose-intolerant patients are characterized by a higher total cancer risk com-
pared to normal glucose-tolerant subjects [85], and prediabetic and diabetic subjects with
tumors display an increased mortality rate [86,87]. Evidence demonstrated the association
between prediabetes and CRC, sharing common negative lifestyle and environmental
influences [21,88], including obesity, physical inactivity, dysregulated nutritional habits,
microbiota alterations, and a metabolic reprogramming state [86,87]. Notably, it has been
reported that the excessive consumption of red meat, and even more so if grilled or smoked,
is an important risk factor for CRC, due to the formation of mutagenic and oxidative
compounds during cooking processing and the alteration of the gut microbiota [89]. In this
context, it should be noted that a high rate of consumption of meat is part of a form of keto-
genic diet which is often followed by prediabetic patients and suggested by clinicians [90].
This treatment resulted in the normalization of blood glucose levels; however, following
this diet for too long has been associated with toxic effects, i.e., an increase in cholesterol
levels after six months [91].

As in the case of prediabetes, CRC is characterized by glucose dysmetabolism, with
an accumulation of glycolytic intermediates and their diversion in different metabolic
pathways, thus resulting in the increased production of lipids, amino acids, and nucleotidic
molecules sustaining cell proliferation and survival [92]. Of note, evidence has suggested
the direct influence of prediabetes in CRC development, the risk of which was enhanced
in the advanced stages of prediabetes [93] (Figure 2). The impact of prediabetes, as well
as DM, in CRC, can be ascribed to a chronic stimulation mediated by hyperglycemia,
hyperinsulinemia, and hormonal dysregulations [86,94].
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Mice affected by high-fat high-sugar diet (HFHSD)-induced prediabetes showed hy-
perproliferation, rapid differentiation, and rapid turnover of intestinal stem cells and
progenitors, leading to an increased risk of cancer development [95]. These effects are
dependent on upregulated PPAR-γ and SREBP1-mediated lipogenesis, inflammation, and
cancer progression via activation of the pro-proliferative insulin receptor or insulin-like
growth factor 1 receptor (IGF-1R)/Akt pathway [95]. An observational study supported
the relationship between elevated fasting insulin and CRC risk, with increased HbA1c
levels associated with CRC risk in men [96]. Hyperinsulinemia might also promote cell
proliferation, invasion, and drug resistance in CRC [97], and IR, which is assessed as an
elevated low-density lipoprotein (LDL)/high-density lipoprotein (HDL) ratio, and has
been identified as a negative prognostic factor in CRC [98]. In vivo studies have described
the overexpression of the insulin receptor, specifically its fetal isoform, in precancerous
CRC lesions, supporting the role of insulin in cancer initiation and progression [99]. A close
relationship between glycemia and CRC has also been assessed, with a relative risk of 1.015
per every 20 mg/dL increase in fasting plasma glucose [100], CRC-related mortality was
associated with HbA1c levels, indicating that it plays a role in chronic glycemic alterations
in the CRC phenotype [101]. Increased plasmatic glucose levels and nutrient availability
result in increased ROS production determining metabolic reprogramming, as well as
genetic and epigenetic alterations [102]. The activity of adipose tissue-derived factors,
such as osteopontin, visfatin, and resistin, along with an imbalanced leptin/adiponectin
ratio, promoted inflammation, CRC proliferation, and metastasis via integrin αvß6 expres-
sion [102–104]. A case-control study correlated enhanced resistin plasmatic levels to IR and
CRC risk [105], while a clinical study on prediabetic subjects assessed the protective role
of adiponectin against CRC by regulating TNF-α and VEGF levels [106]. On the contrary,
reduced adiponectin expression was associated with colorectal polyp formation and malig-
nant degeneration [107]. The role of prediabetes as an independent determinant in CRC
pathogenesis is becoming clearer, concurring with the assessment of CRC as characterizing
metabolic rearrangement and increasing cell proliferation and growth as well as favoring
the acquisition of malignant features. To this end, the recognition of signs of the specific
moments of prediabetes pathogenesis, such as insulin resistance, low-grade inflammation,
altered hormone signaling, oxidative stress, and hyperglycemia, i.e., evaluating fasting glu-
cose levels >100 md/dL or high sensibility CRP values near 2 mg/L, has great potentialities
to become a novel bulwark against a CRC pandemic [108].

4. Common Therapeutic Approaches in Prediabetes and Colorectal Cancer

To date, the definition of effective strategies to prevent and treat prediabetes and
CRC is crucial, given their severe health burden and poor outcomes. Different common
approaches have been suggested for both diseases, such as acting on lifestyle habits,
including dietary interventions, and the promotion of physical activity, as well as the
off-label administration of antidiabetic drugs [109–111] (Figure 3). Here, an up-to-date
overview of common strategies in prediabetes and CRC will be provided.

4.1. Nutrition

Unhealthy eating habits represent a leading cause in the onset and development of
prediabetes and CRC [112,113], with increased DII as a critical parameter of both dis-
eases [22,114]. At the same time, an adequate controlled nutritional approach can be a
notable preventive strategy in the development of prediabetes and CRC [112,115].
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Medical nutrition therapy is one of the most effective interventions, providing patients
with a personalized dietary plan conceived by a clinical dietitian/nutritionist [116]. A recent
trial evidenced the role of medical nutrition in the improvement of metabolic parameters,
including FPG, HbA1c, insulin C-peptide, and cholesterol, in patients with prediabetes,
DM, and high BMIs [117]. The effect of a hypocaloric ketogenic Mediterranean diet in rebal-
ancing metabolic and anthropometric parameters has been reported and compared to a low-
calorie non-ketogenic Mediterranean diet [117]. The ketogenic diet exerted beneficial effects
suppressing CRC proliferation, via upregulation of the ketone body β-hydroxybutyrate
and activation of hydroxycarboxylic acid receptor 2 (Hcar2)/homeodomain-only protein
homeobox (Hopx) signaling [118]. In mice affected by high-fat diet-induced prediabetes,
the calorie-restricting dietary regimen ameliorated glucose metabolism and Cx36 gap junc-
tion alterations, Ca2+-mediated mechanisms, and insulin secretion [54]. Similarly, in a CRC
mouse model, caloric restriction was able to inhibit tumor growth and survival via upregu-
lation of pro-apoptotic Bax, reduced Bcl2 and Ki67 levels, and restoration of CRC-induced
gut dysbiosis [119]. Recent evidence described the role of food-derived bioactive com-
pounds in different diseases, thus, their characterization could represent a critical strategy
for a molecular-based nutritional approach for prediabetes and CRC [120,121]. The apple-
derived phlorizin can be a competitive inhibitor of sodium-glucose co-trasporter-2 (SGLT2),
ameliorating insulin sensitivity and reducing fecal microbiota-induced endotoxemia in
obese prediabetic mice [122]. Moringa oleifera and ginseng supplementation improved glu-
cose and lipid metabolic parameters, such as FPG, total cholesterol, HDL, and LDL profiles,
in prediabetic subjects [123,124]. A randomized controlled trial showed that supplemen-
tation with red raspberries reduced total and LDL cholesterol, hepatic IR, and improved
pancreatic β-cells function (NCT03049631) [125]. In palmitic acid-induced insulin-resistant
endothelial cells, treatment with the dairy by-product whey induced beneficial effects on
cell metabolism and the redox state [126]. Likewise, the consumption of phytonutrient-rich
fruits and vegetables exerts chemopreventive effects in CRC patients, acting as antioxidant
and anti-inflammatory compounds [127]. Tea-derived polyphenols opposed cell viability
and proliferation in CRC, modulating the Wnt/β-catenin pathway [128], whilst delactosed
milk whey (DMW) exerted chemopreventive activity by inducing in vitro apoptosis and
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restoring altered intestinal microbiota in a mouse model with azoxymethane-induced
CRC [129]. The buffalo milk-derived δ-valerobetaine (δVB) exerted a pro-apoptotic effect in
SW480 and SW620 CRC cells via PTEN-induced kinase 1 (PINK1)/Parkin pathway activa-
tion [130] and induced ROS-mediated apoptosis and SIRT6 upregulation in LoVo cells [131].
HCT116 and HT-29 cells treated with the milk-derived miR-27b underwent apoptotic cell
death by mitochondrial ROS accumulation [132], while treatment with dietary-derived
ergothioneine induced necroptotic death via activation of the SIRT3/Mixed Lineage Kinase
Domain Like Pseudokinase (MLKL) pathway in CRC [133]. All this evidence highlights
the importance of conscious nutrition as a first-line approach against metabolic diseases
and emphasizes the role of bioactive compounds as epigenetic modulators with high
potentialities in prediabetes and CRC, because of their target-specificity and low toxicity.

4.2. Physical Activity

Lack of exercise and a sedentary life are causes of a severe sanitary burden and are
associated with chronic diseases, including prediabetes and CRC [134,135]. Promoting an
active lifestyle led to decreased chronic disease-related mortality and morbidity [134], as
exercise sessions improved glycemic homeostasis and insulin sensitivity in both healthy
and glucose-intolerant subjects [136]. In responsive prediabetic patients, exercise training
promoted a microbiome able to produce short-chain fatty acids and branched-chain amino
acid degradation, while the non-responder microbiome mainly synthesized metabolically
detrimental molecules [137]. Physical activity (PA) can modulate glucose homeostasis
and affect metabolic parameters at different levels. Studies have demonstrated that PA
downregulated leptin and IL-6 expression in prediabetic subjects [138], correlated with
improved microbiota profile and reduced endotoxemia [139]. Randomized clinical trials
(NCT02706262, NCT02706288) showed that regular exercise training, associated with a
weight loss nutritional plan, was able to enhance metabolic benefits, with an increase
in insulin sensitivity 2-fold higher in obese and prediabetic patients than when under a
regimen of caloric restriction alone [140].

Recently, a meta-analysis evidenced the protective influence of moderate to high PA
in digestive tract cancers [141], given the existence of a direct correlation between healthy
lifestyle index, including PA, and CRC prevalence [142]. An increased exercise level was
related to a reduction in CRC relative risk of up to 20% [143], as adequate PA is able to
counteract CRC polygenic risk [144] and ameliorate the overall survival rate after surgery
resection [145]. The exact mechanisms relating to CRC and PA are still unclear; however, it
could be speculated that IR, chronic inflammation, and dysbiosis improvement represent
key events of exercise-mediated cancer prevention [146,147]. In addition, PA could inter-
vene in CRC natural pathogenesis affecting shear stress and opposing circulating tumor
cell survival, regulating systemic milieu, reducing serum leptin, and increasing plasmatic
adiponectin [148]. PA also decreased the levels of acidic and rich in cysteine (SPARC)-
mediated apoptosis, induced the release of skeletal muscle anti-oncogenic extracellular
vesicles, and promoted catecholamine-mediated immune cell mobilization [148].

Given the multiple beneficial effects exerted by PA, the promotion of an active lifestyle
can be considered a first-line therapy, able to stop and revert the insulin resistance and
dysmetabolism associated with prediabetes as well as to directly ameliorate CRC patient
prognosis and life quality.

4.3. Pharmacotherapy

Antidiabetic drugs, including metformin, gliflozins, and incretin analogs, represent
current therapeutic strategies for the prediabetic state, aimed at impairing the progression
to DM and reducing the related morbidity and mortality rates (Table 1) [149,150]. However,
this approach is not widely accepted as the progression from prediabetes to DM is not
certain, underpinning doubtful outcomes of the risk/benefit and risk/cost ratios [151].
Treatment with metformin enhanced glycemic control counteracting DM progression in
prediabetic patients [152,153] and, in addition to lifestyle changes, reduced DM evolution
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risk by 17% compared to lifestyle approach alone (NCT03441750) [154,155]. A random-
ized clinical study on prediabetic patients revealed the beneficial effects of metformin
supplemented with probiotic Bifidobacterium treatment improving glucose homeostasis
and opposing HbA1c and side effects, to a greater extent than single metformin treat-
ment [156]. In different clinical and preclinical models of IR, exposure to metformin
promoted insulin-dependent glucose transporter (GLUT) type 4 expression and its mem-
brane translocation [157]. Obese prediabetic patients treated with metformin displayed
lower systemic inflammation, oxidative stress, and pro-inflammatory miR-195 and miR-
27 expression compared to non-treated subjects [158]. In addition, metformin increased
SIRT6 expression and decreased inflammatory markers, including SGLT2, leptin, and the
leptin/adiponectin ratio, in prediabetic patients with acute myocardial infarction, thus
opposing coronary dysfunction, major adverse cardiac events, and prediabetic pericoronary
fat accumulation [52,159,160]. SGLT2 inhibitors (SGLT2i) were also able to reduce cardio-
vascular death and heart failure-associated hospitalization in prediabetic patients [161].
Empagliflozin treatment ameliorated left ventricle reverse remodeling, enhancing patient
ejection fraction [161], while a recent meta-analysis described the potentialities of SGLT2
inhibitors in preventing the evolution from prediabetes to DM [162]. However, it has
been evidenced that a combination of SGLT2i treatment with a ketogenic diet exposes
the patient to the risk of euglycemic ketoacidosis, contraindicating their combination in
the treatment of prediabetic patients [163]. Similarly, GLP-1 receptor agonists (GLP1-RA)
improved glucose homeostasis, and reduced body weight and systolic blood pressure,
impairing the evolution of prediabetes to DM [164]. Treatment with GLP1-RA and GLP1-
RA supplemented with GIP reduced body weight by 15% and 20% and decreased IR
progression to DM [165], as the GLP1-RA liraglutide ameliorated IR and weight loss inde-
pendently of GLP1-R signaling [166]. Liraglutide promoted insulin secretion, increasing
the production of hippocampal cholinergic neurostimulating peptide (HCNP), choline
acetyltransferase, and muscarinic receptor 3 (M3R) in prediabetic rat models [167], and, as
in the case of other GLP1-RAs, improved glycemic control and thermogenesis and induced
systemic and monocyte-derived IL-6 expression [168]. Exposure to liraglutide counter-
acted monocyte chemoattractant protein-1 (MCP-1) release, ameliorating inflammatory
and atherosclerotic parameters [169], and promoted cardiovascular function by reducing
tumorigenesis-2 (sST2) and troponin I inhibition (Eudract: 2013-001356-36) [170]. It is
interesting to note that the protective effect of the GLP1-RA liraglutide alone on weight
and visceral fat loss was lower than that of caloric restriction alone [171]. Recently, the
interplay between gut microbiota and antidiabetic drugs, including metformin, SGLT2i,
and GLP1-RA, has been extensively reviewed [172,173]. In detail, the gut flora composition,
which affects metabolism and glucose homeostasis, can alter the efficacy of antidiabetic
treatments [172,173]. On the other hand, metformin treatment can increase Escherichia coli
and lower Intestinibacter content, also promoting the growth of several SCFA-producing
beneficial bacteria, including Blautia, Bacteroides, Butyricoccus, Bifidobacterium, Prevotella,
Megasphaera, and Butyrivibrio [172,173]. SGLT2i can stimulate beneficial Alloprevotella Lacto-
bacilli spp. growth and reduce Helicobacter and Mucispirillum species prevalence [172,173].
GLP1-RA, such as liraglutide and dulaglutide, can increase the Bacteroidetes to Firmicutes
ratio and the SCFA-producing Bifidobacterium content [172,173]

Several studies investigated the effects of current antidiabetic drugs on CRC (Table 1).
Treatment with metformin led to increased overall and disease-free survival in CRC dia-
betic patients [174,175], opposing cell cycle and growth, cancer stem cells and metastatic
ability via mammalian target of rapamycin (mTOR) and PI3K/Akt pathway inhibition
and AMPK activation [176]. Metformin-derived antineoplastic effects are also mediated by
suppression of tumor growth factor (TGF)-β/Inhibin Subunit βA (INHBA) signaling with
downregulated cyclin D1 expression and cell cycle inhibition [177], along with urea cycle
suppression and reduced putrescine levels [178]. A retrospective study in CRC diabetic pa-
tients reported a metformin-mediated survival benefit and reduced risk of liver metastasis
after surgery [179]. Metformin induced caspase 3-independent apoptotic death in HCT116
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and SW620 CRC cells [180] and disrupted the immunosuppressive effect of the tumor mi-
croenvironment [181]. More specifically, the antidiabetic drug exerted immunostimulating
effects on CD8+ T lymphocytes following tryptophan metabolism reprogramming, which
is reduced in CRC and increased in CD8+ [182]. In addition, metformin downregulated
the mevalonate pathway as myeloid-derived suppressor cells and M2 macrophages in
CRC mouse models [183] sensitized CRC cells to 5-Fluorouracil (5-FU) and irinotecan [184]
and counteracted insulin-induced oxaliplatin resistance in HCT116 and LoVo cells via
AMPK activation [97]. Evidence supports the possible role of different SGLT2is in CRC
prevention and treatment. Dapagliflozin counteracted tumor growth, abrogating the hy-
perinsulinemia cancer-promoting effect in both in vivo and in vitro CRC models [185], and
reducing cell adhesion, inducing loss of interaction with collagen I and IV associated with
reduced Discoidin domain receptor family member 1 (DDR1) function in HCT116 cells
not expressing the SGLT2 catabolizer UDP Glucuronosyltransferase Family 1 Member A9
(UGT1A9) [185]. A case report revealed a synergic interaction of SGLT2i and cetuximab in
reducing metastatic CRC size and Carcinoembryonic Antigen (CEA) levels [186], whilst
tofogliflozin suppressed CRC development and β-catenin accrual in diabetic mice [187].
In addition, evidence showed that SGLT2i reduced CRC by downregulating farnesylated
Ras protein expression and plasmatic insulin levels [188]. An in vitro study indicated that
GLP1-RA liraglutide suppressed CRC migration and survival, inducing apoptotic cell
death through inhibition of the PI3K/Akt/mTOR pathway [189].

Table 1. Effects of antidiabetic drugs on prediabetes and CRC.

Drug Effects on Prediabetes Effects on Colorectal Cancer

Metformin

Glucose homeostasis enhancement [152,153,155]
Inhibition of prediabetes to DM progression [152,153]

Increase in GLUT4 expression levels [157]
Promotion of GLUT4 membrane translocation [157]
Reduction in systemic inflammation and oxidative

stress and miR-195 and miR-27 [158]
SIRT6 upregulation [159]

SGLT2 downregulation [159]
Leptin/adiponectin ratio reduction [159]

Overall and disease-free CRC survival increase
Reduced liver metastasis [174,175,179]

Inhibition of mTOR and PI3K/Akt
signaling [176,183]

AMPK activation [97,176,183]
TGF-β/INHBA signaling suppression [177]

CyclinD downregulation [177]
Urea cycle suppression [178]

Reduced putrescin levels [178]
Caspase 3-mediated apoptosis [180]

Disruption of tumor-mediated
immunosuppression [181–183]

Chemosensitivity increase [97,184]

Gliflozins
Reduced cardiovascular-related death [161]

Reduced heart failure [161]
Inhibition of prediabetes to DM progression [162]

Suppression of hyperinsulinemia pro-tumoral
effect [185]

Reduced cell adhesion [185,186]
Synergic cytotoxic effect with cetuximab [185]

β-catenin suppression [187]
Farnesylated Ras levels downregulation [188]

Insulin levels downregulation [188]

GLP-1RA

Glucose homeostasis enhancement [164,168]
Weight loss promotion [164,171]

Amelioration of insulin sensitivity [166]
Insulin secretion enhancement via HCNP, M3R [167]

Choline acetyltransferase upregulation [167]
Reduced systemic inflammation [168,169]

Cardiovascular function enhancement [170]

Suppression of cell survival [189]
Suppression of cell migration ability [189]

Inhibition of PI3K/Akt/mTOR pathway [189]
Reduced cancer relative risk [190]

Moreover, a recent cohort study described a protective role of GLP1-RAs against
CRC in normal-weight diabetic patients and even more in obese diabetic patients [190].
Metformin, SGLT2i, GLP1-RA, and other antidiabetic drugs, by targeting some biological
mechanisms, e.g., oxidative stress and mitochondrial dysfunction, demonstrated antioxi-
dant and ROS scavenger properties in in vitro and in vivo models, a common feature of
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prediabetes and CRC [191,192]. Comprehensively, metformin, SGLT2i, and GLP1-RAs have
been demonstrated to exert several beneficial effects in prediabetes, reducing inflammation
and insulin resistance and inducing weight loss. Moreover, the off-label usage of antidia-
betic drugs in CRC revealed new drug-specific mechanisms of action. To this end, further
studies would allow us to add these new weapons to the therapeutic armamentarium
against CRC.

5. Conclusions

Prediabetes and CRC globally represent severe health burdens given their high mor-
tality and morbidity rates, thus, the definition of novel effective preventive and therapeutic
strategies is compelling [2,13]. In this scenario, we provided an extensive overview of the
current knowledge on prediabetes, evidencing its relevance not only in DM prevention but
also as an independent disease with proper alterations and dysmetabolism [10]. Moreover,
we highlight the strong relationship occurring between prediabetes and CRC, as this tumor
is characterized by the accumulation of metabolic alterations during the progressive stages
of carcinogenesis which promote cell proliferation and survival advantages [15–17,89]. Pre-
diabetes and CRC display common risk factors, such as chronic inflammation, unhealthy
lifestyle habits, and microbiota alterations, which ultimately concur with the establishment
of global metabolic reprogramming [86,94]. Within this framework, overlapping lifestyle-
and drug-based interventions have been investigated in prediabetes and CRC, supporting
the existence of common pathological pathways in both diseases [109–111,193].

Above all, we provided evidence about the role of prediabetes as an independent
determinant of CRC onset and progression, as prediabetic subjects have been characterized
with higher CRC incidence and poorer prognosis compared to normal, glucose-tolerant
subjects. However, the influence of prediabetes on CRC has been only partially explained,
relying on the chronic state of hyperglycemia, hyperinsulinemia, and adipokine imbalance,
which provide CRC cells with nutritional substrates and boost malignant phenotype
acquisition [86,94]. In this scenario, further studies will allow us to exploit the potentialities
of the prediabetes and CRC relationship and could result in a critical tool for designing
novel effective targeted approaches aimed at counteracting systemic metabolic impairment
and its clinical complications, and specifically preventing CRC onset and development.
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