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Abstract: The neonatal brain is substantially more resistant to various forms of injury than the mature
brain. For instance, the prognosis following ischemic stroke is generally poor in the elderly but
favorable in neonates. Identifying the cellular and molecular mechanisms underlying reparative
activities in the neonatal brain after ischemic injury may provide feasible targets for therapeutic inter-
ventions in adults. To this end, we compared the reparative activities in postnatal day 13 and adult
(8–12-week-old) mouse brain following middle cerebral artery occlusion. Immunohistochemistry
revealed considerably greater generation of ischemia-induced neural stem/progenitor cells (iNSPCs)
expressing nestin or Sox2 in ischemic areas of the neonatal brain. The iNSPCs isolated from the
neonatal brain also demonstrated greater proliferative activity than those isolated from adult mice. In
addition, genes associated with neuronal differentiation were enriched in iNSPCs isolated from the
neonatal brain according to microarray and gene ontogeny analyses. Immunohistochemistry further
revealed considerably greater production of newborn doublecortin+ neurons at the sites of ischemic
injury in the neonatal brain compared to the adult brain. These findings suggest that greater iNSPC
generation and neurogenic differentiation capacities contribute to the superior regeneration of the
neonatal brain following ischemia. Together, our findings may help identify therapeutic targets for
enhancing the reparative potential of the adult brain following stroke.

Keywords: neonatal brain; adult brain; ischemic stroke; neural stem cell; neurogenesis; neural
regeneration

1. Introduction

Ischemic stroke is the primary cause of severe acute brain damage among the elderly,
and long-term survival is generally poor [1–3]. Moreover, elderly stroke survivors are
often left with irreversible sequelae associated with local brain damage. Stroke also oc-
curs in neonates (within 28 days after birth), resulting in neurological dysfunction and
neuropathology, as revealed by neuroimaging [4]. Although the incidence of stroke in new-
borns was reported to be only approximately 1/4000 live births [5], a recent study pointed
out that it may actually be higher [6]. Neonatal stroke conditions include brain hemorrhage
and cerebral venous sinus thrombosis [7], but the largest proportion (approximately 80%)
are attributed to ischemic artery stroke, which mainly affects the middle cerebral artery
(MCA) [7]. In contrast to stroke in the elderly, mortality following neonatal stroke is very
low, and most patients are left with few if any complications [8,9]. In fact, the prognosis is
even more favorable than following stroke during childhood or adulthood [10]. Therefore,
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identifying the neural mechanisms underlying enhanced stroke damage resistance in the
neonatal brain may provide clues to more effective therapeutic targets for adult patients
with stroke.

Although the repair capacity of the mature brain is limited, neural stem/progenitor
cells (NSPCs) with multilineage differentiation potential are present in some brain regions
throughout life [11]. Previous studies of mice expressing green fluorescent protein (GFP)
under the control of the promoter for the NSPC marker nestin have shown that these cells
are widely distributed during early brain development [12] but are restricted to specific
neurogenic zones such as the subventricular zone (SVZ) and subgranular zone (SGZ) in
the adult brain [12]. Kuhn and colleagues also reported that the proliferative potential of
NSPCs decreases with age in rat brain [13]. These results suggest that greater numbers of
NSPCs, more rapid proliferation, and (or) greater neuronal differentiation capacity may
confer enhanced reparative potential in the neonatal brain compared to the mature brain.

We previously reported that regionally derived NSPCs are induced within and around
injured regions after ischemic stroke in adult mice and that these injury/ischemia-induced
NSPCs (iNSPCs) can contribute to tissue repair and neural regeneration in vitro and
in vivo [14,15]. To examine if these cells contribute to the difference in stroke damage
susceptibility between neonates and adults, we compared iNSPC activities and gene ex-
pression profiles between postnatal day 13 (P13) and adult mice (8–12 weeks old) following
MCA occlusion (MCAO).

2. Materials and Methods
2.1. Induction of Ischemic Stroke in Mice

All animal housing and experimental procedures were approved by the Animal Care
Committee of Hyogo Medical University (approval no. 21-006AG). Postnatal day 13
(P13) and 8-to-12-week-old wild-type mice (CB-17/Icr-+/+Jcl) were purchased from CLEA
Japan (Tokyo, Japan). Permanent ischemic stroke was induced in neonatal [16] and adult
mice [14,15,17], as previously described. Briefly, under isoflurane anesthesia, left MCAO
was induced by electrocoagulation in adult and neonatal mice.

2.2. Ischemic Volume Evaluation

Ischemic volume was measured in the poststroke neonatal and adult mouse brains,
as previously described [15]. Briefly, 1 day after MCAO, mice were anesthetized with a
mixture containing medetomidine, midazolam, and butorphanol [14,17]. After removing
the brains, 2 mm thick coronal sections were prepared. Sections were stained with 1%
2,3,5-triphenylteterazolium (TTC; Sigma-Aldrich, St. Louis, MO, USA) and subsequently
fixed with 4% paraformaldehyde (PFA)/phosphate-buffered saline (pH 7.4). The unstained
area of each slice was measured using ImageJ 1.53k software (National Institutes of Health,
Bethesda, MD, USA). The sum of the TTC-unstained areas multiplied by brain thickness was
calculated as the TTC-unstained volume, which corresponds to the ischemic volume [15].

2.3. Preparation of Poststroke Brain Samples

Poststroke mice were deeply anesthetized and transcardially perfused with 4% PFA,
as described previously [14,17]. Whole brains were removed and fixed with 4% PFA. The
cortical width index (CWI) was then measured by gross examination [18]. Briefly, the
width was measured at the midpoint of the forebrain, and the ratio of the left cortical
width (ipsilateral) excluding ischemic areas to the right cortical width (contralateral) was
calculated. After brain samples were embedded in paraffin, central forebrain tissues were
cut into 8 µm sections and stained with hematoxylin and eosin (H&E) or the indicated
antibodies, as described previously [15].

2.4. Ischemic Area Evaluation

The size of the ischemic area was also estimated in poststroke neonatal and adult
mouse brain sections by histopathological staining, as previously described [15]. Briefly,
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the poststroke “ischemic area” was measured in H&E-stained sections using ImageJ. The
proportion of ischemic area (%) was calculated as follows: % ischemic area = [(contralateral
hemisphere area) − (intact area of infarcted hemisphere)]/[(contralateral hemisphere area) × 2]
× 100 (Supplementary Figure S1), as described previously [15].

2.5. Immunohistochemistry

Immunohistochemistry was performed as described [15]. In brief, paraffin-embedded
8 µm brain sections were deparaffinized, heated for 10 min in citrate buffer (pH 6.0;
Abcam, Cambridge, UK) for epitope repair, and immunostained using a primary antibody
against the mature neuronal marker microtubule-associated protein 2 (MAP2; 1:500, mouse,
Sigma-Aldrich). Immunostained sections with 3,3′-diaminobenzide tetrahydrochloride
(Vector Laboratories Inc., Burlingame, CA, USA) were counterstained with hematoxylin
and photographed under a light microscope (Olympus, Tokyo, Japan) using a digital
camera system.

In another set of experiments, brain sections were incubated with primary antibodies
against nestin (1:100, rabbit, Abcam), glial fibrillary acidic protein (GFAP; 1:500, rabbit;
Abcam), platelet-derived growth factor receptor-beta (PDGFRβ; 1:200, goat, R&D Sys-
tems, Minneapolis, MN, USA), and (or) doublecortin (DCX; 1: 1000, rabbit, Abcam). The
brain sections were then incubated in Alexa Fluor 488- or 555-conjugated secondary an-
tibodies (1:500; Molecular Probes, Eugene, OR, USA). Cell nuclei were counterstained
with 4′,6-diamidino-2-phenylindole (DAPI, 1:500; Kirkegaard & Perry Laboratories, Inc.,
Gaithersburg, MD, USA). Stained sections were photographed using a fluorescence micro-
scope (Olympus or LSM780, Carl Zeiss AG, Oberkochen, Germany).

The ischemic and peri-ischemic areas were defined as regions within the border of the
poststroke area and within a diameter of 100 µm around the poststroke area, respectively.
Areas positive for nestin and DCX and the number of cells positive for Sox2 were measured
in the ischemic and peri-ischemic areas of coronal brain sections (3 regions per section from
3 mice for 9 datapoints), as described previously [15,17].

2.6. Cell Culture

To investigate the presence and properties of NSPCs in the nonischemic mouse brain,
MCA areas (cortex) were isolated from untreated (naïve) neonatal (P13) and adult mice.
To investigate the presence and properties of iNSPCs within ischemic areas, ischemic
tissues were removed from neonatal (P13) and adult mice on poststroke day 7. Retrieved
tissues were then dissociated and cultured under conditions that promote the formation
of neurosphere-like cell clusters, as described previously [14,15,17]. Briefly, tissues were
mechanically dissociated by sequential passage through 18-, 23-, and 27-gauge needles.
The resulting single-cell suspension was incubated under nonadherent (floating) conditions
in Dulbecco’s Modified Eagle Medium/F-12 (DMEM/F12; Thermo Fisher Scientific, Rochester,
NY, USA) supplemented with 20 ng/mL basic fibroblast growth factor (bFGF; PeproTech, Rocky
Hill, NJ, USA), 20 ng/mL epidermal growth factor (EGF; PeproTech), 1% N2 (Thermo Fisher
Scientific), and 2% fetal bovine serum (FBS). Neurosphere-like cell clusters were selected and
subjected to reverse transcription polymerase chain reaction (RT-PCR) (see below).

In another set of experiments, the cell clusters were differentiated in neurobasal
medium (Thermo Fisher Scientific) containing bFGF, B-27 supplement (Thermo Fisher
Scientific), and 2% FBS for 4 weeks, as described previously [14,15,17]. The differentiated
cell clusters were analyzed by immunohistochemistry using antibodies against Tuj1 (1:1000;
mouse, Stemcell Technologies, Vancouver, BC, Canada), GFAP (1:500, rabbit, Abcam), and
myelin basic protein (MBP; 1:100, R&D Systems), followed by Alexa Fluor 488- or 555-
conjugated secondary antibodies (1:500; Molecular Probes). The cell clusters differentiated
for 2 weeks were subjected to RT-PCR (see below).

To investigate the proliferative activities of iNSPCs, neurosphere-like cell clusters
were isolated and mechanically dissociated by passage through needles, as described
above. The dissociated cells were cultured in poly-D-lysine-coated 6-well plates (Thermo
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Fisher Scientific) in DMEM/F12 (Thermo Fisher Scientific) containing bFGF (PeproTech),
EGF (PeproTech), 1% N2 (Thermo Fisher Scientific), and 2% FBS by adherent culture. After
reaching confluence, adhered cells were treated with trypsin and reseeded. After two passages,
equal numbers of neonatal and adult iNSPCs (1 × 104 cells/well) were seeded under the same
conditions. Cells were trypsinized and collected after 1, 3, and 7 days. Cell numbers were
measured using an automated cell counter (Cell Counter model R1, Olympus).

To investigate differences in iNSPC gene expression profiles between neonatal and
adult mice, neurosphere-like cell clusters were mechanically dissociated and grown to
confluence in adherent culture, as described above. After two passages, neonatal and
adult iNSPCs were cultured for 7 days and treated with total RNA extraction reagents for
microarray analysis.

2.7. Reverse Transcription Polymerase Chain Reaction (RT-PCR)

Total RNA was extracted from differentiated and undifferentiated cell clusters derived
from neonatal and adult mice using an RNeasy Micro Kit (Qiagen, Hilden, Germany), as
previously described [14,17]. Target genes were quantified using the primer sequences
listed in Table 1.

Table 1. List and sequences of mouse primers used for RT-PCR analysis.

Primers Sequence (5′→3′) (F: Forward; R:
Reverse) Size

β-actin F: GCTCGTCGTCGACAAGGGCTC
R: CAAACATGATCTGGGTCATCTTCTC 353 bp

GFAP F: TCGGCCAGTTACCAGGAGG
R: ATGGTGATGCGGTTTTCTTCG 176 bp

MAP2 F: CTCATTCGCTGAGCCTTTAGAC
R: ACTGGAGGCAACTTTTCTCCT 159 bp

MBP F: TCACAGCGATCCAAGTACCTG
R: CCCCTGTCACCGCTAAAGAA 125 bp

nestin F: CGCTGGAACAGAGATTGGAAG
R: CATCTTGAGGTGTGCCAGTT 158 bp

Sox2 F: TTGGGAGGGGTGCAAAAAGA
R: CCTGCGAAGCGCCTAACGTA 312 bp

Tuj1 F: TGAGGCCTCCTCTCACAAGT
R: GGCCTGAATAGGTGTCCAAA 105 bp

2.8. Microarray Analysis

Total RNA was extracted from iNSPCs of neonatal and adult mice as well as commer-
cially available brain-derived pericytic cells (PCs; #M1200, ScienCell Research Laboratories,
Carlsbad, CA, USA), astrocytic cells (ACs; #M1800, ScienCell Research Laboratories), en-
dothelial cells (ECs; CRL-2299, ATCC, Manassas, VA, USA), and microglial cells (MCs;
#SCC134, EMD Millipore Corporation, Temecula, CA, USA) using an RNeasy Micro Kit
(Qiagen), as previously described [14,17,19]. Microarray results were analyzed using the
Affymetrix Transcriptome Analysis Console [14,17,19] and Metascape gene ontology (GO)
tool [20].

2.9. Statistical Analysis

All results are expressed as mean ± standard deviation (SD). Group means were
compared using Student’s t-test. A p < 0.05 was considered statistically significant.

3. Results
3.1. Reduced Poststroke Cortical Degeneration in Neonatal Brain Compared to Adult Brain
following Ischemic Stroke

We first compared the extent and severity of ischemia-induced cortical degeneration
between neonatal and adult mice by calculating the CWI (a/b ratio) on days 1, 14, and 56
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after MCAO (Figure 1A–G) [18]. Although the CWI values did not differ significantly on
day 1 (neonatal brains, Figure 1A,G; adult brains, Figure 1D,G), the values were significantly
higher in neonatal brains on poststroke days 14 (neonatal brains, Figure 1B,G; adult brains,
Figure 1E,G) and 56 (neonatal brains, Figure 1C,G; adult brains, Figure 1F,G). These results
indicate that the neonatal brain has greater reparative potential and/or greater ischemic
resistance than the adult brain following MCAO.
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Figure 1. (A–F) Cortical width index (a/b ratio; a: the left cortical width (ipsilateral) excluding
ischemic areas; b: the right cortical width (contralateral)) was measured at the midpoint of the
forebrain (between the red dotted lines) in neonatal mice (A–C) and adult mice (D–F) at days 1 (A,D),
14 (B,E), and 56 (C,F) after MCAO. (G) Although the CWI was not significantly different between
neonatal and adult mice on day 1 after MCAO, the CWI was significantly higher in neonatal mice
than adult mice at 14 and 56 days after MCAO, indicating enhanced resistance to delayed ischemia-
induced degeneration. Scale bars: 1 mm (A–F). * p < 0.05 between age groups by independent samples
t-test (G). Results are the mean ± SD of mice per time point per group [day 1, n = 5 (neonatal), n = 3
(adult); day 14, n = 4 (neonatal), n = 7 (adult); day 56, n = 7 (neonatal), n = 3 (adult); G]. Abbreviations:
CWI, cortical width index; MCAO, middle cerebral artery occlusion.

3.2. Reduced Ischemic Area Size in Neonatal Brain following Ischemic Stroke

To compare reparative processes between neonatal and adult mice in more detail,
we performed TTC and H&E staining. The staining of 2 mm coronal brain sections from
neonatal mouse brain (Figure 2A) and adult mouse brain (Figure 2B) with the redox-
sensitive dye TTC revealed no significant difference in relative ischemic volume (Figure 2C)
on day 1 post-MCAO. However, TTC staining differentiates ischemic from nonischemic
tissue only during the acute poststroke period [21,22], so we also performed H&E staining
to estimate the area of ischemic damage. Consistent with the TTC staining, the ischemic area
did not differ between the neonatal and adult brain on post-MCAO day 1 (neonatal brains,
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Figure 2D,D’,H; adult brains, Figure 2E,E’,H) but was significantly smaller in the neonatal
brain on post-MCAO day 14 (neonatal brains, Figure 2F,F’,I; adult brains, Figure 2G,G’,I).
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Figure 2. (A,B) Staining of neonatal (A) and adult mouse (B) brain slices (coronal plane) with the
redox-sensitive dye TTC 1 day after MCAO. Panels A and B present different levels of the same
animal. (C) Ischemic volume did not differ significantly between age groups during the acute phase
post-MCAO. (D–G,D’–G’) H&E staining of brain sections from neonatal mice (D,D’,F,F’) and adult
mice (E,E’,G,G’) revealing similar ischemic pathology on day 1 (D,D’,E,E’) but reduced ischemic
injury 14 days after MCAO in neonatal brain (F,F’,G,G’). (H,I) Semiquantitative analysis indicating
that the ischemic area did not differ significantly between neonatal and adult mice on day 1 after
MCAO (H) but was significantly reduced in neonatal brain on day 14 (I). Scale bars: 1 mm (A,B,D–G)
and 100 µm (D’–G’). * p < 0.05 between age groups by independent samples t-test (I). Results in C
are the mean ± SD of n = 4 mice per group. Results in H and I are the mean ± SD of n = 3 mice
per group. Abbreviations: H&E, hematoxylin and eosin; TTC, 2,3,5-triphenylteterazolium; MCAO,
middle cerebral artery occlusion.

3.3. Greater Neural Stem/Progenitor Cell Generation in Neonatal Brain following Ischemic Stroke

To investigate the potential mechanisms for the enhanced repair of neonatal brain
following MCAO, we first estimated the rate of neuronal differentiation at sites of injury by
immunostaining for the mature neuronal marker MAP2. On post-MCAO day 1, no MAP2+

cells were observed within the ischemic areas of the neonatal and adult brain (Supplemen-
tary Figure S2), suggesting that most neurons in these regions are destroyed or severely
injured regardless of age. These findings further suggest that the reduced susceptibility of
the neonatal brain to ischemic damage results from more rapid and extensive regeneration
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(i.e., greater reparative potential rather than greater ischemic resistance at the neuronal
level). In support of this idea, immunohistochemistry (Figure 3A–F) revealed greater
numbers of cells expressing the NSPC markers nestin and Sox2 within and around the
ischemic areas of the neonatal brain (Figure 3B,E) compared to the adult brain (Figure 3C,F)
on post-MCAO day 1 (Figure 3A–C) and day 7 (Figure 3D–F). In accord with enhanced
reparative capacity in the neonatal brain, semiquantitative analysis revealed significantly
larger nestin+ areas within (Figure 3G) and around the ischemic regions (Figure 3H) of
the neonatal brain compared to the adult brain on post-MCAO days 1 and 7. And also,
although Sox2+ cells within ischemic areas did not differ by age (Figure 3I), Sox2+ cells
were more numerous around ischemic areas on post-MCAO days 1 and 7 (Figure 3J).

To examine if this greater iNSPC response in the neonatal brain results in higher basal
activity or more robust induction by ischemia, NSPCs were isolated from the MCA fields
of naïve and ischemia-treated neonatal (P13) and adult mice and compared for growth
and differentiation potential in vitro. Neurosphere-like cell clusters were not observed in
floating cultures from either naïve neonatal or adult brain, even after 4 weeks, indicating
that there are few if any NSPCs in MCA areas under physiological conditions. Following
MCAO, however, neurosphere-like cell clusters were observed in cultures from both the
neonatal (Figure 4A) and adult brain (Figure 4B). Moreover, RT-PCR showed that the
neurosphere-like cell clusters from both age groups expressed the NSPC markers nestin
and Sox2 (Figure 4C). After further culture under differentiation conditions, neurosphere-
like cell clusters from neonatal (Figure 4D–F) and adult mice (Figure 4G–I) expressed the
neuronal marker Tuj1 (Figure 4D,G), astrocytic marker GFAP (Figure 4E,H), and oligoden-
drocyte marker MBP (Figure 4F,I). These results were further confirmed by gene expression
analysis using RT-PCR (Figure 4J). Collectively, these results strongly suggest that iNSPCs
which have the potential to differentiate into neurons, astrocytes, and oligodendrocytes are
induced in both the neonatal and adult brain following ischemia. However, this process
appears to be more efficient in the neonatal brain, as evidenced by the histopathological
and immunohistochemical staining results.

To examine if this more robust iNSPC response results from greater proliferative poten-
tial, we compared proliferation rates between ischemia-exposed neurosphere-derived cells
from neonatal and adult mice in adherent culture (Figure 4K). Indeed, neurosphere-derived
single-cell suspensions from both neonatal (Figure 4L) and adult mice (Figure 4M) yielded
proliferating cells that reached confluence in adherent culture. However, suspensions from
neonatal mice yielded greater numbers of iNSPCs after 1, 3, and 7 days of adherent culture
(Figure 4N). These differences in the proliferative potential of iNSPCs between neonatal
and adult mice may contribute to the higher numbers of iNSPCs observed in the neonatal
brain after ischemic stroke (Figure 3).
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Figure 3. (A–F) Immunostaining for neural stem/progenitor cell (NSPC) markers nestin and Sox2 in
neonatal brain (B,E) and adult brain (C,F) at 1 (A–C) and 7 days after MCAO (D–F) [nestin ((B,C,E,F):
green), Sox2 ((B,C,E,F): red), DAPI ((B,C,E,F): blue)]. (G–J) The nestin+ areas within the ischemic
(G) and peri-ischemic areas (H) were significantly larger in neonatal mice than in adult mice at 1
and 7 days after MCAO. The number of Sox2+ cells within ischemic areas did not differ between
neonatal and adult mice at 1 and 7 days after MCAO (I) but was greater in the peri-ischemic areas
of neonatal mice on days 1 and 7 (J). Scale bars = 50 µm (B,C,E,F). * p < 0.05 between age groups
by independent samples t-test (G,H,J). In (G–J), results are the average ± SD of n = 3 mice per time
point per age group. Abbreviations: DAPI, 4′,6-diamidino-2-phenylindole; MCAO, middle cerebral
artery occlusion.
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Figure 4. (A,B) Neurosphere-like cell clusters were obtained from neonatal (A) and adult mice (B)
after ischemic stroke. (C) RT-PCR confirmed that the cell clusters from neonatal (n) and adult mice
(a) expressed the NSPC markers nestin and Sox2. (D–I) Immunostaining showing that cells from
neonatal mice (D–F) and adult mice (G–I) can differentiate into cells expressing the neuronal marker
Tuj1 ((D,G): red), the astrocytic marker GFAP ((E,H): green), and the oligodendrocyte marker MBP
((F,I): red). Nuclei were counterstained with DAPI ((D–I): blue). (J) RT-PCR analysis confirming that
differentiated cells from neonatal (n) and adult mice (a) express marker genes of mature neurons
(Tuj1, MAP2), astrocytes (GFAP), and oligodendrocytes (MBP). (K–M) Stem cells from neonatal cortex
proliferate faster in adherent culture. Neurosphere-like cell clusters obtained from both neonatal (L)
and adult brain (M) were reseeded in adherent cultures. (N) Cell number was significantly higher
in adherent cultures derived from neonatal mouse neurospheres than adult mouse neurospheres at
1, 3, and 7 days postseeding. Scale bars = 100 µm (A,B,L,M) and 50 µm (D–I). * p < 0.05 between
age groups by independent samples t-test (N). Results are the mean ± SD of 3 samples of n = 3 mice
(9 date points) per time point per group (N). Abbreviations: DAPI, 4′,6-diamidino-2-phenylindole;
GFAP, glial fibrillary acidic protein; MAP2, microtubule-associated protein 2; MBP, myelin basic
protein; MCAO, middle cerebral artery occlusion.
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3.4. Characterization of iNSPC Lineages and Phenotypes in Neonatal Brain after Ischemic Stroke

We then examined the precise origins and traits of iNSPCs in the neonatal brain by
marker expression analyses. Previous studies have shown that iNSPCs in the adult brain
originate from multiple cell types, including reactive pericytes [23] and reactive astro-
cytes [24,25], so we first examined the coexpression of nestin with pericyte and astrocyte
markers on post-MCAO day 1 (Figure 5A–L) and day 7 (Figure 5M–X). On day 1, nestin+

cells were largely localized around ERG+ endothelial cells (Figure 5A–D), and most were
positive for the pericyte marker PDGFRβ (Figure 5E–H), whereas some in peri-ischemic
areas expressed the astrocytic marker GFAP (Figure 5I–L). On day 7, some nestin+ cells were
located around ERG+ cells (Figure 5M–P). However, most nestin+ cells within ischemic
areas expressed PDGFRβ (Figure 5Q–T), whereas nestin+ cells in peri-ischemic areas ex-
pressed GFAP (Figure 5U–X). These results suggest that most nestin+ cells within the
ischemic areas of the neonatal brain originate from pericytes rather than reactive astrocytes,
which is consistent with previous studies of iNSPCs in adult ischemic brain [23].

Microarray analysis was then performed to investigate iNSPC phenotype in greater
detail. Principal component analysis (PCA) indicated that the gene expression profiles
of iNSPCs from neonatal mice were closer to those from adult mice than pericytes (PCs),
astrocytes (ACs), endothelial cells (ECs), and microglial cells (MCs) (Figure 6A). Heatmap
analysis indicated that the gene expression profiles of iNSPCs from both neonatal and adult
mice were closer to PCs (markers CSPG4, RGS5, NT5E) than to ACs (GFAP, AQP4, S100B),
ECs (PECAM1, TIE1), and MCs (AIF1, CSF1R, ITGAM, TREM2) (Figure 6B).

We further investigated the functions of differentially expressed genes (DEGs, defined
as > 3-fold greater expression in neonatal brain than adult brain; red dots in Figure 6C) by
gene chip and GO analyses. The top 20 GO categories related to nervous system included
“GO:0001508: action potential”, “GO:0099537: trans-synaptic signaling”, “mmu04080: neu-
roactive ligand–receptor interaction”, “GO:0060078: regulation of postsynaptic membrane
potential”, “GO:0098900: regulation of action potential”, “GO:0035249: synaptic transmission,
glutamatergic”, and “GO:0048667: cell morphogenesis involved in neuron differentiation”
(Figure 6F), whereas similar GO analysis of upregulated DEGs in adult iNSPCs (defined as
> 3-fold greater expression in adult brain than neonatal brain; green dots; Figure 6D) yielded
“GO:0099537: trans-synaptic signaling”, “R-MMU-112316: neuronal system”, “GO:0019226:
transmission of nerve impulse”, and “GO:0050808: synapse organization”.

Based on the inclusion of the GO term “GO:0048667: cell morphogenesis involved in
neuron differentiation”, we further investigated the distribution of genes in this category
in red (Figure 6C) and green dots (Figure 6D) by scatter plot analysis. Although certain
genes included in this category (Supplementary Table S1) were upregulated in either the
neonatal or adult brain (red or green dots, respectively), a greater number of genes were
upregulated in the neonatal brain (Figure 6E), suggesting that iNSPCs in the neonatal brain
possess a greater potential to differentiate into neuronal cells than those from adult mice.
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Figure 5. (A–X) Immunostaining for nestin and ERG (A–D,M–P), nestin and PDGFRβ (E–H,Q–T),
and nestin and GFAP (I–L,U–X) in neonatal mouse brain sections isolated at 1 (A–L) and 7 days after
MCAO (M–X) [nestin ((B,C,F,G,J,K,N,O,R,S,V,W): green), ERG ((B,D,N,P): red), PDGFRβ ((F,H,R,T):
red), GFAP ((J,L,V,X): red), DAPI ((B–D,F–H,J–L,N–P,R–T,V–X): blue)]. Scale bars = 50 µm (B,F,J,N,R,V).
Abbreviations: DAPI, 4′,6-diamidino-2-phenylindole; ERG, ETS-related gene; GFAP, glial fibril-
lary acidic protein; MCAO, middle cerebral artery occlusion; PDGFRB, platelet-derived growth
factor receptor-beta.
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more than 3-fold in iNSPCs from neonatal mice compared to adult mice (C, red plots) or genes 
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Figure 6. (A,B) Principal component analysis (PCA) (A) and heatmap (B) for the gene expression
profiles of neonatal iNSPCs, adult iNSPCs, pericytic cells (PCs), astrocytes (ACs), endothelial cells
(ECs), and microglial cells (MCs). (C–E) Scatter plots showing the distribution of genes upregulated
more than 3-fold in iNSPCs from neonatal mice compared to adult mice (C, red plots) or genes
upregulated more than 3-fold in iNSPCs from adult mice compared to neonatal mice (D, green plots).
(E) The scatter plot analysis shows the distribution of genes categorized in the “cell morphogenesis
involved in neuron differentiation” category ((a red arrow in (F)). (F,G) List of the top 20 categories
for genes overexpressed in neonatal iNSPCs (F) and adult iNSPCs (G) by GO analysis. Abbreviations:
AC, astrocyte; EC, endothelial cell; GO, gene ontology; iNSPC, injury/ischemia-induced neural
stem/progenitor cell; MC, microglial cell; PC, pericyte; PCA, principal component analysis.

3.5. iNSPCs from Neonatal Brain Show a Greater Potential for Neurogenesis after Ischemic Stroke

To directly compare the neurogenic potential of iNSPCs from the neonatal and adult
brain after ischemic stroke, we investigated the expression patterns of doublecortin (DCX)
(Figure 7A). On day 7 post-MCAO, many DCX+ cells were observed in the contralateral SVZ
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(Supplementary Figure S3A,B) but rarely in the contralateral nonischemic areas (Supple-
mentary Figure S3A,C,D). Immunohistochemistry at post-MCAO day 7 also revealed many
DCX+ cells in the ipsilateral SVZ (Figure 7B) as well as both within and around ischemic
areas (Figure 7C–E). Notably, however, DCX+ cells in the SVZ did not reach into ischemic
areas (Figure 7C, arrows). In addition, double immunohistochemistry for DCX and nestin
showed that many DCX+ cells were localized near nestin+ cells and that some coexpressed
nestin (Figure 7F). Taken together, these findings suggest that locally activated nestin+

iNSPCs generate DCX+ cells following ischemia, in accord with previous studies [26,27].
Next, the expression patterns of DCX+ cells were investigated in adult mice

(Figure 7G–L). On post-MCAO day 7, some DCX+ cells were detected in the contralateral
SVZ (Supplementary Figure S3E,F) but rarely in the contralateral nonischemic areas (Sup-
plementary Figure S3E,G,H). Alternatively, numerous DCX+ cells were observed at the
ipsilateral SVZ (Figure 7H) and within and around ischemic areas (Figure 7I,J,K). A similar
pattern of nestin+/DCX+ cells was detected within and around the ischemic areas of adult
mice (Figure 7L), again suggesting the activation of a local population. While the DCX+

areas within ischemic areas did not differ between neonatal and adult brains on day 7
(Figure 7M), the DCX+ areas in peri-ischemic areas were significantly higher in the neonatal
brain (Figure 7N), consistent with greater neurogenic potential.
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((B–F,H–L): red), nestin ((F,L): green), DAPI ((B–F,H–L): blue)]. DCX+ cells were observed in the
subventricular zone (SVZ) of neonatal mice (B,C) and adult mice (H,I), but these cells did not reach
ischemic areas ((C,I); arrows). DCX+ cells were also observed within ischemic and peri-ischemic
areas of neonatal (C–F) and adult cortex (I–L) and some coexpressed nestin (F,L). (M,N) Quantitative
analysis showing that the DCX+ areas within ischemic areas did not differ between neonatal and
adult mice at 7 days after MCAO (M) but were significantly higher in peri-ischemic areas of neonatal
mice (N). Scale bars = 100 µm (B–D,H–J) and 20 µm (E,F,K,L). * p < 0.05 between age groups by
independent samples t-test (N). Results in M and N are the mean ± SD of n = 3 mice per group.
Abbreviations: DAPI, 4′,6-diamidino-2-phenylindole; MCAO, middle cerebral artery occlusion.

4. Discussion

This is the first study to compare reparative processes after experimental ischemic
stroke between neonatal (P13) and adult mice (8–12 weeks old). We showed that the lower
susceptibility of neonatal cortex to ischemic damage is conferred by a greater capacity to
produce iNSPCs and newborn neurons in the peri-ischemic area. Although the precise
relationships between mouse and human developmental stages are still debated [28], P0 to
P28 is considered to be within the neonatal stage in mice [29], whereas 8 weeks and older is
generally regarded as adulthood based on the emergence of reproductive and territorial
behaviors. Thus, younger patients may exhibit greater regenerative activities than older
patients through a similar mechanism observed in the current study using neonatal (P13)
and adult mice (8–12 weeks old) even after brain injury. However, the brains of mice rapidly
develop within a shorter span than those of humans. Therefore, studies on animals with a
slower development (e.g., the naked mole-rat) [30] may provide comparable insights on
reparative processes at different ages in pathological brain conditions.

Ischemic stroke is both less frequent and less deadly during the neonatal period than
during late adulthood. While seizure is a common sequela of neonatal stroke [4], more
severe complication such as paresis are less frequent than following adult stroke [8,9],
resulting in superior short-term prognosis [10]. In addition, long-term follow-up studies
have reported normal neurological scores at preschool age among children with a history
of neonatal stroke, although IQ scores are lower than expected by school age [10]. The
mouse stroke model used in the current study has demonstrated reproducibly high survival
rates [14,15] and so may be useful for evaluating these delayed cognitive sequela [14,15]
and the underlying mechanisms.

The present results suggest that greater neural reparative capacity may explain this
superior clinical outcome following neonatal stroke. Neonatal mice demonstrated sig-
nificantly greater iNSPC generation capacity compared to adult mice as well as greater
neurogenic potential, possibly due to the upregulation of genes related to “cell morphogen-
esis involved in neuron differentiation”. However, this greater neurogenic capacity may
also contribute to undesirable complications (e.g., seizure). In support of this idea, GO
analysis revealed that genes upregulated in neonatal mice following MCAO were enriched
in the functional annotations “action potential” and “regulation of action potential”.

During the early embryonic stage, neurogenesis is detectable throughout the brain,
including in the cortex. Mignone and colleagues [12] reported that GFP expression driven
by the nestin promoter was first detectable on embryonic day 7 (E7), observed mainly in
the neural plate at E8 and then distributed throughout the neuroepithelium by E10, but was
largely restricted to specific regions such as ventricular zones by E12 and finally detectable
only in conventional neurogenic regions such as the SVZ and SGZ by adulthood. Thus,
NSPC activities, including NSPC-dependent neurogenesis, likely also decrease gradually
with brain development outside regions such as the SVZ and SGZ [13,31]. In support
of this notion, no neurosphere-like cell clusters were obtained from MCA areas of naïve
neonatal cortex (P13). However, previous studies have shown that neurogenesis can be
reactivated in the adult brain outside of conventional neurogenic zones under pathological
conditions [32–34]. For instance, we previously demonstrated that nestin+ iNSPCs could be
obtained from MCA areas of adult mouse cortex following ischemic stroke [14,15]. In the
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present study as well, we report that iNSPCs were activated in large numbers by cortical
ischemia in both the neonatal and adult cortex. However, the areas and number of cells
expressing the NSPC markers nestin and Sox2 were significantly higher in the neonatal
brain compared to the adult brain, possibly due to a high proliferation rate, as suggested
by in vitro assays.

Alternatively, iNSPCs in the neonatal cortex may be more efficiently induced by
ischemia or related factors. For example, the development of extracellular matrix, which is
closely associated with NSPC regulation [35,36], differs between neonatal and adult mice [37]. In
addition, vascular development differs between neonatal and adult mice [37–40]. We previously
showed that some vascular lineage cells can survive even after ischemic insult [15], and
vascular lineage cells (e.g., ECs) can serve as stem cell niches for iNSPCs within and around
ischemic areas [41]. Thus, such differences between developmental stages may affect the
fate of iNSPCs.

In addition, environmental conditions around stem cells (e.g., stem cell niches) are
dramatically altered at sites of injury after ischemic stroke, and we previously reported
that inflammatory cells [e.g., T lymphocytes [42] and microglial cells/macrophages [17]]
serve as stem cell niches for iNSPCs within and around the ischemic areas and influence
the fate of these iNSPCs. Furthermore, the inflammatory response after spinal cord injury
differs between developing and mature rats [43]. Thus, it is possible that the responsivity
of iNSPCs to various stem cell niches differs between the neonatal and adult brain under
pathological conditions. Factors regulating iNSPC fate may be effective tools to enhance
neural regeneration after brain injuries.

The precise origins of iNSPCs in the neonatal brain remain unclear. We found that
nestin+ cells within ischemic areas mainly expressed PDGFRβ, whereas nestin+ cells in peri-
ischemic areas mainly expressed GFAP, suggesting distinct pericyte and astroglial lineages.
We have also found stem cells that likely originate from brain pericytes which are neural
crest derivatives [44], with the capacity to differentiate along multiple lineage pathways,
both in adult mouse brains subjected to ischemic stroke [23] and human brain samples from
patients with stroke [19]. In addition, we previously reported that nestin+/PDGFRβ+ brain
pericytes extracted from ischemic areas of adult mouse brain converted to nestin+/Sox2+

iNSPC-like cells via a mesenchymal–epithelial transition mechanism [19]. Nestin+/Sox2+

cells were predominantly localized in peri-ischemic areas of the neonatal brain, suggesting
that nestin+ cells in peri-ischemic areas may have higher iNSPC activity than nestin+ cells in
the ischemic core. However, peri-ischemic areas may include the corpus callosum, a region
prolific with oligodendrocyte precursor cells, which can transform into NSPCs [45,46].
Thus, the precise traits and origin of iNSPCs in peri-ischemic areas should be elucidated in
future studies.

We also found a significantly greater generation of DCX+ (newborn) neurons in the
neonatal brain than in the adult brain, consistent with greater neurogenic potential. How-
ever, this elevation was restricted to peri-ischemic areas, suggesting that the microenviron-
mental conditions in ischemic areas may be hostile to iNSPC differentiation into neurons.
In support of this idea, we previously demonstrated that iNSPCs can differentiate into
neuronal cells if transplanted into peri-ischemic areas of mouse brain but not if transplanted
within ischemic areas [41]. Similarly, differentiation into neural lineages may be higher
in peri-ischemic areas than in ischemic areas of the neonatal brain, as evidenced by the
predominant localization of nestin+/Sox2+ cells in peri-ischemic areas. Some DCX+ cells in
and around ischemic areas also expressed nestin but formed a population separate from
DCX+ cells in the SVZ. These findings suggest that DCX+ cells in ischemic areas are not
likely SVZ-derived but rather arise from regionally activated stem cells. In support of this
idea, we and others have reported that nestin+/DCX+ cells are induced in regions far away
from the SVZ, such as leptomeninges, in the adult mouse brain following brain and spinal
cord injuries [26,27]. In addition, using transgenic mice that can trace the fates of nestin+

endogenous NSPCs, we demonstrated that iNSPCs that occur within and around ischemic
areas during the acute period are derived from cells in situ but not from SVZ-derived
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NSPCs [14]. Although the migratory capacity of SVZ-derived NSPCs is limited during the
acute period [47,48], DCX+ cells in the SVZ can migrate around the injured areas during
the chronic period after MCAO [49]. Therefore, the precise origins and traits of iNSPCs and
newborn neurons in the neonatal brain should be clarified in future studies.

Our study has several limitations. For example, long-term follow-up studies to de-
termine the causes of the elevated neural reparative activity in neonatal brains should
be investigated. Determining if the larger cortical areas (greater CWI) in neonatal brains
are primarily due to neurogenesis, gliogenesis, or both is also important. In addition,
differences in reparative vasculogenesis processes after ischemic stroke between neonatal
and adult brains should be investigated. If significant neurological functional recovery
is observed in neonatal brains compared with adult brains, the cause of the reparative
processes should be determined (neurogenesis, gliogenesis, and/or vasculogenesis).

In conclusion, we show that neural reparative potential is substantially higher in
neonatal brains than in adult brains after ischemic stroke due in part to greater iNSPC
expansion and neurogenic capacities. These findings not only reveal novel aspects of
ischemic stroke pathogenesis but also identify potential targets to enhance iNSPC-mediated
neuronal repair as a treatment for degenerative brain disorders.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/cells13060519/s1, Figure S1: Schematic representation of the
formula for calculating “% ischemic area”. Area “A” represents contralateral hemisphere area
(marked in red and demarcated by a red line). Area “B” represents the intact area of the infarcted
hemisphere (marked in blue and demarcated by a blue line). % ischemic area = [(contralateral
hemisphere area) − (intact area of infarcted hemisphere)]/[(contralateral hemisphere area) × 2] ×
100; in other words, % ischemic area = [A − B]/[A × 2] × 100; Figure S2: Immunohistochemistry of
MAP2 in the brain sections from neonatal (A,A’,A”) and adult mice (B,B’,B”) on day 1 after MCAO.
Scale bars = 1 mm (A,B) and 50 µm (A’,A”,B’,B”). Abbreviations: MAP2, microtubule-associated
protein 2; MCAO, middle cerebral artery occlusion; Figure S3: Immunohistochemistry of DCX in the
contralateral brain sections from neonatal (A–D) and adult mice (E–H) at 7 days after MCAO [DCX
(B–D,F–H: red), DAPI (B–D,F–H: blue)]. DCX+ cells were restricted within the SVZ in neonatal (B) and
adult mice (F). Scale bars = 100 µm (B–D,F–H). Abbreviations: DAPI, 4′,6-diamidino-2-phenylindole;
DCX, doublecortin; MCAO, middle cerebral artery occlusion; SVZ, subventricular zone. Table S1:
The genes included in “GO:0048667:cell morphogenesis involved in neuron differentiation” and the
values of fold change (iNSPCs from neonatal mice relative to iNSPCs from adult mice).
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