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Abstract: Cannabinoids have shown potential in drug-resistant epilepsy treatment; however, we lack
knowledge on which cannabinoid(s) to use, dosing, and their pharmacological targets. This study in-
vestigated (i) the anticonvulsant effect of Cannabidiol (CBD) alone and (ii) in combination with Delta-9
Tetrahydrocannabinol (∆9-THC), as well as (iii) the serotonin (5-HT)1A receptor’s role in CBD’s mech-
anism of action. Seizure activity, induced by 4-aminopyridine, was measured by extracellular field
recordings in cortex layer 2/3 of mouse brain slices. The anticonvulsant effect of 10, 30, and 100 µM
CBD alone and combined with ∆9-THC was evaluated. To examine CBD’s mechanism of action, slices
were pre-treated with a 5-HT1A receptor antagonist before CBD’s effect was evaluated. An amount
of ≥30 µM CBD alone exerted significant anticonvulsant effects while 10 µM CBD did not. However,
10 µM CBD combined with low-dose ∆9-THC (20:3 ratio) displayed significantly greater anti-
convulsant effects than either phytocannabinoid alone. Furthermore, blocking 5-HT1A recep-
tors before CBD application significantly abolished CBD’s effects. Thus, our results demonstrate
the efficacy of low-dose CBD and ∆9-THC combined and that CBD exerts its effects, at least in
part, through 5-HT1A receptors. These results could address drug-resistance while providing in-
sight into CBD’s mechanism of action, laying the groundwork for further testing of cannabinoids
as anticonvulsants.

Keywords: drug resistant epilepsy; cannabinoids; serotonin; 5-HT1A receptor; electrophysiology;
cannabidiol (CBD); delta-9 tetrahydrocannabinol (∆9-THC); anticonvulsant

1. Introduction

Epilepsy is a disorder characterized by spontaneous recurrent seizures and over 30% of
patients display drug-resistance [1]. Not only do these patients suffer from a lower quality
of life, but they are also at higher risk of complications including sudden unexpected death
in epilepsy (SUDEP) [2]. Thus, drug-resistance remains a prominent obstacle in epilepsy
treatment, emphasizing the critical need for the discovery of novel therapeutics.

The therapeutic potential of phytocannabinoids, such as Cannabidiol (CBD) or delta-9
tetrahydrocannabinol (∆9-THC), has been a research area of interest for many centuries.
Unlike ∆9-THC, CBD lacks psychoactive effects and has been shown to possess great
therapeutic potential in the management of many diseases [3], particularly childhood
epilepsy.

In vitro studies have shown that CBD reduces neuronal excitability as well as burst ampli-
tude and duration [4–7]. In vivo studies using various epileptic models have also shown CBD’s
anticonvulsant potential by attenuating seizure severity and mortality [4,7–9]. Furthermore,
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clinical studies, examining the efficacy of CBD as an anticonvulsant, have displayed a
reduction in seizure frequency and severity with the use of CBD [10–13]. However, many
of these trials use different compounds with varying purities, making comparisons of
results between trials difficult, and patients in these trials are using CBD in combination
with other anti-epileptic drugs, confounding the results. Additionally, some clinical trials
observed initial improvement in seizures with CBD but seizures worsened after a short
time [14]. Currently, Epidiolex is a medication that was approved by the United States Food
and Drug Administration (FDA) for patients with Dravet syndrome and Lennox–Gastaut
syndrome. Epidiolex is a pure CBD product, and although it has been shown to be effective,
further studies are required to expand our knowledge regarding its use for non-pediatric
epilepsy and other epilepsy types [15,16]. Nevertheless, CBD does display promising
anticonvulsant effects, high tolerability, and low toxicity, further supporting its safe use as
a therapeutic [17,18].

In vitro and in vivo studies of the potential anticonvulsant effect of ∆9-THC have been
controversial, as some studies show an anticonvulsant effect whereas others showed either
no effect or even a proconvulsant effect [19–21]. Studies conducted in hippocampal slices
have shown that 0.1 µM ∆9-THC enhanced excitability whereas 1 µM ∆9-THC depressed
excitability [22]. In addition to the inconclusive effects of ∆9-THC, the compound also
displays psychoactive properties and adverse side effects, making its independent use in
the clinical setting unattractive as a therapeutic [23].

Recently, many parents have chosen to try alternative therapies for their children
struggling with drug-resistant epilepsy. Anecdotal accounts of CBD-enriched cannabis
have shown great therapeutic benefits in children with epilepsy. The mother of a 5-year-old
girl with Dravet syndrome, who was experiencing up to 50 bilateral tonic-clonic seizures
per month, chose to start her child on a strain of cannabis that had a high CBD and low
∆9-THC concentration. This CBD-enriched cannabis reduced her daughter’s seizure fre-
quency >90% [24]. Since then, many surveys of parents who have used CBD-enriched
cannabis as a therapy for their child’s epilepsy have been conducted [25,26]. For example,
one survey showed that 85% of all parents reported a reduction in seizure frequency, with
14% reporting seizure freedom after the use of CBD-enriched cannabis [27]. As such, much
interest has been shown towards the therapeutic benefits of the combination of different
phytocannabinoids. Various animal models of epilepsy have shown that the addition of
small amounts of ∆9-THC improves the effectiveness of CBD [28,29]. Clinical trials using
combinations of CBD and ∆9-THC at various ratios observed significant improvements
in seizure frequency and quality of life; thus, concluding that CBD-enriched cannabis ex-
tracts are potentially anticonvulsant as an add-on treatment in children with drug-resistant
epilepsy [30,31]. Conversely, other studies have shown the combination of CBD and
∆9-THC to be proconvulsant. In a trial on the effect of Sativex (1:1 CBD: ∆9-THC) on
patients with Multiple Sclerosis, some patients reported their ‘first ever seizures’ [32].
Overall, the evidence for the beneficial effects of CBD in combination with ∆9-THC re-
main insufficient and further studies are required before implementation in the clinical
setting [33].

The etiology of epilepsy is complex and multi-factorial [34]. Thus, the ideal anti-
convulsant drug would be one that engages multiple targets to help re-balance electrical
activity within the brain. The literature has implicated a multitude of different targets as
the mechanism of action of CBD [35]. Here, we focus on the serotonergic system, but it is
reasonable to assume that CBD exerts its anticonvulsant effects through a combination of
pharmacological targets [6,36–40].

The role that the serotonergic system plays in epilepsy has been highly studied. The
serotonin (5-HT)1A receptor has attracted much attention as it is linked to a K+ channel,
allowing the hyperpolarization of neurons. A study using a Mg2+-free model of epilep-
tiform activity found that the addition of a selective 5-HT1A receptor agonist decreased
the population spike amplitude in the CA1 hippocampal region [41,42]. In vivo studies
have also shown similar results. Epileptic animal models displayed a reduction in seizure
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frequency after the 5-HT1A receptor was stimulated with an agonist [41,43,44]. Due to
the anticonvulsant effects of 5-HT1A receptor stimulation, it has been speculated that
CBD could exert its anticonvulsant effects through this receptor. Using binding analysis
experiments, it was shown that CBD is an agonist at the 5-HT1A receptor [45].

Many studies have shown that CBD exerts anticonvulsant effects through the 5-HT1A
receptor [46–48]; however, other contradicting studies showed that the anticonvulsant
effects observed by CBD were not through the 5-HT1A receptor [49]. Thus, further stud-
ies are required to clarify the role that the 5-HT1A receptor plays in CBD’s mechanism
of action.

The aims of this study were to (i) investigate the anticonvulsant potential of CBD alone
and (ii) in combination with ∆9-THC on mouse cortical slices made epileptic, and to (iii)
determine whether CBD exerts its anticonvulsant effects through the 5-HT1A receptor.

2. Materials and Methods
2.1. Animal Preparation

Experiments were conducted on juvenile C57BL/6 mice (Charles River Laboratories,
Wilmington, MA, USA) of either sex, post-natal day 14–21. All animal experiments and
procedures were approved by the University Health Network Animal Care Committee (pro-
tocol AUP 750.50) and carried out in accordance with guidelines outlined by the Canadian
Council of Animal Care (CCAC). A total of 63 mice were used for all experimentation and
an average of 2 cortical slices were used from each animal. Mice were chosen as their brains
are small in size and thus, it is more likely that connectivity between neurons remain intact
during slice preparation [50]. Additionally, juvenile mice were chosen as they have shown
to be more susceptible to developing seizures in comparison to adults [51,52], and this age
correlates with an age range in children wherein cannabinoids have been most studied to
date. It has been shown that CBD has beneficial effects in pediatric epilepsies and focal
cortical dysplasia is the most common cause of drug-resistant pediatric epilepsy [14,53,54].
Thus, cortical slices from juvenile mice were used to best model pediatric epilepsy.

2.2. Cortical Slice Preparation

Mice were first anesthetized with an intraperitoneal injection of 50 mg/kg sodium
pentobarbital. The pedal reflex was used to ensure that mice were deeply anaesthetized
before quickly decapitating the mice. The whole brain was rapidly removed and transferred
to a sucrose dissection solution (in mM: 248 sucrose, 26 NaHCO2, 10 D-glucose, 2 KCl,
3 MgSO4, 1.25 H2NaPO4, 1 CaCl2) at 4 ◦C. The cerebellum and forebrain were removed,
and a cyanoacrylate adhesive gel was used to fix the brain to a block. Using a Leica 1200 V
vibratome, 500 µm thick cortical slices were prepared and hemisected. Slices were incubated
in artificial cerebrospinal fluid (ACSF, in mM: 123 NaCl, 25 NaHCO2, 10 D-glucose, 3.5 KCl,
1.3 MgSO4, 1.2 HNaPO4, 1.5 CaCl2; pH adjusted to 7.4 with 95% O2, 5% CO2) for 30 min at
37 ◦C, followed by 1 h at room temperature in the perfusion chamber prior to recordings.

2.3. Electrophysiology

During recordings, each slice was placed in a submerged recording chamber and
was perfused at 10 mL/min with ACSF at 35 ◦C and aerated with 95% O2, 5% CO2.
A borosilicate capillary glass electrode (1.5 mm, World Precision Instruments, Sarasota,
FL, USA) was filled with ACSF and used to record local field potentials (LFP). This LFP
electrode (~2 MΩ resistance) was positioned in cortical layers 2/3. Using a Multiclamp 700B
amplifier (Molecular devices), a Digidata 1322A digitizer (Axon Instruments, Burlingame,
CA, USA), and the PClamp software (version 10.2) (Axon Instruments/Molecular Devices
Corporation, San Jose, CA, USA), signal acquisition was conducted.

2.4. Materials

Seizures were induced using 4-aminopyridine (4-AP), a blocker of K+ channels, which
causes prolonged glutamate release with excitation and consequent epileptiform activity.
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4-AP is a well-founded model of epilepsy in mice, as is demonstrated by the induction of
prolonged recurrent seizures without ‘exhaustion’ of seizure activity overtime in recordings.
Thus, the ability of CBD to suppress 4-AP-induced seizures is useful for examining CBD’s
efficacy as an anticonvulsant. The 4-AP was dissolved in double-distilled water to create a
100 mM stock solution, was aliquoted in 1 mL tubes and stored at −20 ◦C. On experimental
days, the 4-AP was thawed and diluted in ACSF to a final concentration of 100 µM.

For aim 1, CBD was provided by Avicanna in a powdered form. Working solutions of
CBD were freshly prepared daily prior to experiments. CBD was dissolved in dimethyl
sulfoxide (DMSO; Sigma, St. Louis, MO, USA) to create the stock solution before being
diluted in ACSF to create the final concentrations of 10, 30, or 100 µM. The concentrations
that were seen to be effective were higher than therapeutic concentrations previously shown
in the literature [5,55]; however, 4-AP is a very robust model of status epilepticus [56,57]
and is more difficult to treat, justifying the anti-seizure benefits potentially observed at
higher concentrations.

For aim 2, a CBD isolate and delta-9-tetrahydrocannabidiol (∆9-THC) distillate were
donated from Avicanna (Toronto, Canada) in a self-emulsifying drug delivery system
comprised of TWEEN80. To prepare the stock solutions, the CBD and ∆9-THC solutions
were sonicated and final concentrations of 10 mM CBD and 0.5, 1.5, or 2.5 mM ∆9-THC
were made, aliquoted into 1 mL amber tubes, and stored at −4 ◦C. On experimental days,
the stock solutions were diluted in ACSF to create a final solution of 10 µM CBD:0.5 µM
∆9-THC (20:1 ratio), 10 µM CBD:1.5 µM ∆9-THC (20:3 ratio), or 10 µM CBD:2.5 µM ∆9-THC
(20:5 ratio).

For aim 3, The 5-HT1A receptor antagonist and agonist used were N-[2-[4-(2-
Methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide maleate
(WAY100635) and (±)-8-Hydroxy-2-dipropylaminotetralin hydrobromide (8-OH-DPAT),
respectively (Tocris Bioscience, Ellisville, MO, USA). Stock solutions of 10 µM WAY100635
and 10 mM 8-OH-DPAT were created by dissolving the compounds in sterile water before
storing at −20 ◦C. On experimental days, these solutions were thawed and diluted in ACSF
to a final concentration of 10 nM WAY100635 and 10 µM 8-OH-DPAT.

2.5. Protocol

Figure 1 illustrates the protocol of the electrophysiological experimentation. For aims
1 and 2, we assessed the anticonvulsant effects of CBD alone and in combination with low
dose ∆9-THC, after seizure induction with 4-AP, respectively. An initial 10-min baseline
recording was taken. Afterwards, 100 µM 4-AP dissolved in ACSF was added for ~45 min
to reliably induce seizure activity, before a 15-min recording was taken. Then, depending on
the treatment condition, various concentrations of CBD, ∆9-THC, or combinations of CBD
and ∆9-THC dissolved in ACSF with 4-AP were added for ~45 min, after which another
15-min recording was taken. For aim 1, the drug in the treatment conditions was either
10 (n = 7), 30 (n = 10), or 100 (n = 11) µM CBD (Figure 1A). For aim 2, the drug(s) in the
treatment condition was either a combination of 20:1 (n = 5), 20:3 (n = 10), or 20:5 (n = 9)
CBD:∆9-THC, or 0.5 (n = 5), 1.5 (n = 7), or 2.5 (n = 10) µM ∆9-THC alone (Figure 1B).

In aim 3, we assessed the role that the 5-HT1A receptor plays in CBD’s mechanism of
action (Figure 1C). A positive control experiment was first conducted in which an initial
10-min baseline recording was taken. An amount of 100 µM 4-AP dissolved in ACSF was
added for ~45 min to reliably induce seizure activity, before a 15-min recording was taken.
Then, 10 µM 8-OH-DPAT, a 5-HT1A receptor agonist, dissolved in ACSF with 4-AP was
added for ~45 min, after which another 15-min recording was taken (n = 8). In another
condition, to confirm that the anticonvulsant effects of 8-OH-DPAT were exerted through
the 5-HT1A receptor, slices were pre-treated with 10 nM WAY100635, a 5-HT1A receptor
antagonist, for 20 min before adding 100 µM 4-AP dissolved in ACSF with WAY100635 for
~45 min and taking a 15-min recording. Then, 10 µM 8-OH-DPAT dissolved in ACSF with
WAY100635 and 4-AP was added for ~45 min, after which another 15-min recording was
taken (n = 8) to see if pre-treatment with the 5-HT1A receptor antagonist would abolish
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the effects of the 5-HT1A receptor agonist. For the treatment condition, an initial 10-min
baseline recording was taken before pre-treating the cells with 10 nM WAY100635. Then,
100 µM 4-AP dissolved in ACSF with the WAY100635 was added for ~45 min to reliably
induce seizure activity, before a 15-min recording was taken. Afterwards, 30 µM CBD
dissolved in ACSF with WAY100635 and 4-AP was added for ~45 min, and a 15-min
recording was taken (n = 6).
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Figure 1. Illustrative protocol of electrophysiological experimentation. (A) Protocol of aim #1,
assessing the anticonvulsant effects of 10, 30, or 100 µM CBD. (B) Protocol of aim #2, assessing
the anticonvulsant effect of 0.5, 1.5, or 2.5 µM ∆9-THC alone or the combination of 20:1, 20:3, or
20:5 CBD:∆9-THC. (C) Protocol of aim #3, assessing the role of 5-HT1A receptors in CBD’s mechanism
of action using 10 µM 8-OH-DPAT, a 5-HT1A receptor agonist and 10 nM WAY100635, a 5HT1A
receptor antagonist.

For all studies, a vehicle control condition was conducted to ensure that DMSO
or TWEEN80 as the vehicle did not impact the results of this study. Analysis of acute
experiments with these vehicles showed that the addition of DMSO or TWEEN80 after
seizure induction did not impact any of the features of interest; thus, neither vehicle
impacted the results observed in this study.

2.6. Data and Statistical Analysis

Data analyses were initially performed using pClamp 10.2 and MATLAB software,
version R2020b. LFP recordings were filtered using a low-pass filter at 1250 Hz and reduced
by a factor of 10. A 60 Hz notch filter with three harmonics was applied to eliminate noise
before applying a high-pass filter at 0.25 Hz. The features of interest measured included
duration (in seconds), amplitude (in mV), coastline length/second, and frequency of seizure-
like events as well as duration (in seconds) and frequency of inter-ictal bursting events.
Seizure-like events were defined as excitable activity lasting longer than five seconds, typi-
cal for 4-AP-induced seizures. Amplitude was defined as the difference between the highest
and lowest points within the seizure-like event. Coastline length is the sum of the distance
(absolute change in voltage of the signal) for a seizure-like event. Coastline length was di-
vided by duration of that seizure-like event to provide a measure of burst intensity/second.
Coastline length/second is indicative of seizure intensity with higher values representing
more intense seizures. Frequency was defined as the average number of events in the last
10 min of each recording. Inter-ictal bursting events were defined as any excitable activity
that was less than five seconds in duration and occurred after the end of one seizure-
like event but before the start of another. Features of interest were measured for the last
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10 min of each recording and averaged. Statistical analysis was performed using Graphpad
(Version 9). Each sample size (n) equated to a single brain slice and sample sizes subjected
to statistical analysis had at least five samples per group. For each experiment, a Wilcoxon’s
matched paired two-tailed t-test was used to compare the mean features of interest of the
drug condition in each slice to the pre-drug control condition in the same slice. For aim 3,
a Mann–Whitney unpaired two-tailed t-test was also used for analyses across conditions
to compare pre-treated with antagonist conditions to not pre-treated conditions. Results
were considered significant when p < 0.05. For graphing purposes, percent change from
pre-drug conditions were calculated using this formula:

% change = ((mean drug condition − mean pre-drug control condition)/mean
pre-drug control condition) × 100.

3. Results
3.1. AIM #1—Anticonvulsant Effect of CBD Alone
Extracellular Effect of CBD on Seizure-Like Events (SLE) and Inter-Ictal Bursting Events

The effects of 10, 30, and 100 µM CBD on SLE (Figure 2A) as well as inter-ictal bursting
events (Figure 2B) were examined. The addition of 10 µM CBD did not significantly
alter any of the features of interest after seizure induction (Figure 3A–D). Although not
significant, 10 µM CBD addition did display reductions in SLE duration (10.4% reduction)
and amplitude (17.9% reduction) (Figure 3A,C). Significant anticonvulsant effects were
observed at ≥30 µM CBD. The addition of 30 µM CBD caused a significant effect on the
duration, coastline/second, and frequency of SLEs (Figure 3A,B,D) but no significant
difference in the amplitude (Figure 3C). After the addition of 100 µM CBD, a significant
decrease was observed in duration, coastline/second, and amplitude of SLEs (Figure 3A–C).
Comparing the higher concentrations of CBD tested, 30 µM CBD application reduced
SLE duration by 39.7% while 100 µM CBD application reduced SLE duration by 31.6%
(Figure 3A). Alternatively, 100 µM CBD showed a larger reduction in seizure intensity,
indicated by the coastline/second measurement (Figure 3C). Only 30 µM CBD displayed a
significant increase in seizure frequency (Figure 3D), showing more frequent SLEs of lower
duration, intensity, and amplitude.
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bursting events. A bar graph comparing the effect of 10 µM (n = 7), 30 µM (n = 10), and 100 µM
(n = 11) CBD on the mean (A) duration (in seconds), (B) coastline/second, (C) amplitude (in mV), and
(D) frequency of seizure-like events and (E) frequency and (F) duration (in seconds) of inter-ictal burst-
ing events in layer 2/3 of mouse cortical brain slices after seizure induction with 4-aminopyridine
(4-AP). Data is displayed as average % change from pre-CBD (4-AP only) condition ± SEM.
A Wilcoxon’s matched paired two-tailed t-test was used for all analyses to compare the CBD condition
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single brain slice. * p < 0.05, ** p < 0.01. No statistical difference is left blank.

There were no significant changes in the frequency of inter-ictal bursting events at
any of the concentrations tested (Figure 3F). Although not significant, it is noteworthy that
10 µM CBD application reduced frequency of inter-ictal bursting events by 45.8% while
30 µM and 100 µM CBD reduced frequency of inter-ictal bursting events by 15.2% and
5%, respectively. However, there was a significant decrease in the duration of inter-ictal
bursting events at all concentrations tested (Figure 3E). Surprisingly, the addition of 10 µM
CBD displayed the largest reduction as the duration of inter-ictal bursting decreased by
71.2%, whereas the 30 µM CBD and 100 µM CBD conditions demonstrated a 32.67% and
24.39% reduction, respectively.

3.2. AIM #2—Anticonvulsant Effect of CBD Combined with ∆9-THC

Extracellular Effect of CBD Combined with ∆9-THC on SLE

We investigated the effect of CBD combined with ∆9-THC in a 20:1, 20:3, and 20:5 ratio.
Figure 4 displays sample traces of CBD and ∆9-THC combined in a 20:3 ratio. Application
of 0.5 µM or 2.5 µM ∆9-THC had no significant effects on seizure activity (Figure 5A,C),
whereas 1.5 µM significantly decreased seizure amplitude and increased seizure frequency
(Figure 5B, panel iii–iv).
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The literature using a mouse model of Dravet Syndrome found that the effects of low-
dose ∆9-THC are enhanced when combined with a sub-anticonvulsant dose of CBD [58].
Results from aim #1 displayed nonsignificant reductions in duration and amplitude of
seizure-like events and inter-ictal burst frequency after the addition of 10 µM CBD. Thus,
10 µM CBD was combined with 0.5, 1.5, or 2.5 µM ∆9-THC to create 20:1, 20:3, or 20:5 CBD:
∆9-THC ratios. The effect of these various ratios on seizure-like events were investigated.

The results demonstrated no significant anticonvulsant effects on SLEs after the addi-
tion of 10 µM CBD in any of the features of interest (Figure 3A–D). Similarly, low doses
of ∆9-THC (0.5, 1.5, or 2.5 µM) did not show any significant effects on the features of
interest either (Figure 5). Combining these phytocannabinoids in a 20:1 ratio displayed
greater reductions in seizure duration and coastline/second than either compound alone
(Figure 5A, panels i–ii). Comparably, a 20:5 ratio displayed greater reductions in seizure
frequency than either phytocannabinoid alone (Figure 5C, panel iv). However, the results
observed after the addition of 20:1 or 20:5 ratio were not statistically significant.

Significant reductions in duration, coastline/second, and amplitude of seizure-like events
were observed after the addition of CBD and ∆9-THC in a 20:3 ratio (Figures 4 and 5B, panels
i–iii). Once again, these effects were greater than CBD or ∆9-THC alone. For example, the
addition of 10 µM CBD displayed a 10.4% and 17.9% decrease in seizure duration and
amplitude, respectively. However, the 20:3 ratio of CBD: ∆9-THC significantly reduced
burst duration and amplitude by 25.9% and 27.7%, respectively (Figure 5B, panels i and
iii). Similarly, a 20:3 ratio of CBD to ∆9-THC showed a significant increase in frequency
of seizure-like events by 65.6% compared to a 13.1% increase after CBD alone (Figure 5B,
panel iv).
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Thus, 10 µM CBD combined with low doses of ∆9-THC has greater anticonvulsant
effects than CBD alone with significant effects demonstrated at a 20:3 ratio of CBD: ∆9-THC.
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Figure 5. Comparison of the effect of Cannabidiol (CBD) and delta-9 tetrahydrocannabinol (∆9-THC)
alone and in various combinations on seizure-like events. Bar graphs in row (A) compare the effect
of 10 µM CBD (n = 7), 0.5 µM ∆9-THC (n = 5), and 20:1 CBD:∆9-THC (n = 5). Row (B) compares the
effect of 10 µM CBD (n = 7), 1.5 µM ∆9-THC (n = 7), and 20:3 CBD:∆9-THC (n = 10). Row (C) compares
the effect of 10 µM CBD (n = 7), 2.5 µM ∆9-THC (n = 10), and 20:5 CBD:∆9-THC (n = 9). Within each
combination of CBD and ∆9-THC, (i) duration (in seconds), (ii) coastline/second, (iii) amplitude
(in mV), and (iv) frequency of seizure-like events in mouse cortical brain slices after seizure induction
with 4-aminopyridine (4-AP) was analyzed. Data is displayed as average % change from pre-drug
(4-AP only) condition ± SEM. A Wilcoxon’s matched paired two-tailed t-test was used for all analyses
to compare the drug condition in each slice to the pre-drug (4-AP only) condition in the same slice.
Each sample size (n) equated to a single brain slice. * p < 0.05, ** p < 0.01. No statistical difference is
left blank.

3.3. AIM #3—CBD’s Mechanism of Action
Extracellular Effect of Blocking 5-HT1A Receptor on SLE

As a positive control, 8-OH-DPAT, a 5-HT1A receptor agonist displayed similar anti-
convulsant results to 30 µM CBD, with significant reductions in seizure duration and coast-
line/second and significant increases in seizure frequency (Figure 6A,B,D). Pre-treatment
with WAY100635, the 5-HT1A receptor antagonist, abolished 8-OH-DPAT’s effects as there
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was a significant increase in the percent change of seizure duration, coastline/second,
and amplitude and a significant decrease in the percent change of seizure frequency in
the pre-treated with antagonist condition compared to the not pre-treated conditions
(Figure 6A–D).
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Figure 6. The effect of pre-treatment with a 5-HT1A receptor antagonist on seizure-like events.
A bar graph comparing the effect of 30 µM CBD (n = 10) with 30 µM CBD pre-treated with
10 nM WAY100635, a 5-HT1A receptor antagonist (n = 6) on the (A) duration (in seconds),
(B) coastline/second, (C) amplitude (in mV), and (D) frequency of seizure-like events in mouse
cortical brain slices after seizure induction with 4-aminopyridine (4-AP). As the positive control
condition, 10 µM 8-OH-DPAT, a 5-HT1A receptor agonist (n = 8), was compared to 10 µM 8-OH-DPAT
pre-treated with 10 nM WAY100635 (n = 8). Data is displayed as % change from pre-drug (4-AP only
or 4AP + WAY100635) conditions ± SEM. A Wilcoxon’s matched paired two-tailed t-test was used for
all analyses to compare the drug condition in each slice to the pre-drug condition in the same slice.
* p < 0.05, ** p < 0.01. A Mann–Whitney unpaired two-tailed t-test was used for analyses across
conditions to compare pre-treated with antagonist conditions to not pre-treated conditions. # p < 0.05,
## p < 0.01. Each sample size (n) equated to a single brain slice. No statistical difference is left blank.

As previously discussed, addition of 30 µM CBD significantly reduced the duration
and coastline/second and significantly increased the frequency (Figure 6A,B,D) of seizure-
like events.

Blocking the 5-HT1A receptor with WAY100635 before the addition of 30 µM CBD
significantly increased the percent change of seizure duration (Figure 6A) in the pre-
treated with antagonist condition compared to the not pre-treated condition while the
percent change of seizure frequency significantly decreased (Figure 6D). Blocking the
5-HT1A receptors did generally reduce CBD’s effect on coastline/second and amplitude
of seizure-like events; however, these trends were not significant. When the 5-HT1A
receptors were not blocked, CBD displayed a 6.5% and 11% decrease in coastline/second
and amplitude, respectively. Conversely, when 5-HT1A receptors were blocked, CBD’s
effects were attenuated, displaying a 2.4% decrease and 21.9% increase in coastline/second
and amplitude, respectively (Figure 6B,C).

Thus, pre-treatment with WAY100635 dampened the effect of 30 µM CBD on coast-
line/second and amplitude of seizure-like events and significantly abolished the effects of
30 µM CBD on the duration and frequency of seizure-like events.

4. Discussion
4.1. The Anticonvulsant Effect of CBD Alone

The results of this study showed that CBD alone did display anticonvulsant effects,
especially at concentrations greater than 30 µM. Interestingly, although the reductions in
SLE duration after 30 µM and 100 µM CBD application were both significant, the results
displayed a larger reduction in SLE duration after 30 µM CBD (39.7% reduction) compared
to 100 µM CBD (31.6% reduction) addition. However, only 100 µM CBD significantly
reduced burst amplitude. These findings are in line with the previous literature stating
CBD’s potential biphasic effect depending on the feature of interest [7,59].
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Overall, after the addition of CBD, we observed more frequent seizures of less intensity.
Patients with epilepsy are often prescribed a combination of medications; thus, to reduce
adverse side effects, lower doses are preferred. Although 10 µM CBD did not display any
significant effects on SLEs, a general anticonvulsant trend was observed through decreases
in duration and amplitude of SLEs. It was particularly interesting that 10 µM CBD only
caused significant reductions in the duration of inter-ictal bursting events. A dose of 10 µM
CBD could exert seemingly nonsignificant anticonvulsant effects through both ictal and
inter-ictal characteristics. This compares to the literature showing that certain compounds
are more largely involved in the generation of inter-ictal events than ictal events [60].
Further studies are required to fully elucidate the potential anticonvulsant effect of CBD.

4-AP is a well-founded model of epilepsy in mice, as is demonstrated by the induc-
tion of prolonged recurrent seizures without ‘exhaustion’ of seizure activity over time in
recordings. Thus, the ability of CBD to suppress 4-AP-induced seizures, after the fact, is
useful for examining CBD’s efficacy as an anticonvulsant. However, patients more often
use medications to prevent, rather than treat, seizures. It is important to note this limitation
of our study. Although we investigated the potential of CBD as a treatment of SLEs, our
study did not investigate the ability of CBD to prevent SLEs induced by 4-AP. The efficacy
of CBD pre-treatment as an anticonvulsant would strengthen the argument for translation
into clinical settings, where CBD could potentially prevent prolonged seizures. Further
experimentation on the anticonvulsant effect of CBD pre-treatment is needed to elucidate
this neuroprotective capacity.

4.2. The Anticonvulsant Effect of CBD Combined with ∆9-THC

Currently, Epidiolex is a medication approved by the United States Food and Drug
Administration (FDA) for patients with Dravet syndrome and Lennox–Gastaut syndrome.
Epidiolex is a pure CBD product and although it has been shown to be effective, anecdotal
reports have shown that adding other phytocannabinoids is more efficacious in seizure
control than CBD alone [24,27]. Considering that the first experiments revealed the anti-
convulsant potential of 10 µM CBD through nonsignificant reductions SLEs and inter-ictal
bursts, we then examined the potential anticonvulsant interactions between CBD and
∆9-THC after seizure induction with 4-AP.

Two important conclusions were drawn from these results. Firstly, the addition of low
dose ∆9-THC to a low concentration of CBD potentiates the effect of CBD to a therapeutic
level. Secondly, when comparing the various ratios tested, only a 20:3 ratio of CBD:∆9-THC
demonstrated significant anticonvulsant effect on SLEs. These results suggest that in all
features of interest, 10 µM CBD and 1.5 µM ∆9-THC display greater anticonvulsant effects
in combination than either compound does alone.

To our knowledge, there are a limited number of studies that have looked at the in-
teractions of CBD and ∆9-THC in in vitro brain slices made epileptic. One in vitro study
using a muscarinic agonist-induced epilepsy model within the piriform cortex of rats showed
that CBD and ∆9-THC combined did not have greater anticonvulsant effects than ∆9-THC
alone [61]. These disparities could be due to differences in brain area, the model of epilepsy, or
cannabinoid concentrations. Our work parallels in vivo studies which found that the effects of
low-dose ∆9-THC are enhanced when combined with a subtherapeutic CBD dose [28,29,58].
However, it was also found that chronic use of this combination had proconvulsant effects
and increased premature mortality rates [58]. Our study used acute slices and thus, we were
unable to examine the long-term effects of a 20:3 CBD: ∆9-THC combination. Another study
showed a synergistic effect between CBD and ∆9-THC only in a 1:1 ratio while the 5:1 ratio
displayed a partial non-synergistic effect [62]. Thus, lower doses of ∆9-THC relative to
CBD did not produce the same potentiating effects that our results displayed. This could be
due to differences in species, possibly indicating a species-specific effect when combining
CBD and ∆9-THC.

Although the literature shows no consensus regarding the therapeutic use of CBD
and ∆9-THC combined, many drug-resistant patients often turn to CBD-enriched cannabis
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products. Surveys and studies on these patients show a great reduction in seizure frequency
and severity [25,26,63]. However, due to ∆9-THC’s psychoactive effects, the compound is
clinically unattractive as an independent therapeutic. The safety profile is an important
consideration when investigating novel drugs. Unlike ∆9-THC, which has been associated
with states of psychosis [64,65], many studies have shown that CBD is well tolerated
across many doses. In both short- and long-term administration, no concerning adverse
effects were seen on the central nervous system or vital signs when using CBD, including
high doses [18]. A study carried out on patients with drug-resistant epilepsy displayed
CBD’s long-term safety and tolerability [66]. Thus, CBD also displays high tolerability
and low toxicity through its independent use. We showed that lower doses of ∆9-THC
can potentiate low CBD doses in vitro. Not only are lower doses associated with less
adverse side effects, but CBD has also been shown to ameliorate the psychoactive effects
of ∆9-THC through various mechanisms [67–72]. Through these mechanisms, CBD and
∆9-THC combined at low doses have great therapeutic potential as we can harness their
individual anticonvulsant effects without the potential adverse effects, providing a solution
for the reluctance to use ∆9-THC in the clinical setting. Our results are important as they
parallel what is observed clinically, further justifying more research into the interactions of
CBD and ∆9-THC.

4.3. The Role of 5HT1A Receptors in CBD’s Mechanism of Action

There has been much research shedding light on the role that the serotonergic system
plays in seizures [73,74]. Fenfluramine is a recently approved drug that has high efficacy for
the treatment of seizures in Dravet syndrome and Lennox–Gastaut syndrome [75]. Studies
have shown that fenfluramine exerts its anticonvulsant effects by enhancing serotonergic
transmission through various receptors, including the 5-HT1A receptor [44,76]. Here, we
investigated whether CBD exerts its anticonvulsant effects through the 5-HT1A receptor.

After the addition of 8-OH-DPAT, a selective 5-HT1A receptor agonist, we observed
significant reductions in the features of interest, leading to the conclusion that 5-HT1A
receptor stimulation can exert anticonvulsant effects. The literature supports our results as
many studies have observed similar anticonvulsant effects after 5-HT1A receptor stimu-
lation [41–43,77]. The anticonvulsant effect of 8-OH-DPAT was very similar to the effect
observed after 30 µM CBD. Binding analyses experiments have shown that CBD is a known
5-HT1A receptor agonist, and a multitude of evidence has shown that the 5-HT1A recep-
tor is a pharmacological target for CBD’s other therapeutic effects [45,78–80]. Thus, it is
imaginable that the 5-HT1A receptor could be a target for CBD’s anticonvulsant effects.
Our results provide evidence for this as pre-treatment with a 5-HT1A receptor antago-
nist abolished the anticonvulsant effects of CBD. In vivo studies have similarly shown
that CBD’s anticonvulsant effects are abolished by a 5-HT1A receptor antagonist [46,47].
Conversely, a pentylenetetrazol seizure rat model displayed that CBD’s anticonvulsant
effects are independent of the 5-HT1A receptor, but these differences could be due to the
dosing and animal model that was used [49]. Knowledge on CBD’s mechanism of action is
important to determine the patient population in which this new potential therapeutic is
most effective as well as optimal dosing by monitoring the effect on the target pathway in
the patient.

Additionally, 5-HT1A receptor stimulation as a potential mechanism by which CBD
exerts its anticonvulsant effects is a very promising result, especially for individuals with
drug-resistant epilepsy, as these patients are at a higher risk for sudden unexpected death
in epilepsy (SUDEP) [2]. Studies using SUDEP animal models have shown decreased firing
from serotonergic neurons during and after seizures, implicating the serotonergic system
in SUDEP [81,82]. Other studies using a SUDEP animal model showed that stimulation of
the serotonergic system inhibited seizure-induced respiratory arrest [83]. Thus, not only
does CBD have potential to be a novel anticonvulsant drug that improves seizure control
but could also reduce the risk of SUDEP. However, many more studies are required to fully
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comprehend the role that the serotonergic system plays in SUDEP and how to harness its
therapeutic potential.

5. Conclusions

This study shows that CBD, especially at higher doses, displays anticonvulsant effects
on mouse brain neocortical slices after seizure induction with 4-AP. The anticonvulsant
effects of lower doses of CBD can be potentiated with the addition of low-dose ∆9-THC,
suggesting that the combination of these phytocannabinoids, specifically at a 20:3 CBD:
∆9-THC ratio, can have greater anticonvulsant effects than either phytocannabinoid alone.
Additionally, CBD’s anticonvulsant effects were abolished when slices were pre-treated
with a 5-HT1A receptor antagonist. Thus, CBD exerts its anticonvulsant effects, at least in
part, through the 5-HT1A receptor.

In conclusion, these results help address the barrier of drug-resistance while providing
insight into CBD’s mechanism of action, laying the groundwork for further testing of
cannabinoids as anticonvulsants.

6. Patents

The outcomes of this study have resulted in a successful patent of the cannabinoid for-
mulation with Avicanna Inc. for reducing the incidence of seizures and sudden unexpected
death in epilepsy.
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