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Abstract: PTCHD1 has been implicated in Autism Spectrum Disorders (ASDs) and/or intellectual
disability, where copy-number-variant losses or loss-of-function coding mutations segregate with
disease in an X-linked recessive fashion. Missense variants of PTCHD1 have also been reported in
patients. However, the significance of these mutations remains undetermined since the activities,
subcellular localization, and regulation of the PTCHD1 protein are currently unknown. This paucity
of data concerning PTCHD1 prevents the effective evaluation of sequence variants identified during
diagnostic screening. Here, we characterize PTCHD1 protein binding partners, extending previously
reported interactions with postsynaptic scaffolding protein, SAP102. Six rare missense variants of
PTCHD1 were also identified from patients with neurodevelopmental disorders. After modelling
these variants on a hypothetical three-dimensional structure of PTCHD1, based on the solved structure
of NPC1, PTCHD1 variants harboring these mutations were assessed for protein stability, post-
translational processing, and protein trafficking. We show here that the wild-type PTCHD1 post-
translational modification includes complex N-glycosylation and that specific mutant proteins disrupt
normal N-link glycosylation processing. However, regardless of their processing, these mutants still
localized to PSD95-containing dendritic processes and remained competent for complexing SAP102.

Keywords: PTCHD1; autism spectrum disorder; mutations; post-translational processing; protein
stability; neurons

1. Introduction

High-throughput and increasingly precise genomic approaches have identified myriad
genetic loci involved in Autism Spectrum Disorder (ASD) [1,2]. The biological pleiotropy
of these defined loci, using cytogenetics, linkage analysis, whole-genome linkage, or
association, as well as whole-genome or exome sequencing, underlines the complexity
of ASD [3]. The ASD-associated gene at Xp22.11, PTCHD1, was identified by several
groups [4–8] using distinct approaches including one that indicated that PTCHD1-related
mutations may occur in approximately 1% of individuals with ASD [6].

PTCHD1 encodes an 888 amino acid protein that is structurally similar to the class of
the resistance–nodulation–cell division (RND) superfamily of transporters (for a review,
see [9]) as well as two cholesterol transporters related to Niemann–Pick syndrome type C
protein, NPC1 [10–12]. While related to the receptors of the Hedgehog (Hh)-ligands, Ptch1
and Ptch2 [13–15], we and others have not yet been able to show that PTCHD1 plays a
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regulatory role in the Hh-pathway [16,17] and there is a current lack of evidence showing
that PTCHD1 directly binds to or facilitates cholesterol fluxes. Regardless, PTCHD1 encodes
a protein predicted to harbor two “Ptch1-domains”. These modules, that are juxtaposed
in the membrane, are defined by five transmembrane α-helices flanked by luminal and
cytoplasmic regions. The luminal domains exhibit sequence similarities to the analogous
regions in NPC1 [11,18] and Ptch1 [19–21] that suggest they may have highly similar
three-dimensional structures. In a multiple-sequence alignment, PTCHD1 showed 21.17%
similarity in amino acid sequence identity with NPC1 and 21.65% with PTCH1 (Clustal
Omega, www.ebi.ac.uk, accessed on 3 October 2023). However, like all other members of
this class of transmembrane proteins, the cytoplasmic regions of PTCHD1 are unrelated to
those in, for example, any of the Ptch-proteins or NPC1 [13]. In the case of PTCHD1, the last
four amino acids at its C-terminus encode a unique motif predicted to bind PDZ-domain-
containing factors [17]. Using a yeast two-hybrid screen, this motif was used previously
to isolate PSD95 (DLG4) and SAP102 (DLG3), proteins localized to dendritic spines in the
post-synaptic region where a large number of factors involved in synaptic transmission
are organized [17]. Indeed, a GST-fusion protein encoding the C-terminus of PTCHD1
binds PSD95, although the localization of PTCHD1 to dendritic spines did not appear to be
dependent on the PDZ-binding region in its C-terminus, consistent with PTCHD1 transport
to dendritic spines being mediated by distinct mechanisms and regions of the protein.

We report here the identification and characterization of a series of point mutations
in PTCHD1 derived from patients with ASD or other neurodevelopmental disorders. We
further show that for a number of mutations in PTCHD1, these align with sequences crucial
for the complexing with cholesterol in the structurally related protein Ptch1. Despite these
specific mutations altering the processing of the newly synthesized proteins as well as
the protein stability of PTCHD1, they do not produce defects to its ability to localize to
structures containing PSD95.

2. Materials and Methods
2.1. Cell Culture

Human embryonic kidney 293T (HEK-293T) cells (a kind gift from Prof. S. Girardin,
University of Toronto) were cultured in Dulbecco’s Modified Eagle Medium with 10%
fetal bovine serum (FBS) (Wisent, Saint-Jean-Baptiste, QC, Canada) and 1% penicillin–
streptomycin (Wisent, Saint-Jean-Baptiste, QC, Canada).

2.2. Primary Neurons

Dissociated cortical neurons were prepared as previously described [22]. In brief,
a cortical layer was dissected out of P0–P2 C57 and dissociated enzymatically (papain,
12 U/mL; Worthington, Lakewood, NJ, USA) and mechanically (trituration with flame-
polished Pasteur pipette). After dissociation, the cells were washed, centrifuged, and plated
on poly-D-lysine-coated glass coverslips at a density of 1.25–2.5 × 105 cells/mL. Growth
media consisted of Neurobasal and B27 (50:1), supplemented with penicillin–streptomycin
(50 U/mL; 50 U/mL) and 0.5 mM L-glutamax (Thermo Fisher Scientific, Waltham, MA,
USA). FBS (2%; Wisent, Saint-Jean-Baptiste, QC, Canada) was added at the time of plating.
After 5 d, half of the media was changed without serum and with cytosine arabinoside
(5 µM; Sigma-Aldrich St. Louis, MO, USA) to limit proliferation of non-neuronal cells.
Twice a week thereon, half of the growth medium was replaced with serum- and cytosine
arabinoside-free medium.

2.3. Construct Creation

The GFP-PTCHD1 in the pDEST-53 vector construct was used to generate the panel of
PTCHD1 point mutants. All single-nucleotide substitution point mutations in the N-term
GFP form were created with ligation-independent PCR cloning technique. Primers for the
sense strand and anti-sense strand were designed for each independent mutation as seen in
Appendix A Table A2. The new construct was created from a PCR reaction that amplified
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the entire plasmid harbouring the substitution using the high-fidelity polymerase Q5
according to the manufacturer’s instructions (New England Biolabs, Whitby, ON, Canada).
The unpurified PCR product was then treated with DpnI to digest the methylated template
DNA which was subsequently transformed into DH5α. Final constructs were verified
through Sanger sequencing (ACGT Corporation, Toronto, ON, Canada). The SAP102
construct was kindly provided by Prof. Igor Stagljar (University of Toronto).

All PTCHD1 WT and point mutant constructs were inserted into the 3rd-generation
lentivirus vector, pUltra (#24129; Addgene, Watertown, MA, USA), which includes a
puromycin resistance gene. Using PCR amplification, a unique NheI site was generated
upstream of the start codon of the PTCHD1 constructs with a blunt end after the stop codon.
The PCR product was ligated into the NheI and HincII sites in the pUltra vector. All clones
were verified with restriction enzyme diagnostic digest.

The mouse ortholog of Ptchd1, which exhibits 98.1% sequence conservation (871
of 888 amino acids) with human PTCHD1, was amplified using high-fidelity Q5 poly-
merase from cDNA that was generated from RNA obtained from P19-induced neural cells.
PCR amplicons were digested and ligated into pcDNA3.1 myc-His B expression vectors
(Thermo Fisher Scientific, Waltham, MA, USA), with a 3xFlag epitope tag also fused to the
N-terminus of Ptchd1. Site-directed mutagenesis was subsequently used, as previously
described, to generate the Pro32Arg, Pro75Gln, Lys181Thr, Gly303Arg, Phe549Cys, and
∆ITTV point mutants of Ptchd1. Final constructs were verified through Sanger sequencing
(The Centre for Applied Genomics, Toronto, ON, Canada). Primer sequences for cloning
and Ptchd1 site-directed mutagenesis are provided in Appendix A Table A2(B).

2.4. Lentivirus Production and Transduction

HEK293T cells were seeded in a 6 cm plate. At ~80% confluency, transfection was
performed with PEI (2 mg/mL) at a 2 µL:1 µg ratio of PEI to DNA in serum-free Dulbecco’s
Modified Eagle Medium. Three plasmids were transfected: 1 µg of pLenti-PTCHD1, 0.75 µg
psPAX2 packaging plasmid (#12260; Addgene, Watertown, MA, USA), and 0.25 pCMV-VSV-
G envelope plasmid (#8454; Addgene, Watertown, MA, USA). After a 15 min incubation
with PEI, the solution was added to the cells. Media were collected after 48 h and stored in
1 mL aliquots at −80 ◦C.

Primary neurons were used for lentiviral transduction at D3. Transduction of cells
was performed at 1:5–1:2 of viral media to total culture media and incubated for 48 h.

2.5. Western Blotting and Co-Immunoprecipitations

All Western blots and co-immunoprecipitations were performed using lysates from
transiently transfected HEK293T cells, unless stated otherwise. HEK293T cells were grown
to 70–80% confluency in 100 mm plates and transfected using 2 mg/mL polyethylenimine
(PEI; MilliporeSigma Canada Ltd., Oakville, ON, Canada) at a 2 µL:1 µg ratio of PEI to
DNA. Cell lysates were taken 48–72 h after transfection. Cell lysates were prepared by
washing cells twice with ice cold PBS, pH 7.4 (137 mM NaCl, 2 mL KCl, 10 mM Na2HPO4,
2 mM KH2PO4), and then adding 1% NP-40 lysis buffer (50 mM Tris pH 8.0, 120 mM
NaCl, 1% NP-40) containing protease and phosphatase inhibitors (10 mM NaF, 1 mM PMSF,
2 µg/mL leupeptin, 2 µg/mL aprotinin, 1 mM sodium orthovanadate). For the Western
analysis of protein expression, 50 µg of lysate was used, and samples in 4×-sample buffer
were then incubated at 37 ◦C for at least 20 min prior to loading on the gel in order to avoid
the boiling-induced aggregation of SSD-containing transmembrane proteins [13,23]. Blots
were developed using Western Lightning PLUS ECL (PerkinElmer, Waltham, MA, USA)
and imaged on a MicroChemi 2.0 Imager (FroggaBio, Concord, ON, Canada). Antibodies
and concentrations used for Western blots can be seen in Appendix A Table A3.

Immunoprecipitation experiments were performed using 250 µg of total protein, made
up to 500 µL total volume with 1% NP-40 buffer. Samples were incubated overnight at 4 ◦C
with primary antibody. Immunocomplexes were bound to Protein G-Agarose (Thermo
Fisher Scientific, Waltham, MA, USA) or Protein A-Agarose (Thermo Fisher Scientific,
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Waltham, MA, USA) beads and washed 5× with 1% NP-40 buffer, and blots were prepared
as described above.

For co-immunoprecipitation experiments involving 3xFlagPtchd1 and SAP102bmyc,
250 µg of total protein samples were made up to 500 µL total volume with 1% NP-40
buffer and incubated overnight at 4 ◦C with 1 µL of mouse anti-Flag primary antibody
(#F1804; MilliporeSigma Canada Ltd., Oakville, ON, Canada). Subsequently, samples
were incubated with 50 µL of Protein G-conjugated Dynabeads (#10003D; Thermo Fisher
Scientific, Waltham, MA, USA) for two hours at room temperature, and immune complexes
were eluted (75 mM Glycine-HCl, pH 2.7) for five minutes at room temperature. For
Western blot detection of 3xFlagPtchd1 and SAP102bmyc, rabbit anti-DYKDDDDK (#D6W5B;
New England Biolabs, Whitby, ON, Canada) and rabbit anti-myc (#71D10; New England
Biolabs, Whitby, ON, Canada) primary antibodies were used, respectively, followed by the
anti-rabbit HRP-conjugated secondary antibody (#W4011; Promega, Madison, WI, USA).

2.6. Glycosylation Assay

N-linked glycosylation processing of PTCHD1 was determined using Endo-β-N-
acetylglucosaminidase H (Endo H) and Peptide-N4-(N-acetyl-β-glucosaminyl)-asparagine
amidase F (PNGase F) as we previously described [13]. Briefly, PTCHD1 mutants were
transiently expressed in HEK293T cells. Cells lysed in 1% NP40 buffer and 50 µg of protein
lysate were made up to a total volume of 20 µL containing ddH2O and the appropriate
NEB enzyme buffers. The samples were treated with either (i) no enzyme, (ii) 500U Endo
H (New England Biolabs, Whitby, ON, Canada), or (iii) 500U PNGase F (New England
Biolabs, Whitby, ON, Canada) for 1 h at 37 ◦C. Proteins were resolved using SDS-PAGE,
and the migration of the samples was determined via Western blot analysis.

2.7. Protein Stability Assay

To determine the stability of PTCHD1 mutant proteins, HEK293T cells transiently
expressing these proteins were treated with 50 µg/mL of the protein synthesis inhibitor,
cycloheximide (CHX), for the described lengths of time. Cell lysates were prepared as
described previously, and the expression levels of PTCHD1 were determined via Western
blot analysis. Relative expression of PTCHD1 protein was quantified through densitometry
using ImageJ software (Version 1.51). PTCHD1 signal was normalized to β-tubulin. Inde-
pendent experiments were performed at least 3 times per construct. Statistical analysis was
performed on GraphPad Prism.

2.8. Co-Localization Image Acquisition and Analysis

For co-localization of PtchD1 mutants in HEK239 cells, sterile 13 mm coverslips
(Sarstedt) were placed into 24-well culture plates (Falcon) and coated with poly-D-lysine
solution (#1804; MilliporeSigma Canada Ltd., Oakville, ON, Canada). HEK293T cells were
re-seeded at low density onto the coated coverslips. The following day, Lipofectamine 3000
(Thermo Fisher Scientific, Waltham, MA, USA) was used to co-transfect 10 ng of the 3xFlag-
Ptchd1 expression plasmids and 490 ng of the inert plasmid pBV-Luc (addgene.org #16539).
After 24 h, cells were rinsed with PBS and fixed with ice-cold 100% methanol at −20 ◦C for
15 min. Cells were then washed twice with PBS and incubated in blocking solution (10%
goat serum (Cell Signaling; Danvers, MA, USA) in PBS supplemented with 0.1% Tween-20)
for one hour at room temperature. Cells were incubated with primary antibodies overnight
in a humidified chamber at 4 ◦C. After 15 h, cells were washed three times with PBS
followed by incubation with Alexa Fluor-conjugated secondary antibodies for 1 h at room
temperature. Cells were then washed three times with wash buffer, followed by incubation
with NucBlue reagent (Thermo Fisher Scientific, Waltham, MA, USA). Coverslips were
mounted on glass microscope slides using Dako mounting medium (Agilent; Santa Clara,
CA, USA).

Images were acquired using a Leica TCS SP8 (Leica Microsystems, Wetzlar, Germany)
confocal microscope and the Leica Application Suite X (LASX Version 1.4.5) software. Three
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lasers were used to acquire each image: 405 nm (66.6% intensity), 488 nm (5.2% intensity),
and 552 nm (2.0% intensity). Consecutive z-stacks were acquired with a z-interval of 0.6 µm
under 63× magnification. For each experimental condition, three biological replicates
(each consisting of three consecutive z-stacks for 6–7 separate images) were analyzed by
an independent technician who was blinded to each missense variant. Pixel intensity
thresholds were identically adjusted for all images: (1) 3xFlag (minimum 30; maximum 255)
and (2) Calnexin/At1a (minimum 15; maximum 230). To quantify overlapping intensity
values of 3xFlag-Ptchd1 and Calnexin or At1a, the Pearson correlation coefficient (PCC)
was calculated using the JACoP (Version 2.1.4) plugin in FIJI using default settings. To
determine statistical significance, a one-way analysis of variance (ANOVA) was used,
followed by a Tukey’s honestly significant difference (HSD) test to compare each missense
variant with the wildtype.

Images from three independent co-staining experiments were analyzed, with 6–7 images
acquired per co-staining. Data points from all technical replicates were plotted.

3. Results
3.1. Characterization of PTCHD1 Mutants

We identified PTCHD1 missense variants from clinical studies where variants were
identified in male individuals presenting with a neuro-developmental disorder and were
not present in the control database (gnomAD: gnomad.broadinstitute.org; from >182,000
exomes + genomes sequenced). For these variants, we used two methods: (i) the Condel
missense prediction meta-algorithm, which combines predictions from five algorithms [24]
and (ii) the Combined Annotation-Dependent Depletion (CADD) [25] to predict whether
the substitutions are likely to be deleterious.

Based on these analyses, we selected a subset of variants (Figure 1A) (i) predicted by
both methods to be deleterious, (ii) spanning the PTCHD1 protein, and (iii) representing
mutations in distinct structural regions. These regions included the first and second
luminal domains, “Loop 1” and “Loop 2”, and the two transmembrane modules that
produce the 3D structures resembling sterol sensing domains (“Ptch-domains”), SSD1 and
SSD2 (Figure 1B–D). For comparison purposes, we also included a nonsense mutation
(∆Ile-Thr-Thr-Val (∆ITTV)) that disrupts the predicted C-terminal PDZ-binding motif,
although this deletion does not correspond with a known clinically reported mutation.

As the linear cartoon in Figure 1B illustrates, two of these mutations (Pro32Arg and
Gly303Arg) produce amino acid changes in α-helical regions that are predicted to traverse
the membrane. In contrast, Pro75Gln, Lys181Thr, and Phe549Cys alter amino acids in the
luminal domains. Using Phyre2 to align the sequence for PTCHD1 with that of human
NPC1 and Ptch1, whose 3D structures have been determined previously [10,19–21,26,27],
we used PyMol (Version 2.5.0) to generate a hypothetical three-dimensional structure for
PTCHD1 (Figure 1D). For all regions except the N, ML, and C cytoplasmic domains, this
predicted model is nearly identical to a recent 3D model predicted using AlphaFold [28]
(see Appendix A Table A1). As illustrated on the hypothetical model in Figure 1D, the
Pro32Arg and Gly303Arg mutations are expected to disrupt helical structures in the first
two highly conserved alpha-helices in the T-class of SSD-containing proteins [29]. G303R
specifically affects the first helix in the SSD1-like domain, being that the integrity of this
domain is essential for the activities of both NPC1 [30] and Ptch1 [31–34].

We first sought to determine differences in the relative levels of protein expression
due to mutations on PTCHD1. An eGFP cassette was fused to the N-terminal end of
PTCHD1 to create the GFPPTCHD1 construct, which was then cloned in frame with the
eGFP cassette through the P2A site in the pULTRA lentiviral vector. This arrangement
produces a single transcript encoding an eGFP-P2A-GFPPTCHD1 fusion protein. The P2A
site facilitates proteolytic cleavage between the eGFP and GFPPTCHD1 proteins, allowing
for a direct comparison of their expression. Figure 2A demonstrates that in HEK293
cells, the level of mRNA transcripts encoding the eGFP-P2A-GFPPTCHD1 protein for all
mutants was essentially identical, differing by less than 10%. In contrast to these levels of
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mRNA transcript, Figure 2B illustrates that the levels of protein for these mutants varied
considerably. The quantification of GFPPTCHD1 protein expression was normalized to
those of the eGFP alone and β-tubulin. These levels, relative to WT, can be seen in Figure 2C
where several of the point mutations are expressed at considerably lower levels compared
to the independently expressed eGFP. Thus, despite their essentially identical levels of
mRNA expression, the resultant proteins show considerable heterogeneity in their level of
protein expression.
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Figure 1. PTCHD1 graphics depicting point mutations and predicted structure. (A) Summary of
point mutants in PTCHD1 from clinical studies (see also Appendix A Table A1). (B) Linear schematic
of PTCHD1 indicating structural domains and locations of point mutations. (C) Cartoon of PTCHD1
illustrating the predicted topological orientation of specific regions in the membrane. (D) A predicted
3D structure of PTCHD1 based on the resolved cryo-EM structures of NPC1 and Ptch1. Locations of
the point mutations in the hypothetical structure are indicated. Note that the cytoplasmic domains
cannot be resolved for this class of proteins and are, therefore, absent.
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Figure 2. PTCHD1 mutants in stably expressed cells vary in protein expression levels. (A) Relative
levels of stably expressed GFPPTCHD1 transcript in bulk cultures of HEK293 cells. (B) Representative
Western blot GFPPTCHD1, eGFP and β-tubulin for stable lines expressing the PTCHD1 mutants.
(C) Quantification of relative levels of expression of individual mutants stably expressed in HEK293
cells. Data displayed as mean ± SEM, n = 3 independent experiments. Data were analyzed using
one-way ANOVA followed by Dunnett’s multiple comparisons test of means to the control (WT)
using t-test. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.

3.2. Distinct Processing of PTCHD1 Mutants

A close inspection of the protein bands seen in GFPPTCHD1 in Figure 2B shows that
these mutant proteins have distinct patterns of migration under denaturing conditions
in SDS-PAGE gels. Given the variation in expression patterns and levels of these mu-
tant proteins, we characterized their post-translational processing, protein stability, and
subcellular localization. Figure 3A illustrates that wild-type GFPPTCHD1 is processed to
complex N-linked glycosylated forms. Here, the migration of the bulk of GFPPTCHD1 is
unaffected by treatment with EndoH, as a stronger band persists near the 130 kDa mark,
indicating the processing of the N-linked glycosylated moieties to more mature, complex
structures for the wild-type protein. Figure 3B illustrates mutants with contrasting patterns
of processing. In the case of the mutant protein that deletes the PDZ-binding motif, ∆ITTV,
a pattern of slower migrating species similar to the WT GFPPTCHD1 is evident, the slowest
migrating species (upper arrow) also being resistant to EndoH. In contrast, the Phe549Cys
point mutant exhibits only two slower-migrating species, both of which are susceptible to
EndoH, consistent with this protein not being processed through Golgi-dependent trans-
port pathways that generate mature N-link glycosylated proteins. Using the same analysis
(Figure 3C), the point mutants Pro75Gln and Lys181Thr both gave rise to slow-migrating,
EndoH-resistant bands similar to WT GFPPTCHD1. In contrast, Pro32Arg and Gly303Arg
did not exhibit mature glycosylated forms since all forms are susceptible to EndoH ac-
tivity. Thus, these different point mutants distinctly alter the apparent post-translational
processing of PTCHD1.
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Figure 3. Altered post-translational processing of distinct PTCHD1 mutants. HEK293T cells were
transfected with constructs expressing wild-type GFPPTCHD1 or the point mutants, treated EndoH,
or PNGase and resolved using SDS-PAGE on Western blots. (A) Wild-type GFPPTCHD1 alone.
(B) GFPF549C and GFP∆ITTV are processed differently, and only GFP∆ITTV has the apparent normal
processing. (C) Analysis of processing for GFPP32R, GFPK181T, GFPP75Q, and GFPG303R.

The fidelity of glycosylation plays a crucial role in stabilizing the protein expression
in the cell. Given that specific point mutations modify the N-linked glycosylation of
GFPPTCHD1, the stability of these mutant proteins was measured to determine the lack of
maturation of glycosylated mutants correlated with the altered protein half-life. As shown
in Figure 4, the WT GFPPTCHD1 protein exhibited a half-life beyond 12 h, determined by
HEK293 cells transiently expressing GFPPTCHD1 and treated with cycloheximide (CHX).
Similarly, the point mutant, Pro75Gln, exhibited similar stability relative to WT GFPPTCHD1,
consistent with its apparent normal processing. In contrast, the protein half-life of Pro32Arg,
which exhibited immature processing, was decreased to 2.5 h. Figure 4 also shows that the
concordance between processing and protein half-life is evident for the mutants Lys181Thr
and Phe549Cys, and the C-terminal truncation, ∆ITTV. Curiously, the Gly303Arg mutant,
which also failed to be processed to more mature forms, had a half-life similar to the
wild-type protein.

Proper post-translational modifications play a fundamental role in subcellular target-
ing. Due to the defects of processing GFPPTCHD1 mutants harbouring specific point muta-
tions, the subcellular localization may be affected. Specifically, proteins not susceptible to
full EndoH cleavage may experience aggregation in the ER or Golgi, preventing their proper
localization. We first tested the localization of the various mutants in transient assay in
HEK293T cells. Consistent with the inability of GFPPro32Arg and GFPGly303Arg to be fully
glycosylated, both 3xFlagPro32Arg and 3xFlagGly303Arg exhibited ER retention, as inferred
by the increased co-localization with the ER marker Calnexin relative to WT 3xFlagPtchD1
(Figure 5A). Concordant with mature glycosylation evident in the GFP-tagged ∆ITTV point
mutant, 3xFlagIle885* demonstrated a similar degree of co-localization with Calnexin as
WT 3xFlagPtchD1. As shown in Figure 5C, the defect in the processing of 3xFlagGly303Arg
is associated with impaired plasma membrane trafficking, as indicated by attenuated co-
localization with the plasma membrane marker At1a relative to WT 3xFlagPtchD1. Despite
the apparent normal processing of 3xFlagIle885*, decreased plasma membrane trafficking
was also observed in this point mutant. Finally, despite 3xFlagPro32Arg displaying ER
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retention, a statistical difference in plasma membrane localization was not observed in this
point mutant relative to WT 3xFlagPtchD1.
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Figure 4. Point mutants alter the stability of the Pro32Arg and Phe549Cys variants. HEK293T cells
were transfected with one of the GFPPTCHD1 point mutants and treated with cycloheximide in
50 µg/mL for the time points indicated. Left side—Representative Western blots for time course of
CHX-treated HEK293 cells transiently expressing WT GFPPTCHD1, GFPP32R, GFPP75Q, GFPK181T,
GFPG303R, GFPF549C, GFPY802C, and GFP∆ITTV mutants. Right side—Quantification of Westerns
blots. Relative levels of mutants were compared to WT. Error bars represent standard error of the
mean value of at least 3 independent experiments.

Previous studies showed that GFPPTCHD1 localizes with PSD95 in neuronal pro-
cesses [17]. As Figure 6 shows for primary neurons, the lentiviral-mediated expression of
the Pro75Gln, Lys181Thr, and Pro32Arg mutants showed that they all retained their ability
to co-localize with PSD95 in neuronal processes. Although Pro32Arg showed a statistically
significant amount of ER retention, Figure 6 indicates that there is a small population that
can successfully localize to PSD95. Thus, regardless of their processing and stability, these
mutants do not exhibit altered intracellular localization.
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Figure 5. ER retention and impaired plasma membrane localization of point mutants. Immunofluores-
cence was performed, and co-localization was quantified using the PCC in HEK293T cells transfected
with 3xFlagPtchd1, 3xFlagPro32Arg, 3xFlagGly303Arg, or 3xFlagIle885* and co-stained with either (A) an
endogenous ER marker, Calnexin, or (C) an endogenous plasma membrane marker, At1a. Represen-
tative fluorescent images (Flag, green; Calnexin or At1a, red) for each missense variant are shown in
(B,D). Scale bar represents 10 µm. Data are expressed as the mean ± SEM, and PCC values for each
missense variant are normalized to wildtype Ptchd1. (* p < 0.05; ** p < 0.01; *** p < 0.001).

The isolated C-terminal domain of PTCHD1 was shown previously to bind to the PDZ-
containing, postsynaptic scaffolding proteins, PSD95 and SAP102 [17]. Using mycSAP102b,
an isoform that has deleted the first two PDZ domains [35,36], and the mouse ortholog
of 3xFlagPtchd1, Figure 7 shows that all of the WT 3xFlagPtchd1, as well as the Pro75Gln,
Gly303Arg, Phe549Cys, and Pro32Arg mutants co-immunoprecipitated mycSAP102b. The
newly derived Flag-tagged Lys181Thr mutant failed to express for an unknown reason,
and no statement can be made regarding its ability to co-immunoprecipitate mycSAP102b.
Appendix A Figure A1 illustrates that the GFP-tagged version of PtchD1 interacts with
SAP102b identically to the Flag-tagged version of PtchD1. That this interaction was medi-
ated by the PDZ-binding motif at the very end of the C-terminus of Ptchd1 was confirmed
using the deletion mutant, ∆ITTV, which harbours a deletion of the PDZ-binding motif.
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Figure 7. PTCHD1 interacts and co-localizes with SAP102b. Left Side—HEK293T cells were transiently
transfected with either 3xFlagPtchd1 or one of the 3xFlag-tagged point mutants (P32R, P75Q, G303R,
F549C, or ∆ITTV) and SAP102bmyc and resolved using SDS-PAGE on Western blots. Right Side—
Co-immunoprecipitation of SAP102bmyc with wildtype 3xFlagPtchd1 or Ptchd1 point mutants. Each
IP was divided in half, run on two gels, and probed with either anti-flag (Ptchd1; upper panel) or
anti-myc (SAP102b; lower panel).

4. Discussion

There exists a high density of synaptic scaffolding proteins at the PSD that organize
neurotransmitter receptors, in part, by utilizing their PDZ domains to bind to cellular
elements. Previously, interactions between the C-terminal PDZ binding motif in PTCHD1
with synaptic scaffolding proteins, PSD95 and SAP102, were described [16,17]. However,
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neither of these previous studies verified the interaction with the full-length PTCHD1
protein. We showed the interaction between full length PTCHD1 and SAP102. Further,
using the shorter construct of SAP102b isoform, we demonstrated that the third PDZ do-
main of SAP102 was sufficient for PTCHD1 binding. SAP102 links NMDARs to excitatory
type 1 synapses and mediates AMPAR-regulatory activities [35,37,38]. This highly mobile
member of the MAGUK family is not sequestered at the PSD as it has been shown to inter-
act with NMDAR subunits in the secretory pathway, specifically the ER [36,39]. SAP102
also mediates NMDAR exocytosis, an activity distinct from those mediated by PSD95 [40].
Truncating mutations of DLG3, the gene encoding SAP102, have been associated with
X-linked retardation [41,42] and XLID with substantial impairment in cognitive abilities
and social and behavioural adaptive skills [43]. Therefore, SAP102 has been proposed to be
a plausible candidate gene for ASD [44]. Its interaction with PTCHD1 may implicate that
the mechanism employed for PSD-targeted trafficking and endocytosis of PTCHD1 is me-
diated by SAP102. In this vein, we have shown that all Ptchd1 point mutants studied here,
except for ∆ITTV which lacks the four-amino acid (Ile-Thr-Thr-Val) putative PDZ-binding
domain, possess the ability to bind to SAP102b. These data suggest that the neurodevelop-
mental consequences of these specific PTCHD1 mutations may arise independently of its
interaction with SAP102 within dendritic spines.

Advances in genome sequencing and genetic analyses have identified an increasing
number of genes responsible for ASD by detecting de novo mutations linked to ASD.
These mutations can be CNVs or single-base-pair mutations; however, missense mutations
are less informative because their impact on the protein is unknown. ASD-linked single
missense mutations have been described in proteins involved in the dendritic spines such
as SHANK3, NLGN4, and ACTN4 [45–48]. Single missense mutations have also been
identified in PTCHD1 from individuals with ASD or ASD-associated disorders. In this
study, we analyzed a number of clinically relevant PTCHD1 point mutations and found
that Pro32Arg, Gly303Arg, and Phe549Cys have the most adverse effects on the protein.
These mutations affect N-linked glycosylation in post-translational modifications, with
some resulting in protein destabilization. However, these mutants were not observed to
cause aggregation in the ER.

The deleterious consequences of processing and stability that arise from the Pro32Arg
and Gly303Arg mutations, respectively, are of particular interest. While the specific activi-
ties of PTCHD1 in dendritic spines remains unresolved, the primary and 3D structures of
PTCHD1 suggest that it may harbor cholesterol transport activities similar to the related
proteins, NPC1 [11,12,49–51] and Ptch1. Interestingly, both Pro32Arg and Gly303Arg in
PTCHD1 are in similar positions to the residues in Ptch1 that were recently shown to be
involved in an apparent complex with a cholesterol moiety observed in the cryo-EM of
Ptch1 [21,27]. Located on the α-helices, TM1 and TM3, respectively, the sidechains of these
residues are involved in coordinating the orientation of a likely cholesterol molecule in
this region. Given the fundamental roles of cholesterol in the localization and activities
of the synaptic transmitters [52–56], we suggest that these mutations in PTCHD1 may
specifically alter synaptic signaling due to the impaired localized transport of cholesterol in
dendritic spines.

When observing the extent of maturation of N-linked glycosylation in PTCHD1 mu-
tants, we hypothesized that the inherent stability of PTCHD1 could be altered due to an
inability to be properly glycosylated. Proteins with post-translational modifications that are
not properly matured do not typically proceed through the ER and Golgi and are subjected
to early degradation. Our protein stability time course assay showed only two mutants,
Pro32Arg and Phe549Cys, with a shorter half-life than WT. Both mutants exhibited some
processing, these forms being susceptible to cleavage by Endo H indicating that they were
not processed to the more mature Endo H-resistant forms. These results illustrate that single
amino acid substitutions may result in decreased PTCHD1 protein stability as immature
stages of N-linked glycosylation may not achieve proper folding of the protein and may



Cells 2024, 13, 199 13 of 19

lead to early degradation of the protein. The significance of this decreased stability requires
further analysis.

In conventional protein-processing pathways, alterations in glycosylation may result
in aggregation in the ER, causing ER stress and preventing the trafficking to subcellu-
lar locations. Correspondingly, immunofluorescence staining showed that the mutants
Pro32Arg and Gly303Arg displayed overlapping aggregation with the co-stain of an ER
marker, Calnexin. Consistent with this presumptive ER retention, the mutant Gly303Arg
also demonstrated reduced overlap with the co-stain of the plasma membrane marker, At1a.
The mutant with deletion of the PDZ-binding domain, ∆ITTV, did not exhibit ER retention,
but did show impaired membrane localization, consistent with the role of PDZ domains in
localizing their respective ligands to the correct plasma membrane domain [57]. Indeed, the
staining of PTCHD1 mutants was seen throughout the cell with no observable differences
in localization between the WT PTCHD1 protein and the mutants. Likewise, regardless of
whether mutants were fully processed, they were observed to co-localize with PSD95 in
neuronal processes. We propose that these mutants may represent hypomorphic or null
variants whose principal activities in the PSD are crippled or lost, respectively, despite
their ability to localize to the PSD95-containing dendritic structures. While potentially
mediating localized fluxes of cholesterol seems possible, analogous to the activities of the
structurally related proteins, NPC-1 and Ptch1, the uncharacterized activities of PTCHD1
remain speculative.

5. Conclusions

Taken together, our data suggest that the PTCHD1 missense mutants under inves-
tigation may exert an etiopathogenic effect through the reduced lifespan of the protein
and, thus, reduced bioavailability, rather than through the disruption of the transport of
PTCHD1 to its functional destination.
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Appendix A

Table A1. Selected PtchD1 variants for functional analysis.

Mutation

Genomic (hg19);
cDNA

(NM_173495.2)
Coordinates

Source, Subject
ID Inheritance

Minor Allele
Frequency

(gnomAD)/#
Hemizygotes

Prediction: Condel;
CADD

PHRED-like
Scaled C-Score

Reported Phenotype

Pro32Arg ChrX:23353087;
c.95C>G

DECIPHER:
284363 Mat 0/0 Deleterious; 26.8 Autistic behavior;

cognitive impairment

Pro75Gln ChrX:23353216;
c.224C>A

MSSNG:
AU3794302 Mat 0/0 Deleterious; 27.6 Autism spectrum

disorder

Lys181Thr ChrX:23397898;
c.542A>C Clinvar nr 0/0 Deleterious; 21.9 Abnormality of brain

morphology

Gly303Arg ChrX:23398263;
c.907G>A ClinVar ID 417957 nr 0/0 Deleterious; 27.7 Autism

Phe549Cys ChrX:23411281;
c.1646T>G Ptchd1-base.com nr 0/0 Deleterious; 28 Autism spectrum

disorder

∆ITTV ChrX:23412285;
c.2650C>T No subject na 0/0 38 na

nr = not reported. na = not applicable.

Table A2. (A) Primers used to generate PTCHD1 point mutations. (B) Primers used to for mouse
Ptchd1 cloning and site-directed mutagenesis.

Point Mutation Sequence

(A)

P32R Forward 5′-CACCCTGTCTTCTTCGCCTCGGCGCGGGTGCTCATCTCCATCCTGCTG-3′

P32R Reverse 5′-CAGCAGGATGGAGATGAGCACCCGCGCCGAGGCGAAGAAGACAGGGTG-3′

P75Q Forward 5′-GTTAACAGCCTCTTCCAGGTCAACCGCTCCAAGCACCGTCTCTACTCG-3′

P75Q Reverse 5′-CGAGTAGAGACGGTGCTTGGAGCGGTTGACCTGGAAGAGGCTGTTAAC-3′

K181T Forward 5′-ACATACCCAATCACTCACTTAACGGACGGGAGGGCTGTGTACAATGGG-3′

K181T Reverse 5′-CCCATTGTACACAGCCCTCCCGTCCGTTAAGTGAGTGATTGGGTATGT-3′

G303R Forward 5′-AAACCCTGGCTAGGCCTGCTCCGATTGGTGACCATAAGCCTGGCC-3′

G303R Reverse 5′-GGCCAGGCTTATGGTCACCAATCGGAGCAGGCCTAGCCAGGGTTT-3′

F549C Forward 5′-ACTACTGCCCAGCAAAAGTACTGCAGCAACTACAGTCCTGTGATT-3′

F549C Reverse 5′-AATCACAGGACTGTAGTTGCTGCAGTACTTTTGCTGGGCAGTAGT-3′

∆ITTV Forward 5′-ATATCGATAGTACCCGTGTGGTTGACTAAATTACAACAGTGTGA-3′

∆ITTV Reverse 5′-TCACACTGTTGTAATTTAGTCAACCACACGGGTACTATCGATAT-3′

(B)

P32R Forward 5′-AGAGTGCTCATCTCCATCCTGCTC-3′

P32R Reverse 5′-CGCCGAAGCAAAGAAGACCG-3′

P75Q Forward 5′-CAAGTCAACCGCTCCAAGCACC-3′

P75Q Reverse 5′-GAAGAGGCTGTTGACTAGGTTGCG-3′

K181T Forward 5′-CAGATGGAAGGGCTGTGTATAATGGG-3′

K181T Reverse 5′-TTAAGTGAGTGATCGGATATGTGATAGCAAAATTGG-3′

G303R Forward 5′-CGGTTGGTGACCATAAGCCTAGC-3′

G303R Reverse 5′-AAGTAGGCCTAACCAGGGTTTGC-3′

F549C Forward 5′-GTAACAACTACAGTCCTGTTATTGGGTTTTAC-3′

F549C Reverse 5′-AGTACTTTTGGTGGGCAGTAGTG-3′

∆ITTV Forward 5′-TGAATAGGAGTTTAAACCCGCTGATCAGCCTC-3′

∆ITTV Reverse 5′-TTGGTCAACCACTCGAGTACTATCAATATCTACC-3′

Ptchd1 Forward (HindIII) 5′-CGTACGAAGCTTATGCTGCGGCAGGTTCTG-3′

Ptchd1 Reverse (AgeI) 5′-GTACGACCGGTTCACACTGTGGTTATTTGGTCAACCAC-3′
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Table A3. Antibodies used for Western blots and immunofluorescence staining.

Antibody Source Dilution

1◦ Antibody

Mouse α-Flag-Tag Applied Biological Materials Inc.
(Richmond, BC, Canada) Cat # G191 1:1000 WB IB

Mouse α-Myc-Tag (9B11) Cell Signaling Technologies (Danvers,
MA, USA) #2276S 1:1000 WB IB; 1:400 IF

Rabbit α-GFP-Tag Invitrogen (Waltham, MA, USA) Cat
#A11122 1:100 WB IB; 1:400 IF

Goat α-GFP-Tag Applied Biological Materials Inc.
(Richmond, BC, Canada) Cat # G096 1:1000 WB IB; 1:400 IF

Goat α-Biotin Cedarlane. (Burlington, ON, Canada)
CLAS10-666 1:1000 WB IB

Rabbit α-PSD95 Abcam (Waltham, MA, USA) ab18258 1:400 IF

Mouse α-β-Tubulin Applied Biological Materials Inc.
(Richmond, BC, Canada) Cat # G098 1:5000 WB IB

Mouse α-GM130
BD Transduction Laboratories

(Mississauga, ON, Canada) Cat #
51-9001978

1:400 IF

HRP-Linked 2◦ Antibody

Donkey α-goat IgG Santa Cruz Biotechnologies Inc.(Dallas,
TX, USA) sc-2020 1:5000

Horse α-mouse IgG Cell Signaling Technologies (Danvers,
MA, USA) #7076 1:5000

Goat α-rabbit IgG Cell Signaling Technologies (Danvers,
MA, USA) #7074 1:5000

Immunofluorescence 2◦ Antibody

Donkey α-rabbit IgG Alexa Fluor 488 Invitrogen (Waltham, MA, USA) A21206 1:400 IF
Donkey α-mouse IgG Alexa Fluor 568 Invitrogen (Waltham, MA, USA) A10037 1:400 IF
Donkey α-rabbit IgG Alexa Fluor 568 Invitrogen (Waltham, MA, USA) A10042 1:400

Donkey α-goat FITC Jackson ImmunoResearch (West Grove,
PA, USA) 705-095-003 1:400

Phalloidin Alexa Fluor 350 Invitrogen (Waltham, MA, USA) A22281 1:20

Table A4. Single-cell RNAseq co-expression data extracted from adolescent mouse study (mouse-
brain.org; accessed on 3 September 2021 [58]), showing cell types with the highest expression of
Ptchd1 (top 20, highest to lowest), with expression values (log2(x + 1) transformed average molecule
counts) for putative interactors, and for housekeeping genes.

Study
Gene Putative Protein Interactors Housekeeping Genes

Index Name Description Ptchd1 Snapin Dlg3 Dlg4 Gapdh Actb Sdha Rpl37

70 HBCHO3 Afferent nuclei of cranial
nerves VI–XII 0.86 1.4 0.346 2.24 2.34 23.2 4.68 28.3

81 HBSER5 Serotonergic neurons,
hindbrain 0.515 0.908 0.452 2.76 1.92 10.2 3.3 41

167 HBGLU8 Excitatory neurons,
hindbrain 0.363 0.546 1.45 2.36 7.09 17.5 8.82 16.3

187 ENT6 Cholinergic enteric neurons 0.313 1.08 0.0679 1.5 8.09 9.63 1.1 20.8

79 HBSER2 Serotonergic neurons,
hindbrain 0.266 0.836 0.384 1.86 1.72 10.9 3.39 27.9

82 HBSER4 Serotonergic neurons,
hindbrain 0.25 0.668 0.415 2.15 1.23 7.84 2.37 30

165 HBGLU6 Excitatory neurons,
hindbrain 0.246 0.521 0.652 1.1 3.36 8.55 5.66 11

183 ENT2 Nitrergic enteric neurons 0.224 1.61 0.149 1.04 11.9 20.1 1.57 24.1

189 ENT8 Cholinergic enteric neurons,
VGLUT2 0.216 1.67 0.0307 1.9 14.5 16.8 1.53 38.7
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Table A4. Cont.

Study
Gene Putative Protein Interactors Housekeeping Genes

Index Name Description Ptchd1 Snapin Dlg3 Dlg4 Gapdh Actb Sdha Rpl37

182 ENT1 Nitrergic enteric neurons 0.214 1.29 0.213 1.21 13.3 14.6 2.29 21.4

68 DECHO1
Cholinergic neurons, septal

nucleus, Meissnert and
diagonal band

0.202 1.57 0.498 1.75 4.4 10.3 3.16 33.1

166 HBGLU7 Excitatory neurons,
hindbrain 0.2 0.445 0.707 1.14 2.59 8.24 3.94 8.76

197 SYCHO1 Cholinergic neurons,
sympathetic 0.2 3.07 0.266 1.07 14.1 5.53 3.13 23.8

80 HBSER3 Serotonergic neurons,
hindbrain 0.195 0.839 0.206 2.24 1.5 5.65 1.74 30.8

162 HBCHO2 Cholinergic neurons,
hindbrain 0.182 0.546 0.317 1.64 3.36 13 5.41 14.8

159 HBINH6 Inhibitory neurons,
hindbrain 0.177 0.485 0.434 1.03 1.87 4.63 3.03 10.6

190 ENT9 Cholinergic enteric neurons 0.177 1.27 0.0238 2.05 9.82 26 1.51 30.5

120 HBGLU2 Excitatory neurons,
hindbrain 0.165 0.421 0.244 0.864 1.3 5.82 2.21 13.7

115 SCGLU8 Excitatory neurons, spinal
cord 0.133 0.2 0.0667 0.533 0.598 2.27 0.801 4.6

150 HBINH5 Inhibitory neurons,
hindbrain 0.133 0.335 0.326 1.02 1.86 5.67 3.35 9.73

201 PSPEP5 Peptidergic (PEP1.2), DRG 0.133 1.97 0.0331 0.234 1.53 2.6 1.43 6.47
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Figure A1. SAP102 as a potential interactor of PTCHD1. (A) Co-immunoprecipitation of Flag-
tagged SAP102 (70 kDa) with GFP-tagged PTCHD1 (130 kDa). Transiently expressed in HEK293T
cells, GFPPTCHD1 was immunoprecipitated, and SAP102Flag was detected using mouse α-Flag
antibody. (B) BioID assay detecting biotinylation of SAP102Flag from mycBirA-PTCHD1. A pull-
down with Neutravidin agarose beads isolated biotinylated proteins, and SAP102Flag was detected
in this sample.
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