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Abstract: Polo-like kinase 1 (PLK1) is a serine/threonine kinase with more than 600 phosphoryla-
tion substrates through which it regulates many biological processes, including mitosis, apoptosis,
metabolism, RNA processing, vesicle transport, and G2 DNA-damage checkpoint recovery, among
others. Among the many PLK1 targets are members of the FOX family of transcription factors (FOX
TFs), including FOXM1, FOXO1, FOXO3, and FOXK1. FOXM1 and FOXK1 have critical oncogenic
roles in cancer through their antagonism of apoptotic signals and their promotion of cell proliferation,
metastasis, angiogenesis, and therapeutic resistance. In contrast, FOXO1 and FOXO3 have been
identified to have broad functions in maintaining cellular homeostasis. In this review, we discuss
PLK1-mediated regulation of FOX TFs, highlighting the effects of PLK1 on the activity and stability
of these proteins. In addition, we review the prognostic and clinical significance of these proteins
in human cancers and, more importantly, the different approaches that have been used to disrupt
PLK1 and FOX TF-mediated signaling networks. Furthermore, we discuss the therapeutic potential
of targeting PLK1-regulated FOX TFs in human cancers.

Keywords: FOX family; transcription factor; oncogene; tumor suppressor; targeted therapy

1. Introduction

Polo-like kinases (PLKs) belong to a family of serine/threonine kinases that are con-
served across a broad range of eukaryotic organisms, including C. elegans, mice, and
humans [1,2]. The prototypical member of this family, polo, was initially identified in
Drosophila in 1988, with two mutants of the polo gene subsequently studied [3]. One mutant
was found to be lethal in early embryogenesis; the other was partially lethal but caused
aberrant mitotic characteristics, such as multipolar mitotic spindles, abnormal centrosome
structure, and circular arrangement of chromosomes [3]. The latter mutant additionally
caused defects in chromosome segregation and polyploid cells, highlighting an essential
role of polo kinase in cell division and maintenance of diploidy of larvae during develop-
ment [3].

In mammals, five paralogues of polo have been identified, including Plk1, Plk2, Plk3,
Plk4, and Plk5, each having functions in the cell cycle [4]. PLK1 is essential in early
embryonic development and has a fundamental role during mitosis, including regulation of
mitotic entry and cleavage furrow invagination, among many others [5–7]. PLK2 and PLK4
have been identified to play key roles in centriole duplication and biogenesis, respectively,
while PLK3 appears to have regulatory roles in the G1/S and G2/M-phase transitions
and DNA replication. PLK5 exhibits the greatest evolutionary divergence in the family
and appears to be related to proliferative arrest due to its accumulation in quiescent
cells. Additionally, PLK5 has functions in neuronal differentiation [4,8,9]. Herein, we will
focus on PLK1, which has generated significant interest as a therapeutic target due to its
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overexpression in many human cancers and its association with higher tumor grade and
poorer patient outcomes [10,11].

As a kinase, PLK1 phosphorylates substrates, altering their stability, localization, and
activity. Proteomic screening has identified more than 600 proteins that interact with PLK1
in a phosphorylation-dependent manner during mitosis [12]. Characterization of these
interacting proteins using mass spectrometry and Gene Ontology biological categories
identified additional interactions with proteins relevant to DNA replication, DNA dam-
age response (DDR), G2 DNA damage checkpoint recovery, apoptosis, metabolism, RNA
processing, and vesicle transport [12]. The approach employed by Lowery and colleagues
characterized mitosis-specific interactions; however, additional studies have identified
interactions outside of mitosis, including those with proteins involved in DNA replication,
DDR, DNA damage checkpoint recovery, and telomere stability [13,14]. In human cancers,
PLK1 has been identified to interact with many proteins involved in apoptosis, autophagy,
metabolism, inflammation, epithelial-mesenchymal transition, and tumor invasion [13,15].
Interestingly, a global Plk1-overexpression murine model demonstrated that Plk1 overex-
pression promotes chromosomal instability, contributing to aneuploidy and spontaneous
tumor formation [16]. Additionally, PLK1 also directly regulates numerous transcription
factors (TFs), including repressor element 1 (RE-1)-silencing transcription factor (REST),
p53, and members of the forkhead box (FOX) family of TFs (FOX TFs) [17–20]. Such discov-
eries have significantly increased our understanding of the PLK1 regulatory network and
supported the notion that PLK1 is a master kinase coordinating diverse cellular processes.
In this review, we focus on the role of PLK1 in regulating FOX TFs.

2. Structure and Regulation of PLK1
2.1. Structure of PLK1

PLK1 protein consists of an N-terminal kinase domain (KD) and a C-terminal polo-box
domain (PBD) (Figure 1A). The KD is required for PLK1 phosphorylation activity, while the
PBD is essential for proper protein localization, substrate interactions, and regulation [7].
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Figure 1. The structure of PLK1. (A) A schematic representation of full-length human PLK1 highlighting
the major domains and amino acid residues. The kinase domain (KD) contains the key residues, K82
and T210, which are required for ATP binding and protein activation, respectively. The KD additionally
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contains one of the two nuclear localization sequences (NLS). On the C-terminus side of the KD is
the destruction box (D-Box), which contains the key residues for proteolytic turnover of PLK1, R337
and L340. The C-terminus contains the polo-box domain (PBD), which has two polo boxes (PBs)
(indicated in purple and blue, respectively). Within the two PBs, the residues that mediate interactions
with substrates, W414 and L490 in PB1 and H538 and K540 in PB2, are indicated. Additionally, the
schematic represents the second NLS which partially overlaps with PB1. (B) A crystal structure
of the PLK1 kinase domain in complex with BI 2536 (orange), which is sourced from the Protein
Data Bank [21–23]. The kinase is colored grey, the T-loop is green, and V210 is indicated in magenta
within the T-loop to indicate the location of T210 in nonmutated protein. (C) A crystal structure
of the PLK1 polo-box domain (PBD) in complex with a peptide fragment, L-H-S-pT-A, which is
sourced from the Protein Data Bank [21,24,25]. PB1 and PB2 are colored purple and blue, respectively,
while the polo-cap is colored green. The 3D structures were visualized and annotated using UCSF
ChimeraX [26]. Note: optimal substrate peptide fragment (OSPF).

The PLK1 KD contains the 11 subdomains typical of kinase catalytic domains, as
well as the consensus sequences D-L-K-L-G-N and G-T-P-Y-I-A-P-E in the subdomains
VIb and VIII, respectively, which indicates that PLK1 is a serine/threonine kinase [27,28].
The subdomains VII and VIII contain the residues forming the T-loop, which includes the
essential threonine T210 [28]. Quantitative phospho-proteomics has defined a set of PLK1
consensus sequences, including the D/E-X-[S/T]-ψ-X-D/E motif, where X is any amino
acid and ψ is a hydrophobic amino acid [29]. Additional variations of this motif have been
described with the requirement for either an asparagine in the −2 position (L-N-X-[S/T] or
N-X-S/T) or a phenylalanine in the +1 position ([S/T]-F) [29,30].

Of note, the PLK1 catalytic domain contains motifs unique to the PLK family, specifi-
cally several amino acid substitutions within the ATP-binding pocket [31]. For catalytic
activity, ATP binds in a cleft formed by two lobes (residues 37–131 and residues 138–330)
linked by a conserved hinge region in which key interactions, such as with K82, occur
(Figure 1B) [31,32]. The ATP-competitive inhibitor of PLK1, BI 2536, leverages the amino
acid substitutions within the ATP-binding pocket for specificity over many kinase fami-
lies [22,33,34]; however, the homology of the ATP-binding pocket within the PLK family
results in similar IC50 values for PLK1-3 [33,34].

The C-terminal region of PLK1 contains the PLK family-specific polo-box domain
(PBD), which is essential for proper protein localization and substrate recognition [35].
Within the PBD are two polo boxes, polo-box 1 (PB1) and PB2, which, although sharing only
12% of sequence identity, form very similar three-dimensional structures, each containing a
six-stranded antiparallel β-sheet and a singular α-helix (Figure 1C) [35,36]. An N-terminal
extension covering residues 372 to 410, called the polo-cap, wraps around PB2 and stabilizes
the overall three-dimensional structure of the PBD [36].

Investigation of the optimal PBD-binding motifs has revealed that the PBD preferen-
tially binds to the motif S-[pS/pT]-P/X, with a strong selection for serine at the −1 po-
sition and a weaker selection for proline at the +1 position [37]. To generate the optimal
phosphorylated motif, PLK1 substrates are frequently primed by the activity of cyclin-
dependent kinases (CDKs). However, this is not exclusive [38]. Interestingly, PLK1 may
also phosphorylate substrates through a self-priming mechanism or bind substrates in a
phosphorylation-independent manner [39,40]. Characterization of the interface between
the PBD and substrates has revealed that substrates bind in a shallow groove between
PB1 and PB2, forming key interactions with four conserved residues, W414 and L490 in
PB1 and H538 and K540 in PB2 [35,36,41]. The residues W414, H538, and K540 form key
interactions with the threonine/serine phosphate group in the optimal phosphopeptide,
while L490 interacts with the C-terminal portion of the phosphopeptide through non-polar
interactions [35,36]. Interaction between the PBD and a substrate facilitates the interruption
of intramolecular inhibitory interactions and provides a mechanism for the spatiotemporal
regulation of PLK1 activity [36].
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2.2. Regulation of PLK1
2.2.1. Regulation of PLK1 Expression

As a result of its broad functions, PLK1 expression and activity are tightly regulated
and vary dramatically during progression through the cell cycle [42,43]. In G1 and S-phases,
PLK1 levels are low. However, as cells enter the G2/M phase, PLK1 levels dramatically
increase before a rapid turnover at the onset of anaphase [43]. A tightly choregraphed bal-
ance of PLK1 transcription, protein turnover, and cyclin-dependent kinase (CDK)-regulated
activation mediates this dramatic fluctuation in PLK1 expression and activity.

The promoter region of PLK1 contains multiple regulatory elements, including a puta-
tive SP1 element, a CCAAT box, and cell cycle-dependent element, and cell cycle genes
homology region (CDE-CHR) sequences [44,45]. Cell cycle-dependent expression of PLK1
is predominately mediated by the activity of E2F complexes [46]. However, there is also
evidence indicating a role for FOX TFs in regulating PLK1 expression. Previous reports
have indicated that FOXM1 directly binds to the CHR consensus sequence, thus promoting
cell cycle-dependent PLK1 expression [47,48]. FKHRL1 (FOXO3 in the standardized nomen-
clature) binds to the promotor of PLK1, thereby upregulating its expression [49]. These
data demonstrate the feedback loops between FOX TFs and PLK1, and further studies may
identify other FOX TFs with regulatory control over PLK1.

2.2.2. Regulation of PLK1 Stability

Initially, PLK1 adopts an inactive conformation in which the PBD binds to the KD,
masking a nuclear localization sequence (NLS), enforcing PLK1 cytoplasmic localization,
and reducing substrate interactions [50]. PLK1 is activated by the phosphorylation of T210
in the PLK1 T-loop by Aurora A [51,52]. Activation of PLK1 spikes approximately 40 min
before the onset of mitosis and commits the cell to mitotic entry [53].

PLK1 turnover is mediated by ubiquitination and requires the presence of a D-box-
like motif, R-K-P-L-T-V-L-N-K, in which the residues R337 and L340 are essential for
proteasomal-mediated degradation of PLK1 [54]. During interphase, PLK1 turnover is me-
diated by SKP1/CUL1/F-box protein (SCF) E3 ubiquitin ligase complexes, while the activity
of anaphase-promoting complex/cyclosome (APC/C) is required for mitotic exit [54–56].

3. Regulation of the FOX Family by PLK1

In humans, FOX TFs encompass a diverse family of approximately 50 TFs divided
into 19 subfamilies (FOXA through FOXS) [57,58]. These proteins regulate a broad range
of molecular cascades through which they exert influence upon cellular proliferation,
differentiation, metabolism, senescence, and apoptosis from development through adult-
hood [59,60]. The three-dimensional structure of the FOX TF DNA-binding domain (FOX-
DBD) is used to organize these TFs into subfamilies and is highly conserved across all
FOX TFs [61]. The FOX-DBD consists of approximately 100 amino acids that form 2 loop
structures from 3 α-helices and 3 β-sheets, creating a structure reminiscent of butterfly
wings [62]. The differences in the regulation and structural domains present in FOX TFs
afford the high specificity to their respective high-affinity binding sites in vivo. How-
ever, a general consensus sequence of 5′-(G/A)-(T/C)-(A/C)-A-A-(C/T)-A-3′ has been
identified [63].

The transcriptional activity of FOX TFs regulates a broad range of developmental pro-
cesses, and alterations in a single FOX TF frequently cause severe phenotypes or embryonic
lethality [60]. As a result of their importance in development, dysregulation of FOX TFs is
frequently observed in human cancers. Members of the FOXM, FOXO, FOXK, and FOXC
subfamilies are key members of both oncogenic and tumor suppressive pathways, with
significant regulatory control over tumorigenesis, tumor progression, and therapeutic resis-
tance [59]. As a result, there is significant interest in understanding the post-translational
modifications (PTMs) that regulate the stability, localization, and activity of FOX TFs, as
well as the networks of interactions through which these TFs are modified [57,64,65]. To
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this end, proteomic analysis of FOX TFs has found distinct differences in the composition
of protein complexes and PTMs between soluble and chromatin-bound fractions [66].

3.1. FOXM1
3.1.1. Background

FOXM1 was initially identified in mitotic HeLa cells and named MPM2-reactive
phosphopeptide 2 (MPP2) due to its reactivity with the mitotic phosphoprotein antibody,
MPM2 [67,68]. Follow-up studies identified the presence of this protein in proliferating
colon cancer [69], mouse thymus [70], and rat insulinoma cells [71]. Prior to the standardiza-
tion of FOX TF nomenclature [61], FOXM1 was referred to by numerous names, including
Trident (in mice); Win or ISN-1 (in rats); and MPP2, FKHL16, HNF-3, or HFH-11A/B (in
humans) [72]. Naming was further complicated by the presence of isoforms arising from
alternative splicing [65,73].

FOXM1 consists of an N-terminal repressor domain (NRD), a conserved forkhead
DBD, and a C-terminal transactivation domain (TAD) encoded by a gene containing 10 ex-
ons. Alternative splicing of exons Va and VIIa, alternatively referred to as A1 and A2,
respectively, gives rise to three isoforms, FOXM1a, FOXM1b, and FOXM1c [65]. When
expressed, exon Va is found at the C-terminus of the DBD, while exon VIIa is found within
a linker between the DBD and TAD (Figure 2) [69,70,73]. Characterization of the different
FOXM1 isoforms has revealed that in both normal and tumor tissues, FOXM1a has the
lowest expression while FOXM1c has the highest expression. Interestingly, all isoforms
exhibit increased expression (of a similar magnitude) in tumor tissues compared to normal
tissues, suggesting that the increased transcription observed in cancers is not accompanied
by changes in post-transcriptional splicing [74]. Transcriptional activity reporter assays
have revealed that FOXM1b and FOXM1c have comparable levels of activity, which are sig-
nificantly higher than that of FOXM1a [74]. In a 293T CRISPR knockout model of FOXM1,
differential gene expression analysis of FOXM1-null cells reconstituted with individual
isoforms revealed both overlapping and unique target genes of FOXM1 isoforms [74].
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Figure 2. FOX TFs regulated by PLK1. Schematic representations of full-length FOX TFs with
key functional and regulatory domains labeled. The most well-characterized members of the FOX
subfamilies are labeled with PLK1-binding (in blue) and phosphorylation (in green) sites. Alter-
natively spliced FOXM1 exons, Va and VIIa, are indicated in dark purple with dashed borders.
N-terminal repressive domain (NRD); DNA-binding domain (DBD); transactivation domain (TAD);
forkhead-association (FHA) domain; Sin3-interacting domain (SID).

3.1.2. Functions

Initial efforts identified FOXM1 as having key roles during development and cell cycle
regulation. Investigation of FOXM1 in human cancers has expanded its known functions
to include the promotion of proliferation, EMT, invasion, angiogenesis, and cancer stem
cell (CSC) phenotypes.
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The essential nature of FOXM1 was initially identified using knockout mice, re-
vealing that Foxm1-null mice exhibited greater than 90% embryonic lethality. Surviving
mice had severe hepatic and cardiac hypoplasia-induced defects as well as significant
polyploidy [75–77]. Characterization of Foxm1-depleted mouse embryonic fibroblasts re-
vealed G2 delays, chromosomal mis-segregations, compromised spindle assembly check-
points, and cytokinesis defects [47]. Early investigation of FOXM1 target genes with DNA
microarrays revealed that Foxm1 activation induces differential expression of numerous cell
cycle genes, including those encoding multiple cyclins, CENP-F, Aurora B, and Plk1 [47].
FOXM1 depletion resulted in the accumulation of the CDK inhibitor proteins, p21Cip1, and
p27Kip1, within the nucleus due to reduced expression of SCF ubiquitin ligase complex
components [78].

In cancer, FOXM1 is a key regulator of several cancer-promoting phenotypes. Ubiq-
uitous Foxm1 overexpression in mice resulted in the formation of a significantly greater
number of tumors that were larger, had increased proliferation, and had greater DNA com-
plements than wild-type (WT) mice [79]. In vitro, FOXM1 drives cancer cell proliferation
in multiple tumor types, including liver, neuroblastoma, and prostate cancer (PCa) [80].
Additionally, FOXM1 overexpression promotes EMT, invasion/metastasis, and tumor-
supportive angiogenic outgrowth. In a PCa model, TGF-β1-induced EMT was found to
be reversible through the knockdown of FOXM1, which caused reduced expression of vi-
mentin, SLUG, and Zeb2 [81]. Similar results had been obtained in hepatocellular carcinoma
(HCC) and triple-negative breast cancer (TNBC) models in which FOXM1b dysregulation
promoted the expression of mesenchymal markers, such as N-cadherin, Snail, and Zeb1, as
well as the repression of the epithelial marker E-cadherin [82,83]. In glioma cells incapable
of forming tumor xenografts, FOXM1b overexpression enabled tumor formation in nude
mice and promoted invasion through MMP-2 upregulation [84,85]. In TNBC and PCa
models, FOXM1 was identified as the effector of receptor tyrosine kinase-induced EMT and
in vitro invasiveness [81,83]. FOXM1 overexpression in HCC and colorectal cancer (CRC)
models leads to cytoskeletal remodeling and increased metastasis in vivo [82,86]. In sup-
port of tumor growth, FOXM1b overexpression has been observed to result in significant
angiogenesis through direct upregulation of VEGF [87]. Similar results were obtained in a
TRAMP PCa mouse model in which deletion of Foxm1 resulted in decreased expression of
Vegf-A [88]. In breast cancer cell lines, active FOXO3 has been reported to displace FOXM1
from the VEGF promoter, thereby reducing VEGF gene expression [89].

Accumulating evidence indicates that reactivation of embryonic and pluripotency
pathways in a subpopulation of tumor cells, CSCs, results in a stemness phenotype that
enhances therapeutic resistance and cancer recurrence [90]. A growing pool of evidence
indicates that FOXM1 plays a key role in promoting and maintaining CSC populations in
multiple cancers. For example, in a non-small-cell lung cancer (NSCLC) model, isolated
CSCs exhibited elevated FOXM1, the knockdown of which resulted in reduced expression
of stem cell markers (CD133 and CD44), stem cell regulators (Bmi1, Sox2, and Oct4), and
self-renewal [91]. In addition to lung cancer, FOXM1 has been identified as supporting
a CSC phenotype in many other cancer types, including breast, colorectal, hepatic, and
pancreatic cancers [92].

Additionally, FOXM1 has been identified as promoting therapeutic resistance in multi-
ple treatment modalities across various cancers, including pancreatic, glioblastoma, and
breast cancers [92]. In addition to the promotion of CSC phenotypes, the contribution of
FOXM1 to therapeutic resistance appears to be partly due to the broad regulation of DNA
damage response genes to increase DNA repair capacity, thereby rendering resistance to
DNA damage-induced cytotoxicity [93]. The relationship between CSC phenotypes and
therapeutic resistance combined with the identification of FOXM1-regulated DDR genes
raises the interesting question that the therapeutic resistance observed in CSC populations
may, in part, be due to high FOXM1 expression causing increased DDR capacity. Further
investigation of these observations may reveal rational therapeutic combinations to increase
the efficacy of targeting CSC and therapeutic-resistant populations.
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3.1.3. Regulation

FOXM1 is tightly regulated at the transcriptional and post-transcriptional levels,
as well as post-translationally through both protein-to-protein interactions and PTMs
regulating localization, activity, and turnover of FOXM1 [65]. In this review, we focus on
the role of PLK1 in regulating FOXM1.

During G1, FOXM1 protein levels are low, and FOXM1 is generally inactive due to
repressive inter- and intra-protein interactions [94,95]. Initial efforts exploring FOXM1
activation identified multiple CDK phosphorylation sites, the disruption of which resulted
in the downregulation of FOXM1 target genes [96–99]. However, more recent studies
have identified that the key event in FOXM1 activation is PLK1 phosphorylation at S715,
which leads to the disruption of repressive NTD-TAD interactions and subsequent protein
activation [19,95].

As previously noted, priming phosphorylation events by CDKs provide binding sites
that are recognized by the PLK1 PBD to facilitate PLK1–substrate interactions. T596 and
S678 have been identified as key FOXM1b residues that must be phosphorylated by CDK1
for PLK1 binding [19]. Occurring in late G2/M, the FOXM1-PLK1 interaction results in
subsequent PLK1-mediated phosphorylation at S715 and S724, thus increasing FOXM1
target gene transactivation [19]. PLK1-dependent regulation of FOXM1b activity provides
a positive feedback loop that drives increased PLK1 expression and FOXM1b activation,
ensuring the execution of orderly mitotic progression [19]. As PLK1 expression and ac-
tivity are regulated in a cell-cycle dependent manner, these regulatory phosphorylations
also cyclically occur as the cell progresses through the cell cycle [19,42]. A follow-up
study revealed that FOXM1b was SUMOylated in vitro and in vivo, resulting in increased
cytoplasmic localization, increased proteolytic degradation, and reduced transcriptional
activity [100]. PLK1-mediated phosphorylation of FOXM1b antagonizes SUMOylation
via SUMO-1, thereby promoting FOXM1b nuclear translocation and transcriptional activ-
ity [100]. Taken together, these studies reveal the key role played by PLK1 in regulating the
activity and stability of FOXM1b, which is essential for timely progression through mitosis.

3.2. FOXO1 and FOXO3
3.2.1. FOXO1 and FOXO3 Background

The FOXO subfamily that includes FOXO1, FOXO3a, FOXO4, and FOXO6 is the most
evolutionarily divergent clade of FOX TFs [101]. These TFs are differentially expressed in
various tissues with diverse regulatory functions [102,103]. In vivo, these proteins display
redundant tumor-suppressive functions, but, interestingly, have distinct lineage and organ-
specific effects arising from the differential expressions of both unique and overlapping
target genes [104].

FOXO1 and FOXO3 encode the proteins of 655 and 673 amino acids, respectively,
which contain four major functional regions: a FOX-DBD, a NLS, a nuclear export signal
(NES), and a C-terminal TAD (Figure 2) [105]. In contrast to FOXM1, which activity is
regulated primarily by NRD-TAD interactions, FOXO activity is predominantly regulated
by nuclear–cytoplasmic shuttling and proteolysis [106].

3.2.2. FOXO1 and FOXO3 Functions

Characterization of FOXO proteins has revealed their important roles in the regulation
of apoptosis, cell cycle progression, and cellular homeostasis. These broad functions situate
these proteins within the regulatory networks associated with numerous hallmarks of
human cancers [107].

The FOXO family plays key roles in apoptosis and cell cycle arrest [108,109]. In-
terrogation of the molecular functions of FOXO1 has identified it as a key regulator of
pro-apoptotic genes, including Bim, Puma, and FasL [110]. Overexpression of either FOXO1
or FOXO3 rapidly induced apoptosis in LAPC4 cells through the upregulation of several
pro-apoptotic genes, including TNFSF10 (TRAIL), DAPK1, and BNIP3L [111]. In addi-
tion, FOXO1 and FOXO3 also control the expression of several regulators of cell cycle
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progression. For instance, FOXO1 downregulates the expression of cyclins D1 and D2 while
upregulating the expression of cyclin G2 and tripling the half-life of p27KIP1, thereby causing
G1 arrest [112,113]. In response to DNA damage, FOXO1 promotes the transcription of
p27KIP1 and GADD45, resulting in cell cycle arrest [114]. Additionally, FOXO3 downregu-
lates the expression of cyclin B1 and CDCA3 while upregulating the expression of cyclin G2,
which contributes to cell cycle arrest. FOXO3 has been identified to downregulate key
S-phase genes cyclin A2, CDC45L, and MCM3 [115].

FOXO proteins have been identified as playing key roles in maintaining cellular home-
ostasis through their regulation of metabolism and oxidative stress. FOXOs regulate several
genes essential for glucose and lipid metabolism; however, FOXO1 and FOXO3 appear to
have distinct but related functions in which FOXO1 has a greater role in mediating insulin
responses, while FOXO3 regulates metabolic flux to maintain redox homeostasis [116,117].
Additionally, FOXOs have been identified as upregulating a multitude of antioxidant genes,
including those encoding members of the catalase, superoxide dismutase, and peroxire-
doxin families in response to activation by stress-response kinases [116,118]. Whether
FOXO proteins promote the expression of antioxidant or pro-apoptotic genes in response
to oxidative stress appears to be, at least in part, dependent upon the degree of acetylation
of FOXO proteins [116].

In addition, FOXO proteins have been identified as playing important roles in preserv-
ing the cellular homeostasis required for the maintenance of stem cell populations. The
loss of FOXO proteins in NSC and hematopoietic stem cell populations has been identified
as resulting in reduced self-renewal and population collapse due to increased oxidative
stress [119,120]. In human embryonic stem cells, FOXO1 overexpression upregulates sev-
eral pluripotency markers, including OCT4, SOX2, NANOG, and KLF4 [117]. Findings
that FOXO1 and FOXO3 support stemness phenotypes in cancer cells likely have clinical
significance and warrant further investigation [121,122].

FOXO proteins are generally considered to be tumor suppressors due to their negative
regulation of cell cycle progression, positive regulation of apoptosis, and their role in
cancer-related metabolic dysregulation [101,123]. FOXO1 knockdown has been reported
to result in enhanced proliferation, motility, and invasive potential, as well as increased
EMT-related gene expression in HCC, NSCLC, and PCa cell lines [109,124,125]. In vivo,
FOXO1 overexpression reduced lung metastasis in number and size compared to con-
trols [124]. In a mouse PCa model, Erg overexpression was insufficient to cause pathology;
however, when combined with Foxo1 knockout, more than 50% of mice exhibited high-
grade prostatic intraepithelial neoplasms [109]. Tumor-suppressive functions of FOXO3
have been reported. For instance, FOXO3 activation promotes apoptosis in many cell lines,
including those for breast cancer, oral squamous cell carcinoma, osteosarcoma, gastric
cancer, and ovarian cancer [126–130]. Cell motility assays in urothelial cancer models
revealed that FOXO3 knockdown resulted in increased mobility, an effect that is reversible
with simultaneous TWIST1 knockdown [131]. Additionally, dysregulation of FOXO3 has
been identified to result in accelerated tumor formation and disease progression in TRAMP
mice [132]. However, more recent evaluation suggests that the simple classification of
FOXO proteins as tumor suppressive fails to encompass the functions of these proteins;
a combination of in vitro and clinical data indicates that these proteins can in fact have
pro-tumor functions [133]. Accumulating evidence suggests that the broad homeostatic-
promoting functions of FOXO proteins are present in both normal and neoplastic cells and,
dependent upon the molecular milieu, can promote or repress tumorigenesis. The complex
role of FOXO proteins in cancer initiation and progression has been discussed in detail
elsewhere [133,134].

3.2.3. FOXO1 and FOXO3 Regulation

In addition to transcriptional and post-transcriptional regulation, FOXO proteins
are subject to numerous PTMs regulating their expression, localization, and activity [64].
Their localization and transcriptional activity appear to be most heavily influenced by
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phosphorylation, while acetylation plays an important role in fine-tuning FOXO trans-
activation [105,106,116]. Isoform-specific PTMs and the unique protein–protein interac-
tions resulting from these PTMs contribute to the distinctive phenotypes observed in null
mice [64,135]. FOXO proteins are regulated by numerous kinases, and of particular interest
herein is the negative regulation of FOXO proteins by PLK1 [20,136].

An RNAi screen of kinases and phosphatases with regulatory effects upon dFoxO
in Drosophila identified polo [137]. An investigation in mammalian cells revealed that
PLK1 phosphorylates the evolutionarily conserved residues, S75, S218, and S329, in late
G2/M. Interestingly, PLK1 acts as the priming kinase by phosphorylating S218 and S329 to
create docking sites to facilitate subsequent phosphorylation at S75 [20]. Characterization
of its functional significance revealed that PLK1-mediated phosphorylation promoted
nuclear exclusion and reduced FOXO1 transcriptional activity, impairing both FOXO1-
induced apoptosis and G2/M delay, which enables the normal execution of the cell cycle
program [20]. These data indicate the cell cycle-dependent regulation of FOXO1 by PLK1
and provide insight into how PLK1 antagonizes cell cycle arrest and apoptosis.

Tandem affinity purification and mass spectrometry performed by Bucur et al. identi-
fied FOXO3 as a novel PLK1 interaction partner. The PLK1/FOXO3 interaction is mediated
by a fragment containing residues 219–270, which includes part of the FOX-DBD and
the NLS [138]. Further studies have revealed that PLK1 phosphorylates FOXO3 in vitro
and that overexpression of PLK1 promotes nuclear exclusion, enhanced degradation, and
reduced FOXO3 target gene expression [138]. Further investigation to determine the
mechanism of in vivo regulation of FOXO3 and the functional outcomes of PLK1 interac-
tions with FOXO3 may reveal novel PLK1-regulated networks arising from these unique
FOXO3 functions.

3.3. FOXK1
3.3.1. Background

The FOXK subfamily has only recently begun to gain significant research interest,
following the recognition of its important roles in human cancers [139,140]. The FOXK
subfamily was initially identified in mice as myocyte nuclear factor (MNF), where initial
characterization revealed transient expression in some early embryonic tissues, but persis-
tent expression in quiescent satellite cells [141,142]. Later, in silico studies of the human
genome identified a gene encoding a FOX protein with significant homology to the murine
MNF, which was subsequently named FOXK1 [143]. More recent tissue-based mapping
of the humane proteome has revealed the broad expression of FOXK1 in many human
tissues [144].

The FOXK1 protein contains a FOX-DBD and a forkhead-association (FHA) domain,
which mediates phospho-dependent protein-to-protein interactions [145]. In addition, the
N-terminal contains a Sin3-interacting domain (SID), which mediates interactions with
SWI-independent-3 (Sin3), a histone deacetylase-containing repressor complex, to regulate
cell cycle progression in myogenic progenitor cells (Figure 2) [146]. Differential splicing of
FOXK1 results in two isoforms with differing lengths, FOXK1a and FOXK1b [143]. To date,
the difference between these isoforms in humans has not been reported; however, similar
to FOXM1, they likely have both unique and overlapping targets. Interestingly, in a mouse
model of muscle regeneration, the two mouse isoforms, MNF-α and MNF-β, exhibited
differential expression in actively proliferating myoblasts and quiescent satellite cells [147].

3.3.2. Functions

Characterization of FOXK1 has identified its functions in multiple cancer hallmarks,
including proliferation, metastasis, angiogenesis, and apoptosis, as well as its roles in
metabolism [107].

An investigation of the functions of FOXK1 in human cancers revealed that it promoted
proliferation, EMT, invasion, and metastasis across multiple human cancers, including
glioma, ovarian cancer, gastric cancer, and CRC [145]. In glioma, FOXK1 overexpression
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promoted proliferation through the upregulation of cyclin D, c-myc, and β-catenin; pro-
moted progression into S-phase; and reduced apoptosis [148]. Similar results have been
obtained in ovarian cancer models in which FOXK1 overexpression induced invasion and
migration, indirectly increased the expression of MMP-9, and directly repressed the expres-
sion of p21. In gastric cancer cells, a TGF-β-induced increase in proliferation, migration,
EMT, and metastatic potential was found to be dependent upon the upregulation of FOXK1
by c-jun. In vivo, FOXK1 overexpression increased tumor volume, microvessel density, and
metastasis [149]. Interestingly, FOXK1 overexpression in a cellular model of CRC resulted in
increased transcription of multiple oncogenes, including cyclin D1, β-catenin, and Myc as
previously identified, but also ZEB1, ID1, Sp1, TWIST, TERT, and survivin. Further studies
revealed that siRNA knockdown of FOXK1 resulted in the activation of several caspases
and potentiated cells to apoptotic stimuli in both in vitro and in vivo systems [150].

Additionally, FOXK1 has been identified as a key effector of AKT-mTOR signaling
cascades and, in response to metabolic signals, regulates the expression of genes related to
biosynthetic, metabolic, autophagic, and stress-response pathways [151–153]. These func-
tions are beyond the scope of this review but have been discussed at length by others [145].

3.3.3. Regulation

FOXK1 localization, transcriptional activity, and stability are predominantly regulated
through phosphorylation [145]. Phosphoproteomics has identified more than a dozen dif-
ferentially phosphorylated serine and threonine residues that alter FOXK1 localization and
activity [151,154]. FOXK1 nuclear–cytoplasmic shuttling is regulated by the mTOR-Akt sig-
naling axis via similar mechanisms as FOXO proteins, albeit with opposing outcomes [152].
Specifically, it is regulated by GSK3 and PP2A in which GSK3 phosphorylation promotes
its cytoplasmic sequestration, and mTOR-dependent PP2A phosphatase activity promotes
its nuclear accumulation [151,154,155].

There is emerging evidence suggesting that PLK1 plays a role in regulating FOXK1
activity. Ramkumar and colleagues reported that PLK1 phosphorylates the scaffold protein
JLP at T351, creating a PLK1-binding site and enabling further C-terminal phosphorylation
of JLP by PLK1, which then facilitates the recruitment of FOXK1 and FOXK2 to JLP during
G2/M. Further studies revealed that FOXK1 interacts with JLP via the FOXK1 FHA domain
binding to the previously identified residue, T351, on JLP. PLK1 also directly interacts with
the FOXK1 DBD to form a JLP-FOXK1-PLK1 complex. Interestingly, the knockdown of
JLP with shRNA resulted in increased FOXK1 stability [156]. Ramkumar and colleagues
stated, albeit without evidence, that FOXK1 is an in vitro substrate of PLK1. The broad
cancer-promoting functions of FOXK1 warrant further investigation to characterize the
significance of this colocalization of PLK1 and FOXK1 and to determine what role it may
play in tumor progression. It is possible that PLK1 may phosphorylate FOXK1 in vivo
to promote ubiquitination and proteolysis; however, further investigation is required to
validate this hypothesis.

3.4. Other FOX Transcription Factors

Evidence suggests that FOXC2 may be a PLK1 substrate. In breast CSCs, FOXC2
regulates the expression of key cell cycle genes and, notably, has an evolutionarily conserved
putative PLK1 site at S125 [157]. Further investigation revealed that inhibition of PLK1
by BI 2536 resulted in increased FOXC2 turnover, which was reversible by cotreatment
with MG132, suggesting a stabilizing function of PLK1. Interestingly, enhanced FOXC2
expression increased sensitivity to PLK1 inhibition in TNBC CSCs; however, the precise
mechanism remains to be defined [157].

4. The Clinical Significance of PLK1 and FOX Transcription Factors
4.1. PLK1 and FOX Transcription Factors in Cancer

The clinical significance of PLK1 has been recognized since the early 2000s. Studies
of patient tumor samples have revealed a positive association between PLK1 expression
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and histopathologic grading in numerous human cancers, including ovarian, prostate,
and gastric cancers [158–160]. High PLK1 expression has additionally been associated
with poorer patient outcomes in several human cancers, including lung cancer, head and
neck squamous cell carcinoma, and oropharyngeal cancer [161–163]. The most thorough
analysis of the prognostic significance of PLK1 has been conducted by Liu and colleagues,
who analyzed RNA-seq data from the TCGA data set. Compared to normal tissues, PLK1
was significantly overexpressed in 18 of 19 analyzed human cancers, with the magnitude
of PLK1 overexpression ranging from 2-fold to more than 20-fold [10]. Further analysis
sought to determine the prognostic value of PLK1 expression in 25 different cancer types,
revealing a negative association between PLK1 expression and overall survival in 10 cancer
types, including breast invasive carcinoma, lung adenocarcinoma, and pancreatic ductal
adenocarcinoma [10]. In addition, an evaluation of disease-free survival in 26 cancer types
demonstrated a negative association with PLK1 expression in 7 cancer types [10].

While significant evidence indicates a connection between PLK1 and human cancer,
recent reports have provided conclusive evidence of the in vivo oncogenic effects of PLK1.
A genetically engineered mouse model evaluating the effects of global Plk1 overexpression
demonstrated that Plk1 dysregulation induced chromosomal instability and compromised
cell cycle checkpoints by impairing p53 activity, leading to spontaneous tumor forma-
tion [16]. In a KrasG12D/Tp53fl/fl-driven lung adenocarcinoma (LUAD) mouse model, the
addition of Plk1 overexpression enhanced tumor burden and accelerated tumor formation
through Ret upregulation, resulting in greater MAPK and PI3K signaling [164]. These
mouse models provide compelling in vivo evidence of the oncogenic effects arising from
PLK1 dysregulation and, in conjugation with other studies, indicate a potentially important
role for PLK1 in repressing p53 activity [16,18]. Several studies have indicated a coopera-
tive, pro-apoptotic FOXO3a-p53 network, while others have demonstrated that FOXM1
expression is repressed by p53 [165–168], suggesting that WT p53 may have an important
role within the PLK1-FOX TF interplay [16,18,169]. As such, in the instance of cancer, where
PLK1 is often both overexpressed and overactive, inactivating PLK1-p53 interactions may
impair cooperative p53-FOXO3a interactions and/or the concomitant repression of FOXM1.
Due to the importance of these proteins, further investigation is warranted.

In addition to PLK1, FOXM1 has also been identified as having significant prognostic
value. A meta-analysis conducted by Li and colleagues analyzed 23 publications, including
nearly 3000 patients across 14 different cancer types, and found that FOXM1 overexpression
was associated with reduced overall survival at 3, 5, and 10 years and a more advanced
TMN stage [170]. An effort to identify prognostic genes in human cancers analyzed the
transcriptomic and survival data of approximately 18,000 patients across 39 different
malignancies and found that FOXM1 expression was the most frequently associated gene
with adverse prognostic significance across the entire data set [171].

In NSCLC and bladder cancers, lower FOXO1 expression was observed in tumor
tissues compared to normal tissues [125,172]. Further analysis of these bladder cancer
samples revealed that lower FOXO1 expression was associated with higher clinical staging,
greater lymph node metastasis, and poorer prognosis [172]. Investigation of FOXO1 inacti-
vation (indicated by immunohistochemical staining for FOXO1 p-S256) in upper urinary
tract urothelial carcinoma revealed that increased FOXO1 phosphorylation was observed in
tumor tissue and was associated with increased invasiveness [173]. Paradoxically, FOXO1
was upregulated in esophageal squamous cell carcinoma (ESCC) tissue compared to normal
tissue and was associated with reduced survival. Clinicopathological analysis identified
a positive association between metastasis and FOXO1 expression, and multivariate cox
regression analysis identified negative prognostic significance for FOXO1 in ESCC [174].

Of note, there is also evidence of prognostic significance for FOXO1 fusion proteins,
mainly in tumors harboring PAX3-FOXO1 fusions. The PAX3-FOXO1 fusion protein arises
from a commonly observed genetic abnormality of alveolar rhabdomyosarcoma (aRMS)
that results from the fusion of the DBD of PAX3 and the TAD of FOXO1. A study of patient
outcomes revealed that the PAX3-FOXO1 fusion protein (present in 55% of study patients)
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was associated with greater invasiveness and worse patient outcomes than fusion-negative
patients or those harboring the PAX7-FOXO1 fusion protein (present in 22% of study
patients) [175].

In urothelial cancers, FOXO3 expression is downregulated in invasive cases and is
negatively associated with both disease-free survival and overall survival [131]. In another
study, Shou and colleagues reported that low expression of FOXO3 was associated with
poor clinical stage, increased metastasis, and poor clinical outcomes in nasopharyngeal
carcinomas (NPC) [176]. However, a meta-analysis of the prognostic significance of FOXO3
in approximately 1000 HCC patients revealed positive associations between FOXO3 ex-
pression and tumor formation and invasiveness, as well as a negative association between
expression and survival [177].

Studies in ovarian cancer have shown that FOXK1 is overexpressed and positively
associated with poorer patient prognosis [178]. Similarly, an analysis of gastric cancer
samples revealed increased expression of FOXK1 in tumor tissue compared to normal tis-
sue [149]. In addition, FOXK1 is overexpressed in HCC, positively regulates a pluripotency
network, and is associated with disease progression and poorer outcomes [179]. Further
investigation into other human cancers may reveal whether FOXK1 has prognostic value in
a broader range of human cancers than is currently understood.

4.2. PLK1 Inhibition

Owing to the critical role of PLK1 in human cancers, there has been significant interest
in developing PLK1 inhibitors since the early 2000s. Initial efforts to develop inhibitors
targeted the PLK1 ATP-binding pocket within the kinase domain; however, following the
recognition of the limitations in this approach, more recent efforts have shifted focus to
targeting the PBD.

To date, several ATP-competitive inhibitors of PLK1 have been explored for clinical
application. These agents and their respective stages of clinical development have been
explored in detail by Novais and colleagues [11]. However, PLK1 inhibitors have generally
had limited clinical utility due to their modest effects as monotherapy agents and off-target
toxicity caused by homology within the PLK family [11,180]. Additionally, in vitro evidence
suggests that persistent exposure to BI 6727 (a development of BI 2536 with improved
pharmacokinetic properties) results in the development of resistant phenotypes through
increased expression of ABC transporters [181]. These data indicate the need for further
development of more specific PLK1-targeted agents and the exploration of combination
regiments to improve clinical responses and reduce the risk of resistant phenotypes.

Alternative approaches for PLK1 inhibition have sought to disrupt PLK1–substrate
interactions with inhibitors binding to the PLK1 PBD. The first molecule leveraging this
approach, called Poloxin, was reported by Reindl and colleagues in 2008, and was found
to induce mitotic arrest and mitosis in HeLa cells [182]. However, the authors noted a
relationship between time and efficacy, suggesting a role for covalent interactions in its
mechanism of action. This speculation was confirmed by Archambault and colleagues, who
identified Poloxin as a nonspecific protein alkylator, rendering the compound unsuitable for
clinical development [183]. Since then, two improved compounds, Poloxin-2 and Poloxin-
2HT, have been reported [184,185]. However, both compounds retain the activated ester
motif suspected to be responsible for the alkylating activity of the original molecule. As
a result, it is unlikely that any of these compounds are suitable for clinical development.
While PBD-targeting inhibitors represent an improvement over competitive ATP-binding
domain inhibitors, homology in the PBD of PLK proteins represents a persistent challenge
for PLK1-specific drugs.

Recently, there have been attempts to specifically disrupt protein–protein interactions
with agents targeting the shallow binding pockets on the surface of proteins. Novel
approaches to develop high-affinity agents targeting PLK1 have explored agents targeting
both the binding pocket and cryptic pockets (only revealed after ligand binding). Hymel
and colleagues had leveraged this approach to develop several novel macrocyclic peptide
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mimetics with high affinity for the PLK1 PBD [186]. Characterization of these agents
revealed nanomolar IC50 values and 140- and 300-fold specificity over the PBDs of PLK2 and
PLK3, respectively [186]. Both the IC50 and specificity represent significant improvements
over the micromolar and <100-fold selectivity of other PBD targeting agents [182,184,185].

Another therapeutic approach being explored is proteolysis-targeting chimeras (PRO-
TACs), which bring a protein of interest (POI) and an E3 ubiquitin ligase in proximity. This
proximity is created by combining moieties with an affinity for the POI and the E3 ligase
via a linker, which results in POI degradation following ubiquitination [187,188]. Mu and
colleagues developed a dual bromodomain 4 (BRD4) and PLK1 PROTAC system using a BI
2536 moiety for targeting. Evaluation of this PROTAC, HBL-4, in a model of acute myeloid
leukemia (AML) demonstrated rapid degradation of both BRD4 and PLK1. Additionally,
the HBL-4 induced greater apoptosis and similar tumor regression in tumor xenograft mod-
els at lower concentrations than BI 2536 [189]. The previously discussed limitations of BI
2536 raise the concern that this PROTAC may additionally cause degradation of PLK2 and
PLK3, producing the same off-target effects of BI 2536. While this has yet to be investigated,
these concerns could be addressed by using moieties with greater PLK1 specificity.

The toxicities arising from off-target effects of inhibitors and modest effects as monother-
apy agents have limited the clinical benefit of targeting PLK1 [11]. However, significant
pre-clinical data have demonstrated the potential of PLK1 inhibition and suggest that
further development of high-specificity agents, particularly those targeting the PBD, may
offer greater efficacy [190]. With the long-understood limitations of monotherapies, the
characterization of oncogenic pathways and the role of PLK1 and PLK1 substrates may
inform rational combination therapies.

4.3. Disruption of PLK1-Regulated FOX Transcription Factor Signaling

Due to the significant role played by FOXM1 in many human cancers, disruption of
FOXM1 signaling could be an effective anti-cancer treatment strategy [191]. The difficulty
with targeting TFs has resulted in few efforts seeking to disrupt FOXM1 functions. To
date, the only therapies directed at FOXM1 have been a few cancer vaccines, which in-
clude FOXM1 peptides. Evaluation of these vaccines in early clinical trials with cervical,
ovarian, gastric, and refractory pediatric solid tumors has found them to be tolerated with
manageable side effect profiles and appear to positively affect patient outcomes [192–195].
With advances in drug development, targets previously thought to be undruggable, such
as TFs, are now potential targets. The phosphorylation of FOXM1b at T596 and S678 by
CDKs and subsequently at S715 and S724 by PLK1 generates unique motifs that could
be explored as potential targets for drug development. Additionally, the necessity for
PLK1-mediated phosphorylation for FOXM1 activation suggests that combining an anti-
PLK1 therapy with an anti-FOXM1 therapy could potentially limit the FOXM1-driven
pro-growth phenotypes and disrupt the PLK1-FOXM1 positive feedback loop that drives
mitotic progression [19]. Combining these approaches with cancer vaccines may enable an
immunochemotherapeutic approach with superior effects against cancer.

Increased expression of FOXO1-regulated pro-apoptotic proteins may have synergistic
potential with other drugs. Building upon previous reports that PLK1 phosphorylation of
FOXO1 promotes nuclear exclusion and degradation, Gheghiani et al. sought to determine
if disrupting the PLK1-mediated inactivation of FOXO1 had therapeutic potential. The
PLK1 inhibitor, BI 2536, was used in combination with the microtubule poison nocodazole
across a range of concentrations. Low-dose combinations of BI 2536 and nocodazole proved
to be cytotoxic to advanced PCa cells, while not significantly impacting normal prostate
epithelial cells. The minimal effect on normal prostate epithelial cells suggests that such
a combination has the potential to minimize side effects [196]. These results also provide
a novel mechanism by which apoptotic pathways could be reactivated in advanced PCa.
Employing a similar mechanism, but with opposite outcomes to PROTACs, deubiquitinase-
targeting chimeras (DUBTACs) interrupt the ubiquitin mediated degradation of target
proteins by removing polyubiquitin signals resulting in increased protein stability [197].
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The development of a FOXO protein-targeted DUBTAC combined with PLK1 inhibition
could enable greater apoptotic induction.

Seeking therapeutic interventions targeting PAX3/7-FOXO1 fusion proteins, Thalham-
mer et al. conducted a kinome-directed siRNA and small-molecule inhibitor screen and
identified PLK1 as a regulator of PAX3-FOXO1. Xenograft models of aRMS treated with
the PLK1 inhibitor, BI 2536, showed decreased expression of PAX3-FOXO1 target genes
and eventually led to a complete tumor regression. Clinically, there is a strong correlation
between PLK1 and PAX3-FOXO1 target gene expression, and high PLK1 expression is
associated with poor event-free survival and low overall survival [198]. These results
support the notion that the PLK1/PAX3-FOXO1 signaling pathway could be a rational
drug target for treating aRMS.

To date, there are no FOXK1 inhibitors reported; however, the current understanding
of this protein warrants further characterization of its regulation, which may lead to novel
targeted therapies.

Recent advances in drug design and delivery methods offer novel avenues for the
exploration of targeted killing of cancer cells. Continued development of peptide-derived
small molecules with a high affinity for target proteins, combined with our growing under-
standing of cryptic pockets and 3D structures, offers the potential to develop molecules
with high affinity for PLK1 and FOX TFs. The optimization of these molecules around
the phospho-motifs generated, or targeted, by PLK1 may enable greater specificity for
neoplastic cells within which these proteins are dysregulated. Additionally, the integration
of these molecules into PROTAC or DUBTAC backbones offers the potential for targeted
manipulation of PLK1 and FOX TF stability. While these molecules may demonstrate
potency as single agents, clinical investigation has demonstrated that combination thera-
pies offer greater potential. As such, combinations of these proposed drugs and existing
therapies must be explored for synergistic combinations.

5. Conclusions and Future Perspectives

Mounting evidence supports the crucial functions of PLK1 in all phases of the cell cycle
and beyond. Unsurprisingly, its multi-faceted oncogenic roles across many types of human
cancers continue to be uncovered. These functions are mediated by PLK1, which alters
the stability, localization, and activity of hundreds of proteins, including numerous TFs,
among which are FOX TFs. Both PLK1 and FOX TFs have been shown to play significant
roles in human cancers, and PLK1 has been identified as an important regulator of FOX
TFs, making these signaling axes promising candidates for targeted therapies (Figure 3).

Alternations in PLK1-FOX TF signaling in human cancers can be used to explore
novel diagnostic and prognostic markers and inform effective therapeutic regimens. For
example, the phosphorylation status of T210 in PLK1, S715 and S724 in FOXM1b, or S75
in FOXO1 could provide valuable information regarding the activity of these proteins
and dysregulation of associated signaling pathways. Further characterization of PLK1-
FOXO3, PLK1-FOXK1, and PLK1-FOXC2 pathways may reveal additional information for
diagnostic and prognostic biomarker panel development. Recent advances in liquid biopsy
approaches, particularly those employing CTCs, circulating tumor DNA (ctDNA), and,
most recently, exosomes, would allow minimally invasive evaluation of the activation status
of these proteins [199,200]. In addition, given the tumor heterogeneity, using quantitative
single-cell proteomics, with improved workflows to reduce current costs, may also be
considered [201]. Further development of these minimally invasive approaches, particularly
those providing population heterogeneity information, combined with serial sampling of
patients would allow effective treatment through precision medicine approaches.
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Further development of PLK1 PBD-specific inhibitors and PLK1-targeted PROTACs,
combined with advances in drug delivery, would allow specific targeting of PLK1 in tumors,
which would restrain the proliferative, invasive, and stem cell phenotypes promoted by
FOXM1 and enhance the pro-apoptotic functions of FOXOs. The combination of anti-PLK1
agents with other treatment modalities, such as FOXM1-targeting vaccines, is likely to
significantly improve therapeutic efficacy. Further investigation of the regulatory role
of PLK1 on FOXK1 and FOXC2 may reveal novel PLK1-FOX TF signaling cascades and
previously unappreciated targets for cancer treatments. In addition, emerging technologies,
such as high-throughput screenings to identify synergistic targets and next-generation
sequencing integrating clinicopathologic factors to develop predictive models for patient
stratification, could offer opportunities for maximizing the effectiveness of PLK1/FOX
TF-targeted therapeutic strategies.
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