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Abstract: Background and aim: Here, we assess the effect of adjuvant antioxidant therapies in septic
shock patients with organ dysfunction and their effect on the enzymatic and non-enzymatic antioxi-
dant systems. Methods: Randomized clinical trial run between 2018 and 2022. One hundred and
thirty-one patients with septic shock were included in five groups with 25, 27, 24, 26 and 29 patients
each. Group 1 received vitamin C (Vit C), Group 2 vitamin E (Vit E), Group 3 n-acetylcysteine (NAC),
Group 4 melatonin (MT) and group 5 no treatment. All antioxidants were administered orally or
through a nasogastric tube for 5 days as an adjuvant to standard therapy. Results: All patients
had multiple organ failure (MOF) and low Vit C levels. Vit C therapy decreased CRP, PCT and
NO3

−/NO2
– but increased Vit C levels. The SOFA score decreased with MT in 75%, Vit C 63% and

NAC 50% vs. controls 33% (p = 0.0001, p = 0.03 and p = 0.001 respectively). MT diminished lipid
peroxidation (LPO) (p = 0.01) and improved total antioxidant capacity (TAC) (p = 0.04). Vit E increased
thiol levels (p = 0.02) and tended to decrease LPO (p = 0.06). Selenium levels were decreased in the
control group (p = 0.04). Conclusions: Antioxidants used as an adjuvant therapy in the standard
treatment of septic shock decrease MOF and oxidative stress markers. They increase the TAC and
thiols, and maintain selenium levels.

Keywords: multiple organ failure; antioxidants; Vitamin C; Vitamin E; N-acetylcysteine; melatonin

1. Introduction

Sepsis and septic shock cause a high mortality in Intensive Care Units (ICU) through-
out the world and 80% of patients with this condition are admitted with multiple organ
failure (MOF) [1]. The prevalence of sepsis and septic shock varies in different countries,
being three cases/1000 inhabitants in the United States, of which 51% are managed in the
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ICU and 17.3% in the intermediate care units or coronary care (IUCC) [2]. In a multicenter
study conducted in México in 68 emergency medical services, of which five were private
hospitals and 63 public hospitals and where a total of 2379 patients were analyzed, it was
found that 307 subjects presented sepsis and 41 septic shock. The global prevalence of
sepsis and septic shock was 12.9% and 13.3%, respectively, and a global mortality of 16.93%
was reported. In a separate evaluation, 9.3% of deaths were due to sepsis and 65.85% to
septic shock. Therefore, the authors concluded there is an association between the presence
of septic shock and mortality [3].

These conditions generate high costs to the public health system worldwide and to the
families of the patients. Therefore, different strategies have been evaluated to predict the
prognosis and reduce costs [4]. At the same time, new therapies have been proposed that
focus on the pathophysiology of these conditions [5–8] which involves inflammation [9],
epigenetic status [10], metabolism [11] and alterations of the microbiota [12,13].

However, there are other mechanisms involved during sepsis including deregulation
of hemodynamic and oxidative stresses (OS), which exert a synergistic effect with inflam-
mation and lead to dysfunction in various organs. Therefore, the use of antioxidants is
currently being investigated [14–16].

The systemic response that triggers sepsis leads to dysfunction in the heart through
compensatory reaction of the sympathetic nervous system, leading to micro vascular
dysfunction with activation of the immune system. The activation of the immune system
damages tissues through a cascade that involves damage-associated molecular patterns,
pathogen-associated molecular patterns [17], the complement system, cytokine release
and the presence of inflammatory molecules such as TNFα, which is associated with
an increase in OS [18–21]. In this state of oxidative deregulation, pro-oxidant molecules
that originate from the superoxide anion (O2

–), such as hydroxyl radical (OH), hydrogen
peroxide (H2O2) and peroxynitrite (ONOO–) among others, can interact and favor the
damage to proteins, enzymes, cell membrane lipids and DNA. Damage to these molecules
contributes to damage processes in different cell populations which result in apoptosis
and an increase in autophagy, leading to cell and tissue death and subsequent MOF [22].
The inflammatory response in sepsis also plays a fundamental role and therefore, standard
therapy includes the use of steroidal and non-steroidal anti-inflammatory drugs that have
led to very limited results [23]. This can be due to the variability in the response of each
individual and to the large number of molecular pathways that interact in this condition
and may explain the prognosis [24,25].

On the other hand, antioxidant therapy in septic shock has been proposed since
Hippocrates, who used myrrh (Commiphora mukul, Commiphora myrrha) [26] for therapeutic
and anti-inflammatory medicinal purposes [27]. Currently, the use of antioxidant therapy
in patients with septic shock has shown its usefulness in reducing OS markers [28–31].
Similarly, we found that antioxidant therapy added to standard management in septic
shock increases total antioxidant capacity (TAC) and decreases OS and MOF in a previous
study by our group [32]. Moreover, we demonstrated this same clinical effect with the use
of the antioxidant therapy in patients in severe condition due to SARS-CoV-2 infection
during the pandemic [33]. The results confirm previous findings on the usefulness of the
antioxidant therapy in patients with severe septic shock and organ damage [28–31,34].

Therefore, the aim of this study was to evaluate the use of antioxidants concomitantly
with standard therapy in patients with septic shock with MOF, through a randomized
clinical trial (RCT). We also evaluate the effect on various biomarkers of the enzymatic and
non-enzymatic antioxidant system, before and after therapeutic intervention.

2. Materials and Methods
2.1. Population Study

This was a randomized and blinded longitudinal prospective clinical trial in a cohort
of patients that was run between April 2018 and January 2022. The population studied
included patients older than 18 years of any gender who were admitted to the intensive
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care unit of the ABC Medical Center, Observatory and Santa Fe campus with a diagnosis
of septic shock [34]. Patients were included within 24 h after admission after giving their
informed consent. Patients with an advance directive form, previous chronic or recent
use of steroids, statins or antioxidants, patients with reported allergies to antioxidants or
with contraindication to the use of Vitamin C (Vit C), Vitamin E, (Vit E), N-Acetylcysteine
(NAC) or melatonin (MT), and pregnant women were excluded. Clinical and laboratory
variables were assessed and the measurement of the sequential organ failure assessment
score (SOFA) was done every day until discharge from the ICU.

2.2. Sample Size

The sample size was calculated considering the difference in the means of low ascorbic
acid levels and improvement with the treatment using antioxidants. It suggested the
inclusion of 11 patients in each group for a desired 80% power and an alpha error of
p < 0.05 based on a previous reference [35].

2.3. Ethical Aspects

A signed informed consent form was obtained from each participant as recommended
in the Declaration of Helsinki, modified in the Tokyo Congress, Japan. The research was
approved by the Ethical, Biosecurity and Investigation Committees of the National Institute
of Cardiology (registration number INCICh: PT 10-0-76) and Centro Medico ABC Campus
Observatory number ABC-18-19, Trial Registration: ClinicalTrials.gov Identifier: NCT
03557229.

2.4. Randomization

Electronic selection by computer was used to divide patients into blocks with a total of
5 groups with around 25 patients in each one. Group 1 received Vit C, group 2 Vit E, group
3 NAC and group 4 MT; group 5 patients remained without treatment (Tx) and formed the
control group. Personnel unrelated to the study participated in the blinding and placed the
indicated therapy in identical opaque envelopes numbered from 1 to 125 and these were
applied consecutively. The randomized process is shown in Figure 1.

2.5. Data Collection

A medical examination and a complete clinical history were performed on each patient
upon admission to the ICU, and the prognostic scales of APACHE II [36] and SAPS II were
calculated for 7 days [37]. Pre- and post-treatment samples were taken to analyze complete
blood count, blood chemistry, electrolytes, liver function tests, C-reactive protein (CRP),
procalcitonin (PCT), venous and arterial blood gases and OS markers.

2.6. Description of the Intervention

In addition to the standard therapy, each group of patients received an antioxidant
orally or by nasoenteral tube for 5 days. In the NAC group, 600 mg effervescent tablets
were administered every 12 h; in the MT group, extended-release capsules of 50 mg in a
daily dose were administered; in the Vit C group, 1 g tablets every 6 h and in the Vit E
group, capsules α-tocopherol of 400 IU were given every 8 h.

2.7. Sample Collection and Storage

A quantity of 20 mL of blood was obtained upon admission and 48 h after treatment.
Samples were identified as pre (0 h) or post sample (48 h). They were centrifuged at
3000 rpm for 20 min at 4 ◦C. Serum was stored in 3 or 4 Eppendorff aliquots of 1.5 mL and
stored at <70◦ until processed.
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Figure 1. Electronic selection by computer was used to divide patients into blocks with a total of
5 groups of 131 patients in total. In the group Vit C (n = 27) patients were studied, in the group with
Vit E (n = 24), NAC (n = 24), MT (n = 26) and (n = 29) patients remained without treatment.

2.8. Evaluation of the Antioxidant Enzymes
2.8.1. GPx Activity

A quantity of 100 µL of serum was suspended in 1.6 mL of 50 mM phosphate buffer
(KH2PO4, pH 7.3), 0.2 mM NADPH, 1 mM GSH, and 1 IU/mL glutathione reductase. The
mixture was incubated for 3 min at 37 ◦C, then 100 µL of 0.25 mM H2O2 were added to
start the reaction and the absorbance was monitored for 7 min at 340 nm [38]. Activity is
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expressed in µmol NADPH oxidized/min/mL in serum with an extinction coefficient of
6220 M−1 cm−1 at 340 nm of NADPH.

2.8.2. GST Activity

A quantity of 100 µL serum was added to 700 µL phosphate buffer (KH2PO4, 0.1 M, pH
6.5) with 100 µL 0.1 mM GSH and 100 µL of 0.1 mM 1-chloro-2,4-dinitrobenzene (CDNB).
The sample was incubated and monitored for 7 min at 37 ◦C and read at 340 nm. GST
activity was expressed in units of GS-DNB µmo/min/mL of serum with an extinction
coefficient of 14,150 M−1 cm−1 [39].

2.8.3. TrxR Activity

TrxR activity was assessed as previously described [40]. A quantity of 100 µL of serum
was suspended in 3 mL of 0.1 mM phosphate buffer (KH2PO4, pH 7.0). NADPH 0.2 mM,
EDTA 1 mM and 0.1 mg/mL bovine serum albumin free of fatty acids were added. The
sample was read in the presence of 20 µL of the TrxR-specific inhibitor (10 µM auranofin),
and together with a duplicate of the sample without the inhibitor. DTNB oxidation was
monitored at 412 nm at 37 ◦C for 6 min with an extinction coefficient of 13,600 M−1 cm−1.

2.8.4. Extracellular Super Oxide Dismutase (ecSOD) Activity

ecSOD activity was determined by electrophoresis in native 10% polyacrylamide gels.
Electrophoresis was carried out at 120 V for 4 h, as previously described by Pérez-Torres
et al. [41]. In brief, 100 µL of serum were used; the gel was incubated in 2.45 mM NBT
solution for 20 min. The liquid was discarded and later it was incubated in a TEMED
solution with 36 mM potassium phosphate (pH 7.8) and 0.028 mM riboflavin. The gel
was exposed to a UV light lamp for 10 min and washed with distilled water to stop the
reaction. A standardized curve was obtained with a serial dilution (2.5, 5, 10, 15, 30, and
60 ng) with SOD from bovine erythrocytes (Sigma Aldrich Chemical S.A. de R.L. de C.V.
Toluca, México). SOD activity was calculated.

2.8.5. Peroxidase Activity

Measurement of peroxidase activity was carried out by electrophoresis in native 10%
polyacrylamide gels as previously described by Pérez-Torres et al. [41]. In brief, 100 µL of
serum and 35 µL horseradish peroxidase (178.5 µg/mL) were loaded as a standard and
added to a 10% polyacrylamide gel. To observe the peroxidase activity, the gel was washed
with water three times for 5 min, then it was incubated with a mixture of 3 µg/mL of
3,3,5,5-tetramethylbenzidine dissolved in a solution of ethanol: acetic acid: water (1:1:1
vol/vol) with H2O2 for 10 min in the dark. Gels for peroxidase activity were analyzed by
densitometry with a Kodak Image® 3.5 system, and the activities were calculated following
the technique described for ecSOD.

2.8.6. GR Activity

For GR activity, 100 µL of serum were utilized according to the previously described
method [42]. The GR activity is expressed as µmol of reduced GSSG/min/mg protein with
an extinction coefficient of 6220 M−1 cm−1, and the absorbance was read at 340 nm.

2.9. Oxidative Stress Markers
2.9.1. Determination of Selenium (Se)

Selenium (Se) determination was performed using 200 µL of serum according to the
method described by Soto et al. and the absorbance was read at 600 nm [43].

2.9.2. Thiols

For the measurement of thiols, to 25 mL of serum 100 µL KBH4 solution (1 mg/mL
concentration) were added. The sample was mixed in a vortex for 15 sec and incubated for
3 min., after which 100 µL of buffer (formaldehyde solution 0.1 mL in 100 mL tridistilled



Cells 2023, 12, 1330 6 of 22

water plus 3.38 mg EDTA and 1.21 g 100 mM Tris Base, pH 8.2), were added and mixed
with a vortex for 15 s. The sample was incubated for 3 min. Subsequently, 100 µL 5, 5′

Ditiobis-2-nitrobenzoic acid (DTNB) solution were added (4 mg/mL), vortexed for 15 s and
incubated for 3 min. For the reading, a growing curve was made with oxidized glutathione
(GSSG) at 0.5, 10, 20, 40, 80, 160 µg and read at 415 nm.

2.9.3. Total Antioxidant Capacity (TAC)

A quantity of 100 µL of serum was used for the TAC determination. The absorbance
was measured at 593 nm, according to the method described by Benzie and Strain [44].

2.9.4. Lipid Peroxidation (LPO)

A quantity of 100 µL of serum was used to determine LPO products, making them
react with thiobarbituric acid as previously reported and measuring the absorbance at
532 nm [43].

2.9.5. NO3
−/NO2

− Ratio

The method reported by Griess was used for the determination of NO3
−/NO2

− ratio.
A quantity of 100 µL of the serum was incubated with 5 units of nitrate reductase plus
NADPH, and the absorbance at 540 nm was measured.

2.9.6. Carbonylation

A quantity of 100 µL of serum was used and protein carbonylation was detected
spectrophotometrically as previously described [45]. Absorbance was read in a spectropho-
tometer at 370 nm, using water bidistilled as blank and a molar absorption coefficient of
22,000 M−1 cm−1.

2.10. Statistical Analysis

Continuous variables were expressed as mean ± standard deviation or median with
minimum and maximum ranges. Categorical variables such as frequencies and percentages
were also reported. Normality distribution was evaluated by Shapiro–France. For the
graphic analysis of the distribution of the variables, histograms and/or stems of leaves
graphics were employed. To test the significance of the results, we used nonparametric
(Mann–Whitney) or Student’s t tests for independent measurements. Paired t with Fried-
man, Wilcoxon signed rank test or Kruskal–Wallis t test were used according to the number
of comparisons in groups of two or multiples and according to Gaussian distribution.
In some variables, standardization was made and in multiple comparisons, adjustment
was made by Bonferroni correction. For the paired analysis (before-after), we used the
Friedman or Wilcoxon tests with signed rank test according to the distribution of the data.
For the comparison of proportions for two groups, Pearson’s Chi-square χ2 or Fisher’s
exact test were employed. For the multivariate analysis, we used binary logistic regression,
analysis of repeated samples and panel data testing of different models (grouped model,
model for longitudinal data, marginal approximation model and multilevel model). For the
survival analysis, we performed life tables and the method of Kaplan–Meier. Differences
were considered as statistically significant when the p value was <0.05. Statistical analyses
were performed using STATA V.16 Software and Sigma Software Plot 14 program (Jendel
Corporation, 1986–2017).

3. Results

The demographic characteristics according to the assigned group are shown in
Tables 1 and 2. A total of 131 patients were included; 61 (47%) were men and 70 (53%)
were women with a median age of 68 (58–78). Groups were comparable to each other
since the presence of comorbidities, organic dysfunction scores and severity were similar
between groups, and they showed no statistical difference. The differences with statistical
significance between the groups were (1) the basal levels of lactate which were higher
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among patients who would receive Vit E, MT and the control group versus the groups with
Vit C and NAC, and (2) the basal levels of platelets in patients who would receive Vit E and
NAC, which were lower versus the other groups. However, it is worth mentioning that
all the levels of platelets between the groups were similar since none had abnormalities
according to the normal ranges of the laboratory.

Table 1. Demographic characteristics and comorbidities by treatment group at admission in ICU.

Characteristics Vit C
n = 25

Vit E
n = 27

NAC
n = 24

MT
n = 26

Without Tx
n = 29 p

Age, years Median
(range) 62 (58–78) 70 (51–77) 69 (59–78) 62.5 (58–69) 75 (65–81) 0.10

IMC Median (range) 25 (23–30) 25 (22.8–29) 23 (21–26) 25.(21–28) 25 (23–28) 0.41
Men, n and (%)

Women, n and (%)
10 (40)
15 (60)

17 (63)
10 (37)

14 (58)
10(42)

13 (50)
13 (50)

16 (55)
13 (45)

0.53
0.56

SAPS II, Mean ± SD 39.4 ± 14.1 45.7 ± 16.3 42.4 ± 19.84 40.8 ± 16.8 47.2 ± 7.1 0.60
APACHE II Median

(range) 14 (12–19) 20 (15–24) 15.5 (11–21) 16.5 (10–21) 17 (15–25) 0.15

SOFA, Median
(range) 8 (6–9) 9 (7–11) 8 (4–10) 8 (6–9) 9 (7–11) 0.42

NUTRIC,
Mean ± SD 4.1 ± 2.2 4.8 ± 1.6 4.0 ± 1.8 3.8 ± 1.7 5.1 ± 1.5 0.41

Diabetes Mellitus, n
and (%) 7 (28) 5 (19) 5 (21) 6 (23) 8 (28) 0.90

Arterial
hypertension, n and

(%)
10 (40) 11 (41) 12 (50) 8 (31) 15 (52) 0.53

COPD, n and (%) 1 (4) 5 (19) 4 (17) 2 (8) 0 (0) 0.05
Smoking, n and (%) 17 (68) 12 (44) 9 (38) 15 (58) 14 (48) 0.22
Cancer, n and (%) 6(24) 11 (41) 8 (33) 8 (31) 14 (48) 0.39

Cirrhosis, n and (%) 2 (8) 2 (7) 1 (4) 1 (4) 4 (14) 0.71
Chronic kidney

disease, n and (%) 2 (8) 3 (11) 4 (17) 3 (12) 3 (10) 0.92

Hypothyroidism, n
and (%) 4 (16) 4 (15) 2 (8) 6 (23) 7 (24) 0.56

CVD, n and (%) 3 (12) 0 (0.00) 1 (4) 2 (8) 3 (10) 0.41
AMI, n and (%) 1 (4) 0 (0) 3 (13) 2 (8) 2 (7) 0.43

Atrial fibrillation, n
and (%) 3 (12) 2 (7) 3 (13) 5 (19) 4 (14) 0.79

Pulmonary and CNS 0 (0) 0 (0) 1 (4) 0 (0) 0 (0) 0.20
Abbreviations: Vit C = vitamin C, Vit E = vitamin E, NAC = N-acetylcysteine, MT = melatonin, Tx = without
treatment, COPD = chronic obstructive pulmonary disease, CVD = cerebral vascular disease, AMI = acute
myocardial infarction, CNS = central nervous system, SAPS II = Simplified Acute Physiology Score, APACHE
II = Acute Physiology and Chronic Health Evaluation, SOFA = sequential organ failure assessment, NUTRIC:
Nutrition Risk in the Critical III.

Table 2. Condition of the patients at the time of admission, according to the assigned antioxidant
therapeutic management and the type of standard management and ventilatory assistance.

Admission to the ICU Vit C
n = 25

Vit E
n = 27

NAC
n = 24

MT
n = 26

Without Tx
n = 29 p

Reason for admission n (%)
Septic shock from surgery 7 (28) 6 (22) 5 (21) 4 (15 13 (14)

0.14Septic shock from non-surgical 18 (72) 21 (78) 19 (79) 22 (84) 16 (55)

Infection site n (%)

Pulmonary 7 (29) 11 (41) 9 (39) 11 (42) 10 (34)

0.83

Gastrointestinal 10 (42) 8 (30) 5 (22) 5 (19) 11 (38)
Nephro-Urinary 3 (13) 3 (11) 6 (26) 6 (23) 3 (10)
CNS 0 (0) 2 (7) 0 (0) 0 (0) 1 (3)
Skin and soft tissues 2 (8) 2 (7) 2 (9) 2 (8) 2 (7)
Endocarditis 0 (0) 0 (0) 0 (0) 0 (0) 1 (3)
Gastrointestinal-Urinary 0 (0) 1 (4) 0 (0) 2 (8) 1 (3)
Pulmonary-CNS 0 (0) 0 (0) 1 (4) 0 (0) 0 (0)
Pulmonary-Gastrointestinal 1 (4) 0 (0) 0 (0) 0 (0) 0 (0)
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Table 2. Cont.

Admission to the ICU Vit C
n = 25

Vit E
n = 27

NAC
n = 24

MT
n = 26

Without Tx
n = 29 p

Variables median (min-max ranges)

Temperature 36 (36–37) 36 (36–37) 36 (36–37) 37 (36–37) 36 (36–37) 0.34
Cardiac Frequency 83 (68–94) 85 (66–108) 86 (66–97) 86 (67–100) 83 (74–104) 0.98
PVC, mmHg 11.5 (6.5–14) 9 (6–12) 12 (7–13) 9 (7–13) 13 (9–17) 0.15
MAP, mmHg 73 (63–83) 77 (73–81) 78 (68.5–85) 73 (65–81) 78 (65–82) 0.52
Minime MAP, mmHg 63 (54–72) 68 (61–75) 63 (55–68) 61 (55–72) 61 (54–68) 0.11
PaO2/FiO2, mmHg 196 (129–309) 240 (120–266) 239 (141–300) 197 (115–242) 190 (150–250 0.93
Lactate, mmol/L 1.3 (1.09–2.4) 2.4 (1.4–3.7) 2.0 (1.4–3.2) 2.3 (1.49–4.6) 2.6 (2.08–4.05) 0.01
Bilirubins mg/dL 0.8 (0.42–1.1) 1.2 (0.6–2.2) 0.9 (0.46–1.9) 1.02 (0.5–1.8) 1.1 (0.7–2.3) 0.27
Hemoglobin g/dL 12 (10–14) 11 (10–15) 11 (10–11) 11 (10–13) 12 (10–14) 0.21
Leucocytes 103/µL 11 (8–19) 10 (7–16) 9 (8–14) 13 (10–20) 14 (7–21) 0.35
Procalcitonin ng/dI 1.2 (0.5–30) 4 (0.5–40) 1.2 (0.3–10) 2.8 (1.04–8.4) 7.6 (1.4–32) 0.33
C Reactive protein mg/dI 20 (11–31) 25 (12–32) 12 (8–23) 22 (10–29() 23 (11–33) 0.38
Platelets 241 (186–295) 166 (82–258) 161 (110–215) 245 (161–443) 212 (131–297) 0.01

Inotropic type (n and %)

Steroid treatment 6 (24.00) 16 (59.26) 9 (37.50) 8 (30.77) 14 (48.28) 0.07
Enteral, nutrition 21 (87.50) 23 (85.19) 21 (87.50) 24 (96.00) 23 (79.31) 0.50
Parenteral nutrition 4 (16.67) 7 (25.93) 7 (29.17) 5 (20.00) 9 (31.03) 0.73
Inotropic 2 (8.33) 7 (25.93) 3 (12.50) 5 (19.23) 10 (34.48) 0.14
Dobutamine 1 (4.17) 1 (3.70) 0 (0.00) 0 (0.00) 1 (3.45)
Levosimendan 0 (0.00) 6 (22.22) 2 (8.33) 4 (15.38) 8 (27.59) 0.06
Dopamine 1 (4.17) 0 (0.00) 0 (0.00) 1 (3.85) 0 (0.00)

Vasopressor type (n and %)

Norepinephrine
Vasopressin,
Norepinephrine +
Vasopressin,

16 (67)
0 (0)

8 (33)

11 (41)
1 (4)

15 (56)

16 (67)
0 (0)

16 (70)

13 (50)
0 (0)

16 (62)

17 (59)
0 (0)

23 (79)
0.26

Other treatments

Antifungal 6 (25.00) 6 (22.22) 7 (29.17) 6 (23.08) 11 (37.93) 0.70
RTT 1 (4.17) 3 (11.11) 2 (8.33) 1 (3.85) 3 (10.34) 0.80
Mechanic ventilation 13 (54.17) 15 (55.56) 16 (69.57) 16 (61.54) 23 (79.31) 0.26

IMV 12 (50)
1 (4)

12 (44)
4 (15)

11 (48)
5(22)

10 (38)
5(19)

19 (66)
2 (7) 0.39

Abbreviations: Vit C = vitamin C, Vit E = vitamin E, NAC = N-acetylcysteine, MT = melatonin,
Tx = COPD = chronic obstructive pulmonary disease, CVD = cerebral vascular disease, PVC = peripheral
venous catheters, AMI = acute myocardial infarction, CNS = central nervous system, IMV = intermittent manda-
tory ventilation, SAPS II = Simplified Acute Physiology Score, APACHE II = acute physiology and chronic health
evaluation, SOFA = sequential organ failure assessment, MAP = mean arterial pressure, RTT = referral to treatment.
Treatment statistics, Kruskal–Wallis and Fisher. The values are expressed as median (Min-Max).

Figure 2 shows that there was an evident decrease in the CRP levels with the applica-
tion of all the antioxidant therapies, which was statistically significant when compared to
the untreated control group and through the repeated analysis over time.

Figure 3 shows decreased PCT from the first days in the group treated with Vit C.
In the group treated with NAC and MT, PCT levels decreased on the third day. With Vit
E, it decreased on day 4. The differences were statistically significant when all groups
were compared with the group without treatment whose decrease was less and was only
observed until day 5.
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Figure 2. PCR = C-reactive protein; Vit C = vitamin C; Vit E = vitamin E; NAC = n-acetylcysteine;
MT = melatonin; Tx = treatment, Values median. Test statistician: Kruskal-Wallis. p* Values are
expressed as median (p25–p75). The variables were transformed to the normal by natural log and
inverse logarithm. The evaluation over time was carried out using the repeated measures test p**.

Figure 4 shows a decrease in organ damage measured by the SOFA score. All the
patients showed high scores only on the first day or day 0 without a difference between
them. On day 1, there is a tendency to decrease the score with all antioxidants. On day 3,
the decrease in the score continued in all patients. However, in the group of patients that
received Vit C, there was a decrease in the value comparable to the baseline score, from 8
to 3.5 (56%), and this effect showed significant difference when compared with the other
groups. During the 5 days that the patients received therapy, the group that received Vit C
had a diminished score from 8 to 3 (63%), the group with Vit E from 9 to 5 (44%), the group
with NAC from 7 to 4 (43%) and the group with MT from 8 to 2 (75%). The decrease in the
group without treatment was from 9 to 6 (33%). The highest percentages of reduction were
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obtained with Vit C and analysis showed a decrease in the SOFA score in relation to the
time of treatment with statistically significant difference in the groups treated with Vit C,
Vit E NAC and MT. The difference between the treated and untreated groups was obtained
by repeated measures statistical analysis.
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Figure 3. PCT = procalcitonin; Vit C = vitamin C; Vit E = vitamin E; NAC = n-acetylcysteine;
MT = melatonin; Values are expressed as mean± SD. Test Statistic: One-Way Kruskall Wallis between
groups p* without difference but in the Repeated measures analysis. We Showed the progressive
decrease in PCT levels with statistical significance in treatment groups Vit C, NAC and MT p**
α ≥ 0.01. Without important decreased in groups Vit E and in the group without treatment, both had
levels higher since basal status.
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Figure 4. NAC = N-acetylcysteine, MT = Melatonin, Tx = without treatment, SOFA = Sequential
organ failure assessment. Values are expressed as median (p25–p75 quartiles), Test statistic: One-way
Kruskall Wallis p* and Repeated measures analysis of SOFA score p** changes over time relative to
each treatment group: marginal approximation model.

The OS markers and the enzymatic and non-enzymatic activities are shown in
Figures 5–7. The basal LPO was elevated in all the patients. Levels decreased in all groups;
however, there were differences when compared between groups. LPO decreased six to
nine times in the groups treated with Vit C and Vit E; in comparison with the control and
MT groups, the difference between groups also reached a statistical significance (p = 0.02).

There was a six-fold decrease in carbonylation levels in the groups treated with Vit
E, NAC and MT. However, in the groups treated with Vit C and without treatment, the
carbonylation levels did not decrease. The enzymatic and non-enzymatic pathway is shown
in Figures 6 and 7. Regarding adverse effects of the antioxidant treatments, only one patient
who received Vit C had abdominal pain and another had a skin rash. One patient who
received MT had drowsiness. No adverse effects were reported in patients with NAC and
Vit E.
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MT = Melatonin.
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4. Discussion

The participation of OS in septic shock and MOF has been previously reported [46,47].
The adaptation of the organism in the initial phases of OS, to balance the overproduction
of reactive species (ROS) through processes of genetic overexpression and enzymatic
activation, is crucial when the antioxidant systems are overcome. If the TAC is depleted,
the damage to tissues and organs varies in intensity and duration. In this adaptation
phase, partial or total protection can be obtained against organ damage with the use of
antioxidants [4,5].

In this study, we found that patients with septic shock had a high SOFA score on
admission to the ICU. They had high PCT and CRP levels, elevated LPO and carbonylation,
and decreased TAC. These variables were compensated by the treatment with antioxidants.

The patients who received treatment with vitamin C and vitamin E had a decrease
in LPO levels and although the difference did not reach a statistical significance, we can
interpret that there is a tendency of six to seven times greater decrease with the use of this
therapy. Our findings resemble those previously reported in an animal model where Vit
C decreased LPO [48]. In these preliminary findings of treatment in humans, we support
that the early use of Vit C and E can attenuate the alterations caused by OS in MOF [49].
However, reproducibility in humans to reach statistical significance may require a larger
number of samples [4,5].

Vit C is an enzymatic cofactor with an antioxidant function derived from its ability
to act as an electron donor. It reduces LPO and carbonylation, O2

–, H2O2 and hypochlo-
rite ion levels, and maintains GSH and Vit E levels. It also elevates peroxidases such as
myeloperoxidase, which is reduced in sepsis [50]. Our results showed that the activities
of peroxidases were increased with all treatments. This result is very important because
the activity of the innate immune system is depleted in MOF. Our results suggest that,
independently of antioxidant selected, the treatment can favor the activities of these en-
zymes which contribute to strengthening the immunologic system. In addition, Vit C
inhibits the expression of mRNA for the inducible nitric oxide synthase (iNOS), which
leads to overproduction of nitric oxide (NO) and is overexpressed in MOF. By inhibiting
this enzyme, it prevents the abundant production of OONO– and the presence of ROS.
Large quantities of ONOO– are produced during septic shock, and they have deleterious
effects on different tissues, especially blood vessels, causing vasodilation which contributes
to hypotension in MOF [51].

In addition, LPO was blocked by Vit E treatment in our series of patients. This vitamin
binds to the cell membrane and decreases the polyunsaturated fatty acid oxidation due to its
lipophilic characteristics. The oxidation of these fatty acids is increased in proinflammatory
states. Therefore, supplementation with this vitamin in patients with sepsis may modulate
the excessive inflammatory response coordinated by macrophages [52]. The effects of Vit E
in our results could be explained by the activity and the persistent recycling of oxidized
Vit E from Vit C, since Vit E is regenerated from ascorbic acid. In addition, its antioxidant
activity in serum may be determined by the diminution of plasmatic levels of Vit C. The
uncompensated decrease in Vit C was associated with greater severity in patients [53,54].

Protein oxidation can be estimated by carbonylation, which results from the direct
oxidation of amino acid side chains and from oxidative cleavage of protein. Carbonyls are
difficult to induce and therefore may indicate a more severe state of OS [55,56]. In this study,
there was a tendency of carbonylation to be reduced in patients who were treated with Vit
E. This suggests that the low levels of Vit C found in patients requires its supplementation
in combination with Vit E to reduce carbonyls [57].

At present, there are still controversies regarding the complementary use of Vit C in the
general therapy of patients with septic shock. In a systematic review with a meta-analysis
that included 16 randomized clinical trials, it was concluded that Vit C does not help
improve clinical outcomes in patients [58]. However, it is important to mention that the
aim of these authors was to determine mortality as the outcome, and they did not evaluate
MOF as an outcome. In contrast, to determine MOF was the main objective in our study.
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A limitation of the review was that the doses of Vit C employed in the different studies
varied significantly and that the secondary results were obtained from a small number of
randomized clinical trials (RCTs) with high heterogeneity. Although they used the random
effects model, the results were not conclusive to support the use of Vit C. However, the
authors justified the need to carry out RCTs due to the limitations of their study. In our
study, mortality was not different between the group treated with the antioxidants and
the non-treated group. Nevertheless, we cannot be conclusive in relation to this outcome
because the sample size of the included population was not calculated for this purpose.

In the group treated with Vit C, the levels of ecSOD were decreased. This effect may
be due to the fact that this enzyme regulates the O2

– and prevents its transformation into
H2O2 which may be part of the regulatory adaptive phase to OS. On the other hand, our
results showed a reduction in the GR activity. This enzyme participates in the regeneration
of the GSH which is used in part by GPx for the elimination of H2O2 and also allows for the
maintenance of the concentration of GSH. In addition, GSH is useful in the recovery of Vit
C and Vit E after participating in the elimination of the ROS generated in situ or remotely.
The decrease in the activity of GR may lead to a decrease in the GSH concentrations and
in turn, this could drive an increase in the levels of ROS. Our results showed that the
activity of GR was decreased in the group treated with Vit C. In addition, another enzyme
that employed the GHS in the detoxification process is the GST. This enzyme is crucial
in the detoxification of xenobiotics. Our results showed that the GST activity remained
unchanged; however, in the group without treatment it was decreased, suggesting that it
may favor its activity contributing to decreased LPO indexes and MOF independently of
the antioxidant treatment selected.

Regarding the findings associated with the clinical part, the use of Vit C did not
decrease the number of days of hospital stay, but its use was related to a lower percentage
of the employment of inotropes and invasive mechanical ventilation, which was observed
in all patients that received antioxidant therapy. In the treated groups, the percentage of
inotropic use was 15.6% and mechanical ventilation was necessary in 11%, while in the
untreated groups, it was of 31% and 19%, respectively. However, the difference did not
reach a statistical significance.

A more recent meta-analysis reported that Vit C showed no evident clinical improve-
ment and therefore effectiveness of the therapy was not recommended [59]. It is important
to mention that in some studies, the basal levels of Vit C have been found to be below the
reference value in patients with septic shock [60]. In this study, the patients had decreased
levels on admission. In patients with septic shock, hypovitaminosis has been reported.
This condition presents acutely in patients with sepsis and is secondary to metabolic
consumption since intestinal absorption is not affected [61].

One of the main objectives to be evaluated in this study was whether the use of
antioxidants decreased organ damage. We found that with the early use of Vit C, patients
had a decrease in organ damage measured through the SOFA score and that this occurred
since the beginning (first day of therapy with this antioxidant), showing a 37.5% reduction.
On the fifth day, the decrease reached 63%. This finding confirmed the effects seen in a
previous study, in which a decrease in the SOFA score in patients who received MT and Vit
C was observed in a smaller number of patients [32].

In this study, this same effect was achieved with the use of NAC, which also reduces
mortality [62]. NAC has been applied in animal models where it reduced the organ damage
induced by shock caused by endotoxin. NAC showed effects when given before and
after endotoxin and it reduced the ROS [63]. In the therapy already applied in humans, it
improves the TAC [32], and we have confirmed this in our findings. NAC increases the TAC
through the elevation of GSH and an increase in the activity of GPx, and this is associated
with decreased MOF. There is a decrease in the SOFA score of 42% on the fifth day. NAC
has antioxidant properties, increasing GSH levels and reducing the ROS, possibly leading
to the inhibition of the effect of proinflammatory cytokines [64] and vasodilator activity on
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the microcirculation [32]. NAC also reduces the SOFA score and the LPO in patients with
SARS-CoV-2 infection [29].

Other antioxidants such as MT could also be useful in patients with septic shock. We
have found that it reduces the SOFA score and the LPO in SARS-CoV-2 infection. The
reproducibility of the findings reinforces what was recently published in a pilot group,
where evidence of its effect on reducing organ damage was found [65]. A recent narrative
review emphasized the role of MT in the protection of the lung, kidney, liver, brain and
vascular function during sepsis in animal studies. It suggested that MT may protect
from multi-organ damage by attenuating OS, inflammation, apoptosis, autophagy and
mitochondrial dysfunction [66].

In in vitro and in vivo studies, MT scavenges ROS, thus protecting cell membrane
lipids, cytosol proteins, and nuclear and mitochondrial DNA. It preserves the permeability
of the membrane, increasing its fluidity [48,67,68], and reduces hydroperoxide levels in
mitochondria, restoring GSH homeostasis and mitochondrial function in organelles under
OS [53]. It is also able to stimulate γ-glutamylcysteine synthase, and therefore, it can
increase the intracellular synthesis of GSH [69,70]. Added to this, it restores functional
mitochondrial activity that is depressed in some pathological situations, reducing O2

–

consumption and protecting organs from excessive oxidative damage [71].
In this study, we found that in patients treated with MT, the Se levels were maintained,

ecSOD was decreased, and TAC and GPx were increased. Therefore, it is feasible that the
therapeutic effect on other enzymes such as the one observed in the decrease in ecSOD may
be beneficial to control the OS in sepsis.

On the other hand, Se is used by GPx as cofactor and is decreased in septic shock [72].
The Se administration as selenious acid or selenite in intravenous loading doses reduces
mortality, improving organ dysfunction and decreasing infections in critically ill septic
patients. This was reported in a review and phase II clinical trials [73,74]. Low activity
levels in selenoenzymes that are Se dependent such as the GPx and TrxR have been reported
in diseases related to OS, sepsis [75], cardiovascular diseases [76] and cancer [77]. We found
low levels of Se in patients with septic shock and MOF, which confirms its reduction in
these serious conditions and although the levels did not increase with the antioxidant
therapy, they were at least maintained. This result contrasts with the decreased levels
found in untreated patients, in whom there were no changes towards an improvement in
the SOFA score. The exact mechanism of how this process can be carried out is still not
fully understood and more studies are required to clarify it. However, our results suggest
that antioxidant therapy is capable of maintaining Se levels and should be included in
the adjuvant therapy of these patients. Se could be used in specific clinical trials in which
nutritional status, bone metabolism and severity could be included.

The possible benefits of therapy with trace elements such as Se, Cu, Zn and Mn in
critically ill patients have been investigated without clear results. With the results obtained
in this study, Se levels are maintained, which supports the role of this metal in the regulation
of OS. Multiple studies have evaluated the effect of Se supplementation in critically ill
patients. However, there are still controversies regarding the path of administration (enteral
vs. parenteral), the dose (high vs. low), the use of loading doses, the selection of patients
(septic vs. non-septic) and the supplementation of other antioxidants (mono therapy
vs. cocktails), [73,76–82]. There is a history of therapeutic power in the control the OS
deregulation and in the control of the inflammatory process [81]. However, the equilibrium
threshold in the concentration in this trace element is very important, because an excess
could lead to selenosis and contribute to inflammation in various disorders [83–85].

On the other hand, the study of thiols in this series of patients was included since thiols
are molecules that contain a hydrogen sulfide group in the side chain (SH) which may act
as an antioxidant by stabilizing and reducing the bridge between proteins caused by free
radicals by accepting an unpaired electron. This process is also regulated by TxrR, another
selenoenzyme which was decreased in these patients. However, the antioxidant therapy
increased the activity of this enzyme. Our results suggest that the increase in thiols can
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participate with a synergic effect with the Vit E and decrease the OS damage mechanism
on protein carbonylation in patients with septic shock. Vit E and thiols may act together
preventing and blocking LPO, carbonylation and increasing TAC [85]. In agreement with
this, Vit E increased the level of thiols, and this difference was statistically significant.

This study confirms the effect of antioxidants on the reduction of MOF measured
by the SOFA score, which occurs from the second day of treatment on. Studies to follow
should consider an adequate evaluation of the nutritional status and the participation of OS,
and its consequences such as cytopathic hypoxia. This condition could explain the failure
of different strategies used in the clinical management of septic shock, since when the
mitochondrial machinery is blocked, many therapies result in unsuccessful efforts aimed at
improving tissue oxygenation by increasing systemic oxygen supply and/or optimizing
cardiovascular function.

Specific pharmacological treatments to modulate or block components of the inflam-
matory process have not achieved the expected success. The participation of OS in the
pathways of damage in patients with septic shock constitutes a solid foundation to propose
an adjuvant antioxidant therapy for sepsis and septic shock. This therapy may improve
these conditions by regulating enzymatic and non-enzymatic pathways as previously
observed in animal models. Studies are needed to substantiate the interaction and partici-
pation of nitrosative stress, OS and the interaction of cytokines in the pathogenesis of sepsis.
Nevertheless, the antioxidant therapy modulates the over-synthesis of NO and nitrosative
stress, reducing organic dysfunction.

These results raise new expectations for antioxidant treatment in MOF caused by
sepsis. There are still gaps that need to be solved and these constitute areas of opportunity
to explore in the future. The exact doses, the time of use and synergistic effects of combined
use of several simultaneous antioxidants still remain unexplored.

5. Conclusions

The addition of antioxidant therapy to standard therapy in patients with septic shock
decreases MOF and regulates the inflammatory state and the OS. Vit C therapy increases
its serum levels and decreases CRP, PCT and NO3

−/NO2
− levels. Vit C NAC and MT

decrease SOFA score and LPO and improve TAC. Vit E increases thiol levels and tends to
lower LPO. Treatment with Vit C, Vit E, NAC and MT maintains Se levels. The combined
use of antioxidants in patients with septic shock is a perspective to be followed through
randomized clinical trials, since their integral therapeutic target on OS pathways and
their correlation with better clinical and pathophysiological outcomes could probably be
demonstrated.
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