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Elastomeric Pillar Cages Modulate Actomyosin Contractility of 

Epithelial Microtissues by Substrate Stiffness and Topography 

Movie S1: Lateral cell injection of MCF10A cells using a glass microcapillary. 

Movie S2: Laser ablation (white arrowhead) of a myofibroblast (labeled by MitoTracker dye). Pillars with incorporated 

QDots (gray) were used for displacement tracking.   

Movie S3: Time lapse of spontaneous beating cardiomyocytes (labeled by MitoTracker dye, orange). Pillars with incor‐

porated QDots (green) were used for displacement tracking (Imaging interval: 90 ms). 

Supplementary File S1: Analytical approximation of EPC‐derived cell forces. 

Figure S1. Time‐dependent pillar relaxation. Shown is the displacement of single pillars over time after MFB cell ablation. Dis‐

played are the displacements of single pillars caused by single cells that adhered to single pillars (n = 8). QDot displacements were 

measured at 5 μm pillar height (above the bottom layer). The red arrow indicates the beginning of the plateau phase at t = 30 s after 

ablation. This time point was chosen for all force measurements to minimize the influence of unspecific pillar drift. 



Figure S2. Modulation of the actomyosin cytoskeleton by the EPC geometry. Micrographs show the distinct cellular localization of 

actin stress fibers with phosphorylated myosin light chain II (pMLC II) in MCF10A and HaCat microtissues, depending on cell 

location within the EPC topography. Microtissues were grown for seven days, fixed and stained against pMLC II (green), focal 

adhesion marker paxillin (gray) and actin cytoskeleton (phalloidin, red). Imaging plane: 10 μm pillar height. Scale bars = 10 μm. 
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1 Introduction

As described in the main text of this article, we studied cells within a circular array of elastic 
micropillars connected to a compliant substrate. With confocal microscopy we were able to ob-
serve displacements of fluorescent marker particles embedded in the micropillar matrix. These 
displacements indicated active cell forces that we searched to quantify. Unfortunately the me-
chanical layout of this system differs from the classical textbook examples of beam bending. 
Because both ends of each micropillar transmit forces and moments to the respective flat sub-
strates this beam is statically indetermined. Moreover, its ends are connected in a flexible way. 
Therefore standard boundary conditions (fixed ends or fixed angles at the ends) do not apply 
and special treatment is necessary. As always, a fully numerical solution of this mechanical 
problem is easily accessible by the well-established finite element method (FEM), however, this 
would require time intensive calculations for each specific load case. Moreover, due to the many 
control parameters entering the calculation (e.g. beam diameter and length, material stiffnesses, 
or attachment geometries of cells) it is very difficult to get an overview over the structure of the 
general mechanical problem. Therefore we decided to use an analytical approach based on the 
Euler-Bernoulli theory of beam bending (see any advanced textbook of technical or continuum 
mechanics, e.g. [39,43]).

2 Basic Equations

Our approach is based on the following approximation. We neglect cross talk between different 
pillars and assume perfect cylindrical shape for each cylinder. Therefore we study the behavior 
of a cylindrical micropillar of length l and radius r. It protrudes vertically from a flat substrate 
from the same elastic material (Young’s modulus Er and Poisson’s ratio νr). In our implementa-
tion this assembly is produced from more rigid material and forms the top part of the 
Elastomeric Pillar Cages (EPC). At its apex this micropillar firmly adheres to a flat elastic 
substrate (Young’s
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modulus Es, Poisson’s ratio νs). In EPCs this substrate is very soft, hence the subscript ‘s’.
Moreover, we replace the distributed cell forces by a single point force FE (E for ‘external’) that
acts at a distance lE from the surface of the rigid top substrate. For the geometry see Fig. 1.
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Figure 1: Left: Basic layout underlying our calculations. A micropillar (length l, radius r)
emerges from an elastic substrate (Young’s modulus Er, Poisson’s ratio νr; dark grey). It firmly
adheres to another elastic substrate (Young’s modulus Es, Poisson’s ratio νs, light grey). It
is deformed by an external point force FE that acts at a distance lE from the rigid substrate.
Distance from the rigid top is denoted by x, deflection of the neutral axis from the force free state
(straight line, dotted), w (x), is calculated. Right: Acting forces and moments are the external
force FE , the moment FElE connected to it, and, at both ends of the micropillar, counterforces
F0 and Fl as well as bending moments M0 and Ml.

Because the external force FE attacks at a distance from the substrate surfaces, a correspond-
ing moment is applied to the beam. Force and moment are balanced by forces and moments at
both ends of the micropillar. These arise from the deformations of the flat subtrates. In mechan-
ical equilibrium forces and moments must balance.

F0 + FE + Fl = 0 (1)

M0 + FElE + Ml + lFl = 0 (2)

For the balance of moments, Eq. 2, we omitted the force at l = 0 because it attacks at the
origin of the coordinate system. One of the central results of Euler-Bernoulli theory of beam
bending is that the deflection of the beam’s neutral axis, w (x), results from the bending moment,
M (x), acting in the beam at position x according to the following differential equation

w′′ = −
M (x)
ErI
. (3)
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Here the apostroph signifies derivation with respect to x and I the beam’s cross sectional
moment of inertia. For a circular cross-section the latter is given by πr4/4. The moments acting
in this beam are given by

For x < lE M (x) = M0 − xF0
For x > lE M (x) = M0 − xF0 − (x − lE) FE

(4)

Given two boundary conditions (usually for positions and / or tangents at the endpoints)
Eqs. 3 and 4 result in a unique solution for the shape of the neutral axis. Unfortunately, for
this specific geometry these boundary conditions must be determined in an indirect way. Our
strategy towards this end is as follows.

Because this mechanical system is statically indeterminate, the bearing reactions F0, Fl,
M0, and Ml must be determined explicitely. Here we use approximations for the distribution
of forces in slender beams (Euler-Bernoulli beams) together with the well developed theory
for the deformation of an elastic half space under the influence of surface forces, see [38,39].
From these approximations we find that the moment applied at a foundation of the beam is
directly proportional to the tangent angle at this end whereas force is directly proportional to
displacement. In other words, at both ends we find Hookean behavior with respect to torque
and force. Therefore values and first derivatives of the solution of Eqs. 3 and 4 at both end
points are equivalent to the acting forces and moments. We solve the differential equation for
the neutral axis using force and momentum at one end as arbitrary parameters, which results
in an explicit relation connecting Fl and Ml to F0 and M0. This is than inserted into force and
momentum balance, Eqs. 1 and 2. This procedure results in two equations with two unknowns
and, therefore, in a unique solution.

3 Approximate Bearing Stiffnesses

The deformations of an elastic half space under the influence of a force distribution at its surface
can be easily calculated by convolution of the force distribution with the displacement field
caused by a point force [38,39]. Based on this Maloney et al. [40] calculated the displacements
caused by a constant force that acts in a circular region of the interface. They give an explicit
equation for the displacement of the center of the circle that we use here to estimate the stiffness
of the beam’s foundation against tangential forces.

F0 = −k0w(0) with k0 =
πrEr

(1+νr)(2−νr)

Fl = −klw(l) with kl =
πrEs

(1+νs)(2−νs)

(5)

Obviously, the beam connects to an elastic material of finite thickness. Some of us have
given the displacement field for a point force acting on an elastic layer of finite thickness [21].
Based on this result Maloney et al. [40] incorporated the effects of finite thickness h. They
find a stiffening due to the finite layer thickness that decreases with increasing layer thickness.
At a layer thickness of 3.42 times the radius of the force application region this stiffening has
decreased to a mere 10% effect. Because in EPC layer thickness amounts to more than ten
micropillar radii this stiffening effect can be safely neglected.
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Some of us gave the following approximate relation between the bending moment acting on
the foundation of a micropillar emerging from an elastic layer and its angle to the normal [42].

M0 = −µ0w′(0) with µ0 =
2πEr I
3rα

Ml = −µlw′(l) with µl =
2πEsI
3rα

(6)

Here I denotes again the cross-sectional area of momentum of the beam and the numerical
factor α amounts to 1.067. This equation was derived from the force distribution acting in a
bent slender beam far away from the ends applied to the surface of an elastic half space. Here
as well the convolution with the point force response was used. Obviously, the situation in the
real bearing is more complicated. Therefore Kajzar et al. tested the validity of Eq. 6 on a macro-
scopic model and found indeed a proportional dependence of angle on torque. The experimental
proportionality factor was about 7% smaller than α [42]. Compared to the uncertainties intro-
duced by the measurement of the parameters (e.g. r, Er, Es) this level of approximation is well
acceptable.

4 The Neutral Axis

Equations 3 and 4 are easily integrated. At the point of force application, lE , the solution w and
its first derivative w′ must be continuous. The solution is

w =


a1 + a0x − 1

2
M0
Er I x2 + 1

6
F0
Er I x3 for x < lE

a1 + a0x − 1
2

M0
Er I x2 + 1

6
F0
Er I x3 + 1

6
FE
Er I (x − lE)3 for x > lE

(7)

At x = 0 w = a1 and w′ = a0. Therefore a1 corresponds to the tangential force acting at the
beam’s foundation and a0 to momentum.

5 Determination of the Bearing Reactions

As stated above, we find the integration constants of the differential equation from force and
momentum acting at x = 0.

a0 = −M0/µ0
a1 = −F0/k0

(8)

Using force balance, Eq. 1, and the stiffness at the softer interface, kl, Eq. 5, we obtain

w (l) = (F0 + FE) /kl (9)

which yields together with Eq. 7 for the neutral axis and Eq. 8 a first linear equation that relates
the bearing reactions F0 and M0.

F0
[
1/k0 + 1/kl − l3/ (6IEr)

]
+ M0l

[
1/µ0 + l/ (2IEr)

]
+

+FE
[
1/kl − (l − lE)3 / (6IEr)

]
= 0

(10)
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Now, we use similar procedures to the momentum balance. Using it, Eq. 2, the force balance,
Eq. 1, and the stiffness against torque at the softer interface, µl, see Eq. 6, we obtain

w′ (l) = [M0 − F0l − FE (l − lE)] /µl (11)

which yields together with Eq. 7 for the neutral axis and Eq. 8 a second linear equation that
relates the bearing reactions F0 and M0.

−F0l
[
1/µl + l/ (2IEr)

]
+ M0

[
1/µ0 + 1/µl + l/ (IEr)

]
−FE (l − lE)

[
1/µl + (l − lE) / (2IEr)

]
= 0

(12)

Together Eqs. 10 and 12 form a set of two linear equations for the two unkowns F0 and M0.
These solutions exist but, unfortunately, they exhibit little obvious structure besides the fact that
F0 and M0 are directly proportional to the external force FE . As the solutions are best calculated
using a computer algebra system, we refrain from quoting the very lengthy results. Instead we
reproduce the Maple (Maple 2018.2, Maplesoft, Waterloo, Ontario, Canada) code we used for
determining the solution of the equation set 10 and 12.

EI:=Er*MI;

A1:=1/k0 + 1/kl - 1/6*lˆ3/EI;

A2:=l*(1/m0 + 1/2*l/EI);

A3:=1/kl - 1/6*(l-lE)ˆ3/EI);

B1:=-l/ml - 1/2*lˆ2/EI;

B2:=1/m0 + 1/ml + l/EI;

B3:=-(l-lE)/ml - 1/2*(l-lE)ˆ2/EI;

solutions:=solve({A1*F0 + A2*M0 + A3*FE=0, B1*F0 + B2*M0 + B3*FE=0},[F0,M0]);

assign(solutions);

Into these solutions Eqs. 5, 6, and the moment of inertia are inserted and the neutral axis, Eq. 7,
is calculated explicitely. As both, F0 and M0, are directly proportional to the external force the
displacements are also.

6 Structure of the Solution

In Fig. 2 we show the shape of the normalized neutral axis (deflection divided by FE). Typical
for the behavior of slender beams is the dependence on the position of force application, lE .
Here we observe a massive softening of the response with force application further away from
the more rigid substrate. Intriguing and specific for a beam that is anchored at both ends is that
the maximum deflection moves away from the apex of the beam if force is applied closer to
the more rigid substrate, in the example of Fig. 2, left, at lE of 30 µm or less. Please note that
this maximum is not occuring at the point of force application, instead it is shifted towards the
softer substrate. Therefore a hypothetical cell that applies a force at one point will experience a
compliance that is not determined by the maximum of the neutral axis, i.e. the maximum deflec-
tion, but by the deflection of the micropillar at the point of force application. The course of this
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Figure 2: Behavior of the normalized deflection of the micropillar. Parameters throughout:
l = 50 µm, r = 5 µm, Er = 1.3 MPa, νr = νs = 1/2. Left: Neutral axes, w(x), divided by acting
force, FE . Es = 15 kPa, numbers at the individual curves give lE in µm. Right: The normalized
deflection of the micropillar at the point of force application, w(lE)/FE , numbers at curves give
Er/Es.

experienced or effective compliance is also shown in Fig. 2. If both flat substrates are of com-
parable stiffness, the experienced compliance displays a pronounced maximum at intermediate
heights, whereas at very large differences between both stiffnesses, the experienced compliance
is highest at the apex in contact with the soft substrate and approaches the behavior expected for
a usual micropillar.
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Figure 3: Normalized deflections of the micropillars (neutral axes, w(x), divided by acting force,
FE). Parameters: l = 50 µm, r = 5 µm, lE = 50 µm, Er = 1.3 MPa, νr = νs = 1/2, numbers at
curves give Er/Es.

With decreasing rigidity of the soft substrate displacements of the micropillar increase strongly.
However, even at extrem softness, in the example of Fig. 3 at 130 Pa, displacements are still
lower than for a micropillar that is not connected to a second substrate (in Figs. 2 and 3 indi-
cated by ‘∞’).

For a further comparison to the familiar behavior of a micropillar with one free end we note
that in this case the full force (FE) and the full moment (FElE) are transmitted to the more rigid
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substrate, i.e. here F0 = −FE and M0 = −FElE . These values were compared with the force, F0,
and moment, M0, transmitted to the more rigid substrate. In this procedure the stiffening effect
of the soft substrate became very obvious. At the values realized in EPC (Er/Es = 82) all the
‘soft’ part of the system is dominated by force and momentum transfer to the soft substrate. Only
at extremely low Young’s moduli of the softer substrate the system approaches the behavior of a
micropillar with one free end.
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Figure 4: Force and momentum transfer to the rigid substrate. Parameters throughout: l =
50 µm, r = 5 µm, Er = 1.3 MPa, νr = νs = 1/2. Numbers at curves give Er/Es. Left: force
transfer. Right: momentum transfer. For a micropillar with one free end relative force and
momentum transfer amount to exactly 1.

7 Typical Values and Error Budget

For practical purposes the most important result of our calculation is that external force, FE , and
displacement, w (x), are directly propotional, albeit with a lengthy parameter of proportionality
that depends on many parameters. With the above equations it is straightforward to calculate this
proportionality constant and, thus, forces from displacements. Estimates for the uncertainties of
measured forces, ∆F, were calculated using Gaussian error propagation.

∆F
F
=

√√√ 9∑
i=1

b2
i with bi =

dF
dai

∆ai

F
(13)

Where ai denote the nine different parameters and ∆ai their uncertainties.
In Table 1 we present typical parameter values and their uncertainties. For r, Er, and Es aver-

ages and standard deviations from repeated calibrations were used. For l the average micropillar
height from repeated preparations was used, uncertainty is given by the accuracy of focussing
the apex of the microcolumn. Poisson ratios were determined by stretching of cylindrical test
pieces [41]. We found a value of 0.5, as expected for ultrasoft elastomers. The uncertainty of
0.02 is an estimate. The measurement height, x was set to be 45 µm, its uncertainty is determined
by how exact the surface of the flat substrate part can be focused. In this example we arbitrarily
assumed a deflection of 1 µm, its uncertainty was estimated from the accuracy of relocalization
of the fluorescent marker beads in the microcolumns (see main text). A major source of uncer-
tainty is the height of force application, lE because neither cell adhesion complexes nor the force
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Parameter Mean Value Uncertainty ∥bi∥

r 5.03 µm 0.25 µm 7.77%
l 51.4 µm 2 µm 3.70%

lE 45 µm 5 µm 8.41%
Er 1.27 MPa 0.16 MPa 2.49%
Es 15.5 kPa 2.2 kPa 11.4%
x 45 µm 0.5 µm 0.84%
w 1 µm 0.1 µm 10%
νr 0.5 0.02 4 · 10−15

νs 0.5 0.02 6 · 10−22

Table 1: Average values of parameters, their uncertainties, and contributions to the overall mea-
surement uncertainty. For definition of bi, see Eq. 13. At these specific parameters, deflection w 
of 1 µm corresponds to a force of 162 nN. Overall uncertainty is in this example 19.5%.

producing cytoskeleton could be imaged. Our estimate simply arises from the maximum height 
of a cell that is adhered to the soft substrate, a correspondingly large uncertainty was assumed.

The overall uncertainty of force measurement of 19.5% is dominated by the contributions 
of Es (11.4%), w (10%), lE (8.4%), and r (7.8%). The large uncertainty contributed by the 
elasticity of the soft substrate reflects the experimental challenges in the preparation of ultrasoft 
elastomers. The overall uncertainty is similar to the one given by Kajzar et al. for force mea-
surement with free micropillars [42]. In view of these significant experimental uncertainties a 
more elaborate treatment of the mechanics of this system, e.g. by finite element simulations or 
by including rounding of the beam’s apex, seems not justified.

Calculated from the parameters given in Table 1 the stiffness o f E PC f or a  f orce applied 
at the soft substrate, i.e. the point of lowest stiffness, i s 162 m N/m, well i n t he r ange of soft 
cantilevers for surface force microscopy.
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