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Abstract: The volume reduction of the gray matter structures in patients with Alzheimer’s disease
is often accompanied by an asymmetric increase in the number of white matter fibers located close
to these structures. The present study aims to investigate the white matter structure changes in the
motor basal ganglia in Alzheimer’s disease patients compared to healthy controls using diffusion
tensor imaging. The amounts of tracts, tract length, tract volume, quantitative anisotropy, and general
fractional anisotropy were measured in ten patients with Alzheimer’s disease and ten healthy controls.
A significant decrease in the number of tracts and general fractional anisotropy was found in patients
with Alzheimer’s disease compared to controls in the right caudate nucleus, while an increase was
found in the left and the right putamen. Further, a significant decrease in the structural volume of the
left and the right putamen was observed. An increase in the white matter diffusion tensor imaging
parameters in patients with Alzheimer’s disease was observed only in the putamen bilaterally. The
right caudate showed a decrease in both the diffusion tensor imaging parameters and the volume in
Alzheimer’s disease patients. The right pallidum showed an increase in the diffusion tensor imaging
parameters but a decrease in volume in Alzheimer’s disease patients.

Keywords: DTI; Alzheimer’s disease; basal ganglia; white matter; compensatory changes

1. Introduction

Structural changes of the basal ganglia (BG) are typically the domain of the neurode-
generative diseases, such as Parkinson’s disease (PD). Conversely, there are not many
studies of the white matter (WM) changes around the principal BG (e.g., putamen, caudate
and pallidum) in Alzheimer’s disease (AD). In a three-year longitudinal study of AD,
unilateral atrophy in the right caudate nucleus and bilateral atrophy in the putamen was
reported [1]. However, after the progression of AD over time this atrophy was also found
in the left caudate nucleus [1]. Besides the morphological changes, the differences in the
BG perfusion were also found in AD. For example, hyperperfusion in the right putamen
and in the head of the right caudate nucleus was observed in magnetic resonance imaging
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(MRI) in AD [2]. Thus, it is plausible that changes in the perfusion of the BG may lead
with time to hypo- or hypertrophy of the WM located nearby [3,4]. Even though these
changes in the perfusion may be typical for vascular dementia, hyper-perfusion could lead
to the opposite effect, such as an increase in the structural and functional parameters. In
the carriers of the apolipoprotein E (APOE) epsilon 4 allele with AD, the regional blood
supply to many areas of the cerebral cortex and subcortical structures was significantly and
asymmetrically reduced. [5].

Both diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) are promis-
ing methods that can be used to assess the microstructure of axonal bundles and depict
the axonal integrity of both normal and pathological brain tracts based on the diffusion
properties of the brain tissue [6].

In our previous study [7], we found a significant reduction in the diffusion tensor imag-
ing parameters in the fornix of AD patients compared to controls, likely due to neuronal
degeneration and white matter loss. However, we simultaneously observed a surprising
increase in values of tractographic parameters in the subcallosal area and the paraterminal
gyrus in the patients with AD compared to the control group. Our explanation was that
the patients with AD compensate for the loss of the ability to consolidate memory by
redirecting and utilizing other structures, such as the subcallosal area and the paraterminal
gyrus, especially if the fornix fibers are affected at the same time.

Given our previous data on DTI-based tractography demonstrating asymmetrical
compensatory changes in the white matter structure of the subcallosal area and the parater-
minal gyrus in AD patients, the present research aimed to determine whether there are
compensatory changes in the findings related to the white matter diffusion tensor imaging
data in the motor basal ganglia of the AD patients compared to the healthy controls. Our
hypothesis was that the AD patients would show an increase in the DTI parameters (NT
and/or QA) in some but not all of the BG compared to the healthy controls.

2. Materials and Methods
2.1. Subjects/Participants

In this study, we recruited 10 patients with a confirmed AD diagnosis and 10 healthy
controls (Table 1). MRI and mini-mental state examination (MMSE) tests were performed
on all subjects at the Alzheimer’s Disease Center, Department of Neurology, Third Faculty
of Medicine, Charles University, Prague, Czech Republic. For the purpose of the study, we
used two groups of participants: (1) patients with mild cognitive impairment and dementia
caused by AD according to NIA-AA criteria [8,9] and (2) cognitively normal older adults.
At the beginning of the study, there was a separate third MCI patient group, which was
classified as the AD group later since all the MCI group participants got diagnosed with AD
by the end of the study. The AD diagnosis was made by an experienced neurologist through
a thorough neurological and neuropsychological examination, functional assessments,
blood work-up, brain MRI, single photon emission computed tomography (SPECT), and
measurements of the total and phosphorylated tau proteins as well as β-amyloid peptides in
the cerebrospinal fluid upon the patients’ consent to a lumbar puncture [10]. Most patients
with the diagnosis were followed up for several years before they showed a cognitive and
functional decline. Adults (controls) with normal cognitive abilities were recruited for the
study at the University of the Third Age (adult education courses) of the Third Faculty
of Medicine, Charles University, Czech Republic. These had normal MMSE scores (given
recent Czech norms and limits) for mild AD [11]. In the control group, only those who
were over 70 years of age were selected in order to stay consistent with the age of the AD
patients. For a more detailed description, see our previous article [6]. The research was
approved by the Ethics Committee of the Prague Psychiatric Center/National Institute of
Mental Health and the Human Ethics Committee of the Third Faculty of Medicine, Charles
University, Prague, Czech Republic, (Protocol No. 2016/3), and informed consent was
obtained for all patients according to the Declaration of Helsinki.
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Table 1. Characteristics of AD and control group.

AD Group Control Group p Values

Numbers of participants 10 10
Age at scan (years) 70.1 ± 6.5 67.6 ± 4.2 n.s
Education (years) 13 ± 1 14 ± 6 n.s
Male/female sex 6/10 5/10 n.s

MMSE score (0–30 pts.) 21 ± 3 29 ± 8 p < 0.001
Data are expressed as mean ± standard deviation. MMSE—the Mini-Mental State Examination,
n.s.—not significant.

2.2. MRI Data Acquisition

All the recruited subjects in the present study were scanned on a 3T MRI scanner
(Siemens Magnetom Trio, Erlangen, Germany) using a 24-channel head coil (adaptive coil
combine mode was used) according to the following procedure:

(1) T1-weighted 3D MPRAGE had the following parameters: voxel size of 0.85× 0.85× 0.85 mm3,
192 sagittal slices, TE of 4.73 ms, TR of 2000 ms, flip angle of 10◦, FOV of 326 mm, and
TA:10:42 min.

(2) 3D T2-weighted FLAIR had the following parameters: voxel size of 1 × 1 × 1 mm3,
176 sagittal slices, TE of 422 ms, TR of 6000 ms, FOV of 256 mm, and TA: 6:38.

(3) Diffusion-weighted images using SE EPI sequence had the parameters: voxel size
of 2 × 2 × 2 mm3, TR of 6000 ms, TE of 93 ms, 44 axial slices, three averages, FOV
of 256 mm, number of diffusion directions 20, and two b values: 0, 1000 s/mm2,
TA: 6:38 min.

2.3. DTI Analysis

The DTI data were adjusted for distortion and countercurrents using the FSL Studio
program (www.fmrib.ox.ac.uk/fsl/index.html, accessed on 8 March 2023). For correction of
the head motion and eddy current distortion, the Eddy program within FSL (version 6.0.1)
was used [12]. The DTI image set having b = 0 EPI was co-registered to T1-weighted 3D
MPRAGE to obtain a co-registration matrix; this was further used for other EPI diffusion
images. FLIRT (FMRIB’s Linear Image Registration Tool), which is a fully automated
robust tool for affine (linear) inter- and intra-modal registration, was used [13]. A Tri-
Linear interpolation method in the final (reslice) transformation was performed using
FLIRT/Advanced Options.

The potential influence of various factors leading to bias (e.g., use of only one MRI
scanner or system errors) or distortion in the results is discussed in our previous article [7].

2.4. Anatomical Considerations

All the analyzed BG structures were manually delineated by two experienced anatomists
to precisely differentiate between the GM and the WM structures (the internal and the
external capsule). All the DTI parameters were measured on the WM surrounding the
BG, although the BG themselves were used as a landmark for the anatomical orientation
in the WM (see the supplementary material videos: R caudate ROI, R pallidum ROI, and
L putamen ROI).

2.5. DTI Data Reconstruction

The diffusion-weighted imaging (DWI) data were first corrected for distortions and
countercurrent effects using the FSL; then, the data were evaluated in the DSI studio using
the generalized q-sampling imaging (GQI) algorithm with the Q-space diffeomorphic
reconstruction (QSDR), thus reconstructing the data in the MNI space. QSDR is a model-
free method that calculates an approximate density distribution of diffusing water in a
standard space to preserve the orientation of fibers so that they can be traced [14]. The
diffusion gradient table (see the Supplement Table S1) was rotated for each data unit
according to the co-registration matrix before proceeding with the QSDR.

www.fmrib.ox.ac.uk/fsl/index.html
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2.6. Tractography

The fiber tracking was performed using the following tracking parameters: the
anisotropy (nQA) threshold was set at 0.05, the angular threshold was 60◦, and the step
size was 1 mm. The tracts that were less than 60 mm in length were not counted. A total of
1,000,000 seeds were placed. The obtained values were used for further statistical procedures.

2.7. Measured Parameters

The DTI tractography resulted in the following values and parameters: the number of
tracts (NT), tract length (TL), tract volume (TV), quantitative anisotropy (QA) as a marker
of the tract directionality, and general fractional anisotropy (GFA) as a marker of the tract
connectivity (Table 2). These parameters were analyzed further.

Table 2. Overview of the DTI parameters in patients with Alzheimer’s disease and controls.
NT = the number of tracts, TL = tract length, TV = tract volume, QA = quantitative anisotropy,
nQA = normalized quantitative anisotropy, GFA = generalized fractional anisotropy, unit = stands
for absolute numbers, AD = Alzheimer‘s disease patients, ctrl = healthy control group. The data are
reported as mean values ± standard deviation (SD); * p ≤ 0.01, ** p ≤ 0.001.

NT (Unit) nQA (Unit) TV (mm3) GFA (Unit) QA (Unit) TL (mm)

right caudate ctrl 10,945 ± 2816 * 0.13 ± 0.05 46,594 ± 16,341 0.1 ± 0.004 0.6 ± 0.13 71 ± 11.1

right caudate AD 7667 ± 3557 * 0.17 ± 0.05 39,382 ± 18,303 0.09 ± 0.006 0.62 ± 0.13 68.6 ± 15

left caudate ctrl 13,873 ± 3813 0.13 ± 0.05 55,388 ± 16,471 0.1 ± 0.005 0.61 ± 0.13 77.6 ± 8.1

left caudate AD 10,527 ± 5558 0.18 ± 0.06 46,135 ± 21,453 0.1 ± 0.01 0.66 ± 0.15 74.6 ± 16.2

right pallidum ctrl 18,202 ± 3649 ** 0.15 ± 0.06 * 87,140 ± 30,651 0.11 ± 0.003 0.68 ± 0.1 110 ± 16.8

right pallidum AD 24,882 ± 5633 ** 0.21 ± 0.05 * 107,239 ± 23,390 0.11 ± 0.003 0.74 ± 0.14 115.8 ± 16

left pallidum ctrl 20,728 ± 4002 0.15 ± 0.06 * 92,296 ± 23,687 0.11 ± 0.005 0.7 ± 0.09 116.3 ± 13.4

left pallidum AD 24,105 ± 6108 0.21 ± 0.05 * 102,759 ± 23,521 0.11 ± 0.005 0.74 ± 0.15 117.8 ± 19.3

right putamen ctrl 27,172 ± 5618 ** 0.13 ± 0.05 * 102,896 ± 35,726 0.1 ± 0.004 0.62 ± 0.12 98.2 ± 15.9

right putamen AD 38,715 ± 9724 ** 0.19 ± 0.05 * 127,691 ± 30,643 0.1 ± 0.005 0.7 ± 0.12 104 ± 9.7

left putamen ctrl 35,368 ± 4250 * 0.15 ± 0.06 * 115,491 ± 23,729 0.1 ± 0.004 0.68 ± 0.11 104.6 ± 11.3

left putamen AD 42,603 ± 9387 * 0.2 ± 0.05 * 128,184 ± 29,395 0.1 ± 0.007 0.74 ± 0.16 107.8 ± 15

2.8. FreeSurfer Volume Analysis

The MRI images were processed with the latest version of the freely available re-
construction software FreeSurfer (FS) (version: v6.0; http://surfer.nmr.mgh.harvard.edu
(accessed on 8 March 2023)). This software creates a virtual 3D reconstruction of the brain
structures from magnetic resonance images [15]. The DICOM MRI images from the AD
patients and controls were transferred to the FS software environment in a standard way.
For the purpose of the study, the values of the basal ganglia volumes, and the total brain
volume (white and grey matter) were used. After processing, all the data were stored in an
Excel spreadsheet for further statistical evaluation.

2.9. Statistical Analysis

The statistical analysis was performed using the STATISTICA 13 software and the R
statistical computing environment [16]. The two-way ANOVA with repeated measures was
applied for the analysis of the two independent groups (the AD patients and controls) and
the two dependent variables (the left and the right side). The Wilks lambda test was used to
evaluate the differences between the AD and control groups with the left and right sides as
variables for both the DTI analysis and the FreeSurfer volumetric analysis (Tables 2 and 3).
Pearson correlation coefficients were calculated to assess the relationship between the
measures taken for the same person at different locations (Figure 1). Subsequently, we tested
the differences in these correlations computed in the AD and control groups separately,

http://surfer.nmr.mgh.harvard.edu
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using the Fisher z-transform [17] and the two-sided test (for which we cite p-values). In
particular, we tested the AD versus control difference in correlations for both the number of
tracts and the connectivity characteristics, comparing—(i) the laterality (correlating the left
and the right value of the same patient) of the putamen, pallidum, and the caudate, (ii) the
structure (correlating the putamen, pallidum, and the caudate, separately for the left and
right hemisphere), and then (iii) the structure segmentation volume (correlating the brain
segmentation volumes in the putamen, pallidum, and the caudate, separately for the left
and right hemisphere), plus (iv) the number of tracts/connectivity related to the volume
of the putamen, pallidum, and the caudate. We acknowledge that different characteristics
(like the number of tracts on the left and on the left) might be, to some extent, correlated.
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Figure 1. Comparison of the number of tracts, connectivity, and volume in the caudate, pallidum,
and putamen (Pearson correlation coefficients). Upper panels: left pallidum vs. left caudate, number
of tracts. Middle panels: right pallidum vs. right caudate, number of tracts. Bottom panels: right
putamen volume vs. right putamen connectivity. AD—Alzheimer’s disease patients; C—controls.
Values on the x- and y-axis are reported in absolute units.
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Table 3. The difference in the basal ganglia structures volumes and the total brain volume in
Alzheimer’s disease patients and controls as estimated by FreeSurfer. The values are reported in µm3,
n.s. = not significant.

Structure AD Patients Controls p-Value

left caudate 3016.7 3304.8 n.s.

left putamen 3656.5 4302.2 p = 0.01

left pallidum 1843.1 1747.9 n.s.

right caudate 3043.4 3321.4 n.s.

right putamen 3487.3 4283.9 p = 0.01

right pallidum 1897.5 1813.8 n.s.

brain segmentation volume 10.1 × 105 10.37 × 105 n.s.

The volume datasets from the FS program were extracted, converted into Excel spread-
sheets, and subsequently processed in the STATISTICA software.

3. Results

The age, education, sex, and MMSE score comparison between the AD patients and the
healthy controls are shown in Table 1. The samples of the 3D rotatory videos of the caudate,
pallidum, and putamen DTIs, as well as their ROIs, are included in the supplementary
material (Caudate AD, Caudate ctrl, Pallidum AD, Pallidum ctrl, Putamen AD, Putamen
ctrl; R caudate ROI, R pallidum ROI, L putamen ROI).

3.1. DTI Analysis

Differences between the AD patients and the healthy controls were observed only
in the NT and the normalized quantitative anisotropy (nQA). There were no significant
differences in the TL, TV, and QA, as reported in Table 2.

3.2. Number of Tracts (NT)

Compared to the controls, the patients with AD (AD ± SD/ctrl ± SD) showed de-
creased NT in the right caudate (7667 ± 3557/10,945 ± 2816) and increased in the right
pallidum (24,882 ± 5633/18,202 ± 3649), the right putamen (38,715 ± 9724/27,172 ± 5618,
and the left putamen (42,603 ± 9387/35,368 ± 4250) (Figure 2, Table 2).

3.3. Normalized Quantitative Anisotropy (nQA)

Patients, compared to controls, showed higher nQA values in the right pallidum
(0.21 ± 0.05/0.15 ± 0.06), left pallidum (0.21 ± 0.05/0.15 ± 0.06), right putamen
(0.19 ± 0.05/0.13 ± 0.05), and the left putamen (0.2 ± 0.05/0.15 ± 0.06) (Table 2).

3.4. FreeSurfer Volume Analysis

The differences between the patients with AD and the controls were observed in the
volume of the left and right putamen and in the nucleus accumbens area. On the other
hand, no significant differences were observed in the left and right caudate nucleus and
also in the brain segmentation volume. Further, a volume decrease in the right and left
putamen was found in the AD patients in comparison to controls (respectively, 3487.3 µm3

vs. 4283.9 µm3 and 3656.5 µm3 vs. 4302.2 µm3), as reported in Table 3.
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Figure 2. Examples of DTI changes in AD patients compared to controls on coronal sections for
different brain regions (the right caudate, right pallidum, and the left putamen).

3.5. Pearson Correlation Coefficients

Significant changes in the correlations of several characteristics were observed between
the patients with AD and the controls. In particular, the correlation between the number
of tracts in the left pallidum and the number of tracts in the left caudate was 0.609 for the
controls and −0.493 for the AD patients. The difference was highly significant, with the
p-value = 0.019. The correlation between the number of tracts in the right pallidum and
the number of tracts in the right caudate was 0.691 for the controls and −0.566 for the AD
patients; hence, their difference was highly significant, p-value = 0.005. The correlation
between the right putamen connectivity and the right putamen volume was −0.367 for
the controls and 0.678 for the AD patients; hence, their difference was significant, with the
p-value = 0.04. The qualitative differences in correlation patterns between the AD patients
and the controls are shown graphically in Figure 1.



Cells 2023, 12, 1220 8 of 11

4. Discussion

DTI is challenging, and the fiber tract reconstruction depends on the quality of the
diffusion data. The theoretical basics and a number of factors influencing the reconstruction
results are covered in the literature [18,19].

For example, the gradient field inhomogeneity causes artifacts that affect the results of
the reconstructed fibers. The gradient field can be efficiently mapped using the b-matrix
spatial distribution in DTI (BSD-DTI) technique to correct the magnitude and the direction
of the diffusion gradient [20].

In our study, the nQA parameter has been used for the fiber tracking (FT) instead of
the FA due to the fact that QA-aided tractography has reached a better resolution and is
less sensitive to partial volume effects of the crossing fibers than the tractography based on
the FA [21]. FA is defined for all the fiber populations within a voxel and suffers from the
partial volume effect.

Therefore, the data were reconstructed using the DSI studio with the GQI method.
GQI is a free model that can be applied to any diffusion scheme that provides a quantitative
anisotropy (QA) parameter, which is based on the spin distribution function (SDF) of
diffusing water at different orientations. QA measures the spin density of anisotropy along
a fiber pathway for each fiber population and contributes to more reliable tractography.
QA can be normalized (nQA), which stabilizes the proton density across subjects [22].

An increase in values of the quantitative DTI parameters in the WM of the AD patients
was observed only in the left and the right putamen, while their volumes were reduced
compared to the controls. The right caudate showed, as expected, a decrease in both the DTI
parameters and the volume in the AD patients compared to the controls. The right pallidum
showed, similarly to the putamen, an increase in the DTI parameters but a decrease in
volume in the AD patients compared to the controls.

An increase in the values of the quantitative DTI parameters of the WM observed in AD
patients suggests the plasticity of specific tracts. The question is whether the whole process
should be labeled as degeneration. Deposition of the amyloid plaques and deposits is
typically present at the inferior part of the temporal lobe and the posterior cingulum [10,23].
These are also anatomical targets of the projections that undergo the WM hypertrophy or
increase in the tract fibers on the DTI.

Why is there a decrease in the number of tracts in the caudate nucleus but an increase
in the pallidum and the putamen? When considering the loops of the BG circuits, the
motor loop skips the caudate nucleus but not the pallidum and the putamen. On the
contrary, the executive/associative loop of the BG skips the putamen but deploys the
caudate nucleus [24]. Since the motor skills are not affected in the early and mid-stages of
AD, while cognition and memory decline, the observed compensatory WM hypertrophy
in the putamen and the pallidum does not seem to be effective even though it is present.
Since the caudate nucleus inhibits the pallidum, the increase in the WM of the pallidum
could be due to its spontaneous activation after the caudate atrophies.

Given that the caudate is evolutionarily older compared to the relatively younger
putamen [25], we hypothesize that the caudate could be the first to suffer the loss of struc-
ture and function. Thus, the putamen may not undergo neurodegeneration so easily; it
could stay intact for longer and may, to some extent, substitute for the loss of function
of the caudate. However, the observed caudate/putamen volume ratio in early caudate
dysfunction in PD patients suggests this is not the case [26]. Although the WM compen-
satory changes in AD on the DTI were not described frequently, they were observed in
PD [27], Tourette’s syndrome [28], schizophrenia, and bipolar disorder [29,30]. Interestingly,
increased connectivity in the right caudate nucleus was observed in cognitively normal
PD patients [31].

Recently, we proposed that an increase in values of the quantitative DTI parameters
of the WM in the subcallosal area and the paraterminal gyrus is an aftermath of the
hippocampal atrophy [7,32]. We now propose another structural/functional compensatory
mechanism for hippocampal atrophy in AD in terms of the BG white matter volume
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increase. The reason for this compensatory hypertrophy could be their participation in
the association loop of the BG circuit (association cortex—BG—thalamus—cortex). This
circuit is responsible not only for motor skills but also for memory formation (emotional
memory and positive reward reaction, episodic memory, and association cortices bound to
memory formation).

In AD, attention has been paid to the brain areas with clinically proven morphological
atrophy (the hippocampus, various cortical areas, the brain stem, and others). Recently,
there were attempts to include clinical diagnostics and atrophy of neuroanatomical hetero-
geneous areas, i.e., basal forebrain cholinergic system [33].

We suggest another option: what if there are numerous compensatory shifts in mo-
tor/association/sensory and other brain structures, including the tracts in AD patients,
detectable on the DTI (such as NT, TL, TV, QA, and GFA) that manifests by default when
the atrophied primary memory circuits fail to work properly?

Limitations of the study: A small sample size (10 subjects) of our study represents
some limitations; the observed asymmetric changes may be the result of a small sample,
and further study with more patients is needed to confirm our conclusions. White matter
changes around the basal ganglia were not specifically parcellated into the afferents or
the efferents, nor were they classified into any kind of intrinsic or extrinsic projections in
regards to the cortex, the brain stem, or the diencephalon. This way, it was compared only
to the sum of three-directional projections between the AD patients and the controls. For
future research it would be good to compare the DTI-based tractography of separate tracts
and pathways of the BG in AD patients and controls, the cortical ones in particular.

5. Conclusions

Our data show there is an asymmetrical increase in the DTI parameters in patients
with AD, which is consistent with our hypothesis stating that the same pattern may appear
in other brain areas as well (which has not been proven yet). More specifically, a decrease
in the volume of the left and the right putamen in the AD patients compared to controls
was expected when measured by the FS. Interestingly, there was an increase in the NT in
their proximity. If this was the effect of the compensatory changes (i.e., reduced volume of
the structure and an increase in the amount of the WM fibers around it), then it remains
unclear why the pallidum or caudate would not show a similar compensatory effect as
well. Moreover, the timing of these changes remains unclear. Do they arrive prior to the
decrease in the volume of the putamen and the increase in the white matter NT follows, or
is it the other way around? Or rather, do all the changes occur relatively simultaneously?

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells12091220/s1; Supplementary material contains nine example
videos (AVI format) of DTI tractography and region of interest (ROI) delineation of caudate, pallidum,
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