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Abstract: The evolutionary conserved WNT signaling pathway orchestrates numerous complex
biological processes during development and is critical to the maintenance of tissue integrity and
homeostasis in the adult. As it relates to the central nervous system, WNT signaling plays several
roles as it relates to neurogenesis, synaptic formation, memory, and learning. Thus, dysfunction of
this pathway is associated with multiple diseases and disorders, including several neurodegenerative
disorders. Alzheimer’s disease (AD) is characterized by several pathologies, synaptic dysfunction,
and cognitive decline. In this review, we will discuss the various epidemiological, clinical, and
animal studies that demonstrate a precise link between aberrant WNT signaling and AD-associated
pathologies. In turn, we will discuss the manner in which WNT signaling influences multiple
molecular, biochemical, and cellular pathways upstream of these end-point pathologies. Finally, we
will discuss how merging tools and technologies can be used to generate next generation cellular
models to dissect the relationship between WNT signaling and AD.

Keywords: WNT; Alzheimer’s disease; central nervous system; amyloid; tau; inflammation; synaptic
function

1. Introduction

Alzheimer’s disease (AD) affects over six million individuals in the U.S. and has
a direct cost estimated in excess of USD 400 billion/year [1]. Broadly speaking, there
are two forms of AD—early-onset, familial AD (FAD) and late-onset-sporadic AD (SAD).
Numerous molecular signaling pathways have been implicated in both FAD and SAD. In
particular, aberrant WNT signaling, an evolutionary conserved pathway that orchestrates
numerous biological processes, has been implicated in the manifestation and propagation of
AD-related phenotypes. Thus, a more thorough understanding of how dysfunction in WNT
signaling leads to onset and age-related progression of AD will lead to the development of
therapeutic interventions.

To that end, this review will first detail the molecular mechanisms and key pathological
features of AD. We will also provide an overview of the WNT signaling pathway. Next, we
will discuss the in vitro, in vivo, and clinical evidence that exists for a relationship between
AD and the WNT pathway. In turn, we will describe the various potential mechanisms
by which the WNT pathway modulates AD-related molecular and cellular pathologies.
Finally, we discuss emerging tools and technologies that can be employed to further
dissect the mechanisms by which WNT signaling induces AD-associated pathologies and
cognitive dysfunction.

2. Alzheimer’s Disease

Classical neuropathological hallmarks of AD include extracellular aggregation of amy-
loid plaques and neurofibrillary tangles formed by the aggregation of hyperphosphorylated
tau [2]. Additional pathologies such as cortical thinning and atrophy attributed to synaptic
and neuronal loss have been observed throughout the disease progression [2]. In addition
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to these pathological features, post-mortem analysis of AD individuals reveal evidence of
cerebral angiopathy and systemic brain inflammation [3]. However, the hierarchy of these
pathologies and how they result in cognitive decline in AD patients remains uncertain
and highly debated [4]. In this section, we will highlight the well-established pathological
mechanisms and features of AD.

2.1. Amyloid-β (Aβ) Induced Pathologies in AD

In the strictest form of the amyloid cascade hypothesis, generation, and subsequent
oligomerization of Aβ is the key step that leads to elevated phosphorylated-tau, inflam-
mation, and subsequent neuronal loss. In the central nervous system, neurons act as
the primary producers of Aβ from the amyloidogenic processing of amyloid precursor
protein (APP) whereas non-neuronal cells, such as astrocytes and microglia, facilitate its
clearance [5]. The imbalance in these processes is thought to be a primary driver of elevated
extracellular Aβ levels found in AD patients [6,7]. Extracellular Aβ takes on different struc-
tures as accumulation increases, beginning first as Aβ oligomers and progressing as fibrils
and lastly senile plaques. It has been speculated that these different forms may contribute
to neurodegeneration during different stages of AD [8]. The aggregation of Aβ has been
shown to produce toxins and reactive oxygen species which disrupt neuronal membranes
by impairing the function of ion-motive ATPases, glucose transporters, and glutamate
transporters disrupting neuronal membranes and ultimately resulting in dysfunction of
normal cell physiological processes and eventual synaptic and neuronal loss [9–11].

Once synthesized, APP is transported through the secretory pathway by moving
from the endoplasmic reticulum (ER) through the Golgi complex and trans-Golgi net-
work to the plasma membrane [12–14]. During transit, APP can be subject to extensive
post-translational modifications, including phosphorylation [15]. At the plasma mem-
brane, APP can be processed in the non-amyloidogenic pathway through cleavage by
α-secretase to release soluble sAPPα. The remaining α-C-terminal fragment (α-CTF) is
further processed by γ-secretase which produces the p3 peptide and the APP intracellular
domain (AICD). Alternatively, APP not processed in the non-amyloidogenic pathway
is internalized from the cell surface through clathrin-mediated endocytosis and enters
early endosomes [14]. From early endosomes, a subset of APP molecules can undergo
recycling to the cell surface [16,17]. Alternatively, maturation of early endosomes into late
endosomes where the acidic environment elicits β-secretase cleavage generates soluble
sAPPβ and the β-C-terminal fragment (β-CTF). Subsequent cleavage by γ-secretase leads
to the generation of Aβ. The resultant Aβ species are either targeted for degradation in
the lysosome or release into the extracellular space via exocytosis. Several proteolytic
enzymes function to degrade Aβ including neprilysin, endothelin converting enzymes
1 and 2, insulin-degrading enzyme, and plasmin [18]. Extracellular Aβ can be found in
many different forms in the brain including monomers that can form structures such as
oligomers, protofibrils, and amyloid fibrils [18]. Oligomers are a soluble form of Aβ found
throughout the brain and amyloid fibrils are large and insoluble structures that later form
amyloid plaques.

In AD patient brains, the various cleaved products of APP amyloidogenic processing
accumulate inside neurons [19]. In particular, increased intraneuronal accumulation of
CTF-β in enlarged endosomal compartments is a pathological hallmark of AD progression
and thought to contribute, in part, to downstream synaptic loss [17]. In addition, it has
been speculated that impaired lysosomal function could cause a shift from intraneuronal
Aβ degradation to an increase in extracellular Aβ release [20–22]. In particular, it has been
suggested in the context of FAD-related mutations that reduced lysosomal degradation
of proteins is a consequence of alterations in lysosomal pH [23,24]. Along similar lines,
dysfunction of proteolytic enzymes associated with degradation of Aβ were found to cause
a deposition of Aβ plaques in the cerebrum [25].

Astrocytes and microglia play a critical role as it relates to extracellular Aβ uptake and
degradation [26]. Aβ can be endocytosed by astrocytes through indirect or direct association
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with APOE in the context of several receptors mainly LDLR, LRP1, and HSPG [27–29].
With respect to microglia, it has been shown that TREM2 binds to APOE to facilitate uptake
of Aβ [30]. After receptor-mediated endocytosis, Aβ traffics through the early and late
endosomes to the lysosomes for degradation [31,32]. In addition to uptake by astrocytes
and microglia, Aβ can be cleared from the extracellular space through transport across the
brain to the blood–brain barrier (BBB). The exchange of Aβ across the BBB is regulated by
the receptors RAGE [33] and LRP1 [33,34].

As it relates to AD, recent studies have suggested that the amyloid pathologies that
are more commonly associated with genetic risk factors might be due to endocytic defects
associated with Aβ uptake in glia cells [35,36]. Along similar lines, impairment of Aβ

endosomal trafficking to the lysosomes can lead to defective Aβ uptake [31,37,38]. In
particular, defective lysosomal degradation observed in older adults and FAD patients
has been implicated in contributing to AD pathogenesis [39–43]. In addition, it has been
demonstrated that defective clearance of Aβ across the BBB may contribute to the buildup
of neurotoxic Aβ associated with AD [44].

2.2. Tau-Related Pathways in AD

Tau is an unfolded hydrophilic protein largely present in the axons of developing
neurons and encoded by the MAPT gene [45–48]. In vitro studies have shown that tau
functions to promote microtubule assembly and maintain stability [49]. However, in vivo
studies have revealed opposing functions as knockout or knockdown of tau did not show
impaired microtubule assembly or axonal transport in primary neurons [50–52]. Studies
using tau knockout mice suggest that overt phenotypes are not observed due to functional
compensation by other microtubule associated proteins such as MAP1A, MAP1B, and
MAP2 [53–55]. This finding is further supported by evidence from humans developing
normally despite disease-causing mutations that result in loss or aberrant production of
tau [56].

In healthy neurons, tau functions in synaptic activity in the postsynaptic compartment
where it associates with microtubules in axons, as well as dendrites at the post-synapse
under pathological conditions [57,58]. Studies have revealed that tau plays a role in
maintaining neuronal projections that affect synaptic function by acting as a promoter
of axonal microtubule assembly [59–61]. In turn, synaptic function may be impaired
due to loss of tau binding to microtubules. In vivo investigations of tau-deficient mice
showed impairment of synaptic potentials and defects in spatial reversal learning [62,63].
Another study discovered that tau knockdown in the adult hippocampus impaired motor
coordination and caused morphological synaptic defects [64].

Neurofibrillary tangles (NFTs) consisting of hyperphosphorylated tau are a patho-
logical hallmark of AD [65]. In AD brains, hyperphosphorylated tau levels are three- to
four-fold higher compared to a normal adult brain [66]. Tau function is disrupted by
phosphorylation as it is no longer able to bind to microtubules [67–70]. Furthermore,
phosphorylation of tau induces tau self-assembly into tangles and filaments, precursors to
NFTs and AD pathogenesis [71]. In addition, hyperphosphorylated dendritic tau [72–74]
has been shown to be a key driver in dendritic loss, aberrant postsynaptic activity, and
cognitive dysfunction in AD [75,76]. At the pre-synapse, hyperphosphorylated tau has
been observed to disrupt normal synaptic vesicle release as it forms more stable interactions
with synaptic vesicles seen in AD brains that are absent in control brains [77–80].

More recently, it has been suggested that tau pathology in AD is mediated, in part, by
the release, uptake, and prion-like spread of pathogenic tau aggregates between synaptically
connected neurons [81–85]. Although endo-lysosomal dysfunction can indirectly lead to tau
pathologies due to elevated amyloid levels, dysfunction of endocytosis might modulate not
only tau phosphorylation and aggregation [86–88] but also internalization of tau [89–91].
Specifically, recent work has suggested that pathological tau can be released, in part,
through the action of exosomes [92,93] and internalized by other neurons through receptor
mediated endocytosis [85,91,94].
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Numerous studies support an Aβ-dependent interaction with tau protein during the
progression of AD. The presence of Aβ has been shown to enhance tau pathology and
accumulation throughout the stages of AD [95,96], as well as accelerate the formation of
high molecular weight hyperphosphorylated tau [97]. In addition, patients possessing
both Aβ-plaques and pathological tau displayed greater levels of high molecular weight
hyperphosphorylated tau compared to individuals with pathological tau and negligible
Aβ levels [95,98]. Analysis of a transgenic mouse model possessing both Aβ and tau
pathology revealed that Aβ plaques developed prior to tau tangles and that Aβ antibodies
alleviated early-disease tau modifications [99]. Along similar lines, overexpression of the
genes APP and PSEN1 (with wild-type tau) induced Aβ and tau aggregation, causing
tau pathology [100]. The use of β- or γ-secretase inhibitors blocked Aβ production and
prevented associated tau pathology in neural cells from human induced pluripotent stem
cells (hiPSCs) of AD patients, suggesting aberrant APP processing contributes to Aβ and
tau formation [101,102].

However, emerging evidence from in vitro and in vivo studies suggests that tau pathol-
ogy can arise independently from Aβ accumulation. For example, several studies have
suggested that amyloid-independent induction of tau pathologies can arise from dysfunc-
tion in the endocytic system [103]. In fact, early studies have suggested that modulation
of genes associated with the endo-lysosomal pathway can induce tau-related phenotypes
in an amyloid-independent manner [103,104]. For instance, studies have shown that the
endocytosis-related proteins BIN1 and PICALM can regulate tau pathology independent
of Aβ pathology [104]. Although pathological tau generation mainly occurs in neurons,
prorogation of tau not only occurs in neurons but also astrocytes and microglia [105,106].
However, unlike neurons, astrocytes and microglia also have the ability to degrade patho-
logical tau, which might explain the cell-specific tau pathologies observed in AD associated
with defective endo-lysosomal transport [105,106]. Cholesterol metabolism has also been
shown to be an amyloid-independent regulator of tau pathology. AD brains have shown
abnormal accumulation of cholesteryl esters [107] which have been observed to inhibit the
proteosomal degradation of tau [108] resulting in increased deposition of phosphorylated
tau [108,109]. In a mouse model, inhibition of cholesterol synthesis reduced tau pathology
in tau transgenic mice despite the absence of Aβ pathology, suggesting tau pathology
independent of Aβ [110].

2.3. Inflammatory Processes in AD

Several inflammatory processes are identifiable at various stages of AD including
glia activation, microgliosis, astrogliosis, and cytokine release [111–113]. Although it is
generally thought that these inflammatory processes act downstream of Aβ and tau, recent
evidence suggests glia cell activation and increased expression of inflammatory-related
cytokines may exacerbate both amyloid and tau pathologies [114].

With regards to Aβ-related pathologies gliosis and neuroinflammation have been
shown to function as a double-edged sword during AD, either offering protective or dam-
aging effects depending on cell type [115]. For example, reactive microglia and astrocytes
can clear Aβ, critical for mitigating Aβ deposition [116]. On the other hand, Aβ aggregation
can cause inflammatory responses and release of inflammation associated mediators such as
eicosanoids, chemokines, pro-inflammatory cytokines, and complement factors. Following
this inflammatory response, increased neuronal death and loss of neuronal synapses occur.
Consequently, clearance of Aβ and neuronal debris mediated by microglia are impaired.
Studies have also shown that soluble Aβ can elicit neuronal dysfunction by stimulating
pro-inflammatory activation of primary microglia [117]. In turn, sustained levels of Aβ can
trigger a response by the immune system via microglial activation and subsequent neuronal
loss by phagocytosis [118]. In addition, microglial activation can induce production of
pro-inflammatory cytokines that cause neuronal death [119,120]. Mechanistically, numer-
ous microglia receptors are associated with Aβ clearance and stimulating inflammatory
responses. The receptors SR-AI and TREM2 are responsible for the clearance of Aβ by
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internalization of Aβ fibrils whereas other receptors RAGE and NLRP3 are implicated in
triggering a pro-inflammatory response that activates the production of pro-inflammatory
mediators [100,121]. Complement receptors, Fc receptors, FPRL1/FPR2, CD36, and TLRs
are involved in both Aβ clearance and initiating an inflammatory response.

In relation to tau-related neuroinflammatory processes, a growing number of studies
are providing evidence that neuroinflammation precedes tau misfolding and neurode-
generation. In a humanized mouse model, microglia activation caused neuronal loss and
impaired synaptic function prior to the formation of tau fibrillary tangles [122]. In another
study, an increased production of cytokines including TNF-α, IL-1β, and GM-CSF were
detected in the CSF of patients displaying mild cognitive impairment, suggestive of an
inflammatory response prior to full expression of definitive tau pathology [123]. Other
studies have revealed activated microglia secrete TNF-α and IL-1β which act to promote
tau hyperphosphorylation and aggregation by CDK5 and p38 MAPK signaling [124–127].
Along similar lines, the microglia receptor NLRP3 in activated microglia has been shown
to drive aberrant tau phosphorylation and misfolding via CAMKII [128].

2.4. Synaptic Loss in AD

Analysis of postmortem brain samples of AD patients has revealed a strong correlation
between synaptic loss and AD-associated pathologies [129–134]. Studies using human
FAD mouse models corroborated this correlation, having observed synaptic dysfunction
including impaired plasticity and synapse loss [59,135–139].

Mechanistically, synaptic loss arises from other AD-associated pathologies including
Aβ aggregation, tau hyperphosphorylation, and activated microglia. The aggregation of
Aβ has several deleterious effects on synaptic function including impaired synaptic activity
and increased synapse loss. Both presynaptic [140,141] and postsynaptic [142] activity
have been shown to modulate the release of Aβ from neurons, suggesting a synaptic regu-
latory role of extracellular Aβ. With respect to tau pathology, hyperphosphorylated tau
impaired synaptic function by inhibiting either glutamate receptor trafficking or synaptic
anchoring [76]. In addition, the spreading of tau aggregates has been associated with
subsequent synaptic dysfunction, synapse loss, and neurodegeneration [143]. In regards
to inflammatory processes and synaptic health, one study demonstrated that microglia
contribute to synaptic loss through Aβ-induced microglia phagocytosis of synaptic con-
tents [144]. In addition, during this process, it has been shown that activated microglia
employ inflammatory cytokines which can induce synaptic dysfunction [145–147].

3. WNT Signaling

The WNT signaling pathway is comprised of 19 ligands and 10 Frizzled (Fzd) recep-
tors. Binding of these secreted lipoproteins to extracellular receptors leads to activation of
WNT signaling and regulation of other signaling pathways. The WNT signaling pathway
has been characterized into three separate pathways—canonical WNT/β-catenin signaling,
planar cell polarity (PCP), and WNT/Ca2+ (Figure 1). The canonical WNT/β-catenin
pathway is described by WNT ligands binding to a Fzd receptor and LRP5/6 co-receptor.
In turn, this leads to the disassembly of the destruction complex and inhibits ubiquityla-
tion of cytoplasmic β-catenin by GSK3β [148]. β-catenin is then allowed to accumulate
in the cytoplasm and translocate to the nucleus where it interacts and binds with T-cell
factor/lymphoid enhancer factors (TCF/LEF) to regulate WNT target gene expression [149].
Several factors have been identified which negatively regulate WNT signaling including
WIF-1, SFRP1, SFRP3, SFRP4, DKK1, and DKK3 [150]. WIF-1 functions to negatively reg-
ulate WNT via inducing PI3K/Akt/mTOR signaling which leads to reduced expression
of Dvl2 and downstream downregulation of β-catenin [151]. In general, SFRPs inhibit
WNT signaling by binding WNT ligands, preventing interactions with Fzd to activate
WNT signaling. Both SFRP1 and SFRP3 inhibit β-catenin transcription [152,153], how-
ever SFRP1 also decreases levels of phosphorylated GSK3β which cause canonical WNT
inhibition [152]. SFRP3 functions to downregulate WNT signaling by binding to WNT1
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to inhibit interactions between WNT1 and Fzd receptor [153]. SFRP4 has been shown to
also inhibit WNT signaling by decreasing β-catenin [154]. Other WNT inhibitors include
DKK1 and DKK3. DKK1 inhibits WNT by binding to the LRP5/6 co-receptor, leading to
increased β-catenin degradation [155]. DKK3 acts as an inhibitor of WNT by decreasing
both β-catenin expression and TCF4 activity [156]. The WNT PCP pathway is activated
by WNT ligands exclusively binding to the Fzd receptor, without the need of LRP5/6
co-receptors [157]. As a result, this causes activation of the small GTPases RhoA and
Rac1, which then activate kinases ROCK and JNK, respectively [157]. The WNT/PCP
pathway is responsible for transcriptional changes that direct cytoskeleton reorganization.
The WNT/Ca2+ signaling pathway features the binding of WNT ligands to Fzd receptors,
which in turn leads to the activation of phospholipase C (PLC) activation causing release of
Ca2+ from intracellular stores and activation of CaMKII and PKC, consequently causing
transcriptional changes and actin remodeling [158]. Fzd and LRP5/6 are not exclusive
receptors of WNT ligands as other receptors have been identified such as receptor tyrosine
kinase like orphan receptors 1 and 2 (ROR1 and 2), as well as the receptor-like tyrosine
kinase RYK [159]. Interestingly, of the two receptors, ROR2 is the only one to demonstrate
tyrosine kinase activity [160], whereas ROR1 and RYK are speculated to function as pseu-
dokinases. WNT ligands interact with the cysteine rich domain of ROR1 and 2 similarly to
that of Fzd. The RYK receptor harbors an extracellular WNT inhibitory factor (WIF) domain
that directly binds WNT [161]. As it relates to AD, following knockdown of either ROR1
or 2, a significant decrease in synapse formation was observed [162]. In the same study,
these receptors were discovered to interact with WNT5a to mediate presynaptic clustering,
suggesting a key role of these receptors in WNT5a-mediated synapse formation. In this
section, we will discuss the role of WNT signaling in neurogenesis, synaptic plasticity,
memory and learning.
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phorylate cytoplasmic 𝛽-catenin leading to proteosomal degradation. WNT binding: WNT signaling 
is turned “on” when a WNT ligand binds to the receptors Fz and LRP5/6. Following binding, the 
Disheveled (Dsh) scaffolding protein recruits and complexes with the destruction complex, subse-
quently impairing 𝛽-catenin phosphorylation and degradation. 𝛽-catenin will accumulate in the cy-
toplasm where it will translocate to the nucleus and interact with TCF/LEF factors to regulate tran-
scription of WNT target genes. (B) Non-canonical WNT/Planar Cell Polarity (PCP) signaling path-
way. Activation of WNT/PCP is independent of 𝛽-catenin and does not require WNT ligand binding 
to LRP5/6 receptor. After WNT ligand binding, Dsh is activated which then activates RhoA and 
Rac1, resulting in activation of ROCK and JNK signaling, respectively. Activation of these signaling 
pathways mediate cytoskeleton remodeling, cell polarity, and cell motility. (C) Non-canonical 
WNT/Ca2+ signaling pathway. WNT ligands bind to Fz inducing the activation and recruitment of 
Dsh and G-proteins. Here, Dsh activates phosphodiesterase PDE which inhibits PKG and subse-
quent release of calcium ions. In addition, Dsh activation induces expression of PLC which functions 
to activate IP3 and DAG. IP3 promotes the release of calcium ions which activates expression of: 
Calcineurin and subsequently NFAT leading to greater control of cell polarity, CAMKII which in-
duces TAK1 and NLK to repress WNT target gene transcription, and lastly, PKC which promotes 
CDC42 expression and downstream cytoskeletal rearrangement. 
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Frizzled (Fz) and LRP5/6. In turn, the destruction complex (APC, Axin, CK1, GSK-3β) will phos-
phorylate cytoplasmic β-catenin leading to proteosomal degradation. WNT binding: WNT signaling
is turned “on” when a WNT ligand binds to the receptors Fz and LRP5/6. Following binding, the
Disheveled (Dsh) scaffolding protein recruits and complexes with the destruction complex, subse-
quently impairing β-catenin phosphorylation and degradation. β-catenin will accumulate in the
cytoplasm where it will translocate to the nucleus and interact with TCF/LEF factors to regulate
transcription of WNT target genes. (B) Non-canonical WNT/Planar Cell Polarity (PCP) signaling
pathway. Activation of WNT/PCP is independent of β-catenin and does not require WNT ligand
binding to LRP5/6 receptor. After WNT ligand binding, Dsh is activated which then activates RhoA
and Rac1, resulting in activation of ROCK and JNK signaling, respectively. Activation of these signal-
ing pathways mediate cytoskeleton remodeling, cell polarity, and cell motility. (C) Non-canonical
WNT/Ca2+ signaling pathway. WNT ligands bind to Fz inducing the activation and recruitment of
Dsh and G-proteins. Here, Dsh activates phosphodiesterase PDE which inhibits PKG and subsequent
release of calcium ions. In addition, Dsh activation induces expression of PLC which functions
to activate IP3 and DAG. IP3 promotes the release of calcium ions which activates expression of:
Calcineurin and subsequently NFAT leading to greater control of cell polarity, CAMKII which induces
TAK1 and NLK to repress WNT target gene transcription, and lastly, PKC which promotes CDC42
expression and downstream cytoskeletal rearrangement.

3.1. The Role of WNT Signaling in Neurogenesis

Adult neurogenesis can be characterized by the generation of mature neurons from
adult neural stem cells [163]. Composed of blood vessels, astrocytes, ependymal cells,
and mature neurons, the neurogenic niche maintains the development of neural stem cells
(NSC) [163]. The canonical WNT/β-catenin pathway has been identified as a regulator
of adult hippocampal neurogenesis evidenced by active WNT signaling in the hippocam-
pal neurogenic niche from astrocytes [164–166]. Studies have revealed secreted WNT
molecules as key for normal brain development including postnatal neurogenesis by reg-
ulating NSC self-renewal, proliferation, and differentiation [164,167]. More specifically,
Wnt3 production by astrocytes was shown to differentiate adult NSCs [165]. Another
study demonstrated that overexpression of Wnt3 increased neurogenesis from adult hip-
pocampal stem/progenitor cells (AHPs) and that WNT inhibition reduced neurogenesis of
AHPs in vitro and nearly prevented all neurogenesis in vivo [164]. In addition, the ligand
Wnt7a has been shown to be essential for NSC self-renewal, neural progenitor cell cycle
progression, and neuronal differentiation and maturation [168]. The loss of Wnt7a led to a
decrease in the number of newborn neurons in the adult hippocampal dentate gyrus [168].
In addition, Wnt7a stimulated neural stem cell proliferation by activating β-catenin D1
pathway and promoted neuronal differentiation and maturation by inducing β-catenin
neurogenin 2 pathway [168].

Studies have shown a decrease in neurogenesis with aging, attributing changes in
the neurogenic niche [169,170]. It is speculated that age-related decline is a cause of either
a deficit in proliferation or differentiation of potential NSCs. In this regard, Wnt3 has
shown to play a role in the decline in neurogenesis [165]. Specifically, Wnt3 production by
astrocytes decreased with aging and correlated to decreased neurogenic differentiation of
NPCs in an aged brain leading to impairment of neurogenesis [164,171].

3.2. WNT Signaling in Synaptic Health and Plasticity

WNT signaling has been shown to play a role in regulating synaptic plasticity, as well
as modulate neuronal firing [172,173]. Interestingly, WNT was discovered to function in
a positive feedback loop in which WNTs change the spiking properties of cells resulting
in structural changes that release WNT ligands [174]. In this vein, active signaling of both
the canonical WNT/β-catenin and noncanonical WNT/Ca2+ pathways were shown to be
crucial to regulating the firing activity of neurons in the hippocampus. In the entorhinal-
hippocampus circuit, expression of canonical Wnt3a disrupted neural oscillation, whereas
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expression on noncanonical Wnt5a ligand increased oscillation in new cells [174]. Along
similar lines, in hippocampal neurons, Wnt5a activates the non-canonical WNT/Ca2+

pathway to modulate dendritic spine morphogenesis and synaptic function [175].
It also has been demonstrated that WNT secreted proteins regulate synapse develop-

ment and are crucial for the early stages of long-term potentiation, a form of plasticity that
increases synapse strength [172,173]. Inhibition of WNT via sFRPs revealed that long-term
potentiation was impaired, while the addition of exogenous WNT proteins facilitated
long-term potentiation [176]. Other studies that inhibited WNT signaling with sFRPs
found reduced glutamatergic neurotransmission demonstrating WNT as an important
factor for synaptic transmission at mature synapses [175,177–179]. In support of this role,
the addition of exogenous WNTs was shown to enhance excitatory synaptic transmission
in hippocampal neurons [175,178,180–183]. In particular, Wnt7a was found to stimulate
excitatory synapse formation and function [176,183].

3.3. WNT Signaling in Memory and Learning

Through its effects in neurogenesis and synaptic function, WNT signaling has been
shown to play critical roles in memory consolidation and learning. For example, spatial
learning results in activated canonical WNT signaling and increased the expression of
Wnt5a and Wnt7a/b [184]. Similarly, an investigation of hippocampal memory consolida-
tion in mice revealed that WNT signaling was necessary for object recognition memory
consolidation [185]. Alternatively, WNT inhibition with Dkk1 blocked fear learning in
mice [186]. In this same study, Dkk1 was shown to impair hippocampal object recognition
memory by rapidly reducing the levels of WNT-associated proteins including: β-catenin,
cyclin D1, c-myc, Wnt7a, and PSD95 [185]. Together, these findings suggest that learning
activates WNT signaling necessary for hippocampal memory consolidation.

Further studies have suggested that WNT signaling selectively functions in long-term
memory and learning [184]. For example, following water maze experiment in rats, elevated
levels of Wnt7 and Wnt5a were detected 7 and 30 days after training in granule cells of the
hippocampus, but not in CA3 neurons [184]. Moreover, Tabatadze and colleagues observed
that both canonical and non-canonical WNT signaling regulated long-term information
storage in a behavioral-, cellular-, and isoform-specific manner.

4. WNT Signaling and Alzheimer’s Disease

Because of the role of WNT signaling in numerous processes related to neural health
and homeostasis, the role of aberrant WNT signaling in the onset and age-related progres-
sion of AD has been significantly studied. More recently, WNT has been implicated in the
dysfunction of the blood–brain barrier (BBB) in AD. Briefly, studies have examined the
effects of WNT and the BBB in AD revealing a correlation between WNT dysregulation and
BBB breakdown contributing to AD-associated phenotypes [187–189]. In this review, we
will focus on WNT and neural cell types, however we encourage readers to reference these
studies for a greater examination between WNT and BBB during AD. In this section, we will
review the genetic, clinical, and animal-based studies that demonstrated the relationship
between WNT signaling and AD. In addition, we will discuss the biochemical, molecular,
and cellular mechanisms by which WNT signaling influences AD-related pathologies. An
overview of these potential mechanisms is provided in Figure 2. In addition, a summary
of the role of canonical versus non-canonical WNT signaling pathways in modulating
AD-related phenotypes is provided in Table 1.
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Figure 2. Effects of WNT on different AD-related pathologies with specific mechanisms. (1) Aβ

binds to Fz subsequently inhibiting WNT signaling. During WNT inhibition, TCF4 is unable to
complex with β-catenin and repress BACE1 expression. As a result, BACE1 promotes amyloidogenic
processing of APP and increased accumulation of Aβ. (2) Increased deposition of Aβ induces
expression of the WNT antagonist DKK1. DKK1 binds to LRP5/6, inhibiting canonical WNT/β-
catenin signaling and downstream repression of WNT target genes. In turn, phosphorylated tau
levels are increased in addition to associated Aβ-neurotoxicity. (3) Aβ-mediated expression of DKK1
also causes synaptic degradation through the disassembly of synaptic components. (4) GSK3β

promotes amyloidogenic processing of APP via phosphorylation resulting in greater levels of Aβ.
Additionally, GSK3β can phosphorylate tau which leads to the formation of neurofibrillary tangles
(NFTs). (5) TREM2 stabilizes β-catenin by interacting with DAP12 to activate PI3K/Akt signaling
which phosphorylates and inhibits GSK3β activity. β-catenin then translocates to the nucleus to
regulate genes that promote microglia survival including c-Myc, CCND1, and BCL2. (6) Loss of WNT
receptor LRP6 led to a significant increase in microglia activation and neuroinflammation. Activated
microglia promote tau hyperphosphorylation and Aβ deposition through the release of IL-1β and
TNF-α, pro-inflammatory cytokines. Figure 2 was generated with the assistance of Biorender.

Table 1. Summary of the effects of components of the canonical and non-canonical WNT signaling
pathways on AD-related processes and phenotypes. Arrows (↑, ↓) in the table indicate an increase or
decrease in the effect and AD-associated phenotype, respectively.

Effect AD-Associated Phenotype WNT Signaling Pathway WNT Component Reference

↑ APP phosphorylation ↑ Aβ Canonical GSK3β [190,191]

↑ APP phosphorylation ↑ Aβ
Non-canonical
(WNT/PCP) JNK [192–194]

↓ APP endocytosis ↓ Aβ Canonical LRP6 [195]

↓ APP endocytosis ↓ Aβ Non-canonical WNT5a [196]
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Table 1. Cont.

Effect AD-Associated Phenotype WNT Signaling Pathway WNT Component Reference

↓ APP endocytosis ↓ Aβ Canonical WNT3a [196]

↑ non-amyloidogenic processing ↓ Aβ Canonical WNT3a [197]

↑ non-amyloidogenic processing ↓ Aβ
Non-canonical
(WNT/PCP) WNT5a [197]

↓ BACE1 expression ↓ Aβ Canonical TCF4 [198,199]

↑ PSEN1 binding activity ↑ p-tau Canonical GSK3β [200]

↑ GSK3β phosphorylation activity ↑ p-tau Canonical GSK3β [201,202]

↑ β-catenin degradation ↑ pro-inflammatory microglia Canonical AXIN2 [203]

↓ neuronal LRP6 ↑ neuroinflammation Canonical LRP6 [195]

↑ pro-inflammatory
gene expression ↑ neuroinflammation Canonical WNT3a [204]

↑ DKK1 expression ↑ synapse loss and Aβ Canonical DKK1 [205]

↑ DKK1 expression ↑ synapse loss Non-canonical
(WNT/PCP) DKK1 [206,207]

↓ LRP6 expression ↑ synapse loss and Aβ Canonical LRP6 [195]

↓ Aβ aggregation ↓ p-tau and synapse loss Canonical WASP-1 [208]

4.1. Evidence for the Role of WNT Signaling in Alzheimer’s Disease

Several epidemiological, clinical, and animal-based studies have established the re-
lationship between WNT signaling and AD-associated phenotypes. To that end, several
studies have shown that GSK3β activity is increased whereas β-catenin levels are decreased
in AD patient brains [209–212]. Moreover, it has been suggested that WNT signaling is
impaired in the cortical regions of AD patients through the action of DKK1, a negative
modulator of WNT signaling [213]. Other studies of the aging human brain revealed the
expression of several WNT ligands including WNT2b, WNT6, WNT7a and frizzled receptors
FZD2 and FZD3 are downregulated [214]. In the same study, the WNT antagonist SFRP1
was found to be upregulated. Collectively, increased expression of SFRP1 could explain
the downregulation of WNT ligands in the aging human brain, suggesting a protective
effect of WNT against AD-related processes. Interestingly, long-term activation of WNT
signaling through the administration of lithium has been shown to induce neuroprotective
effects that may slow the cognitive and functional deficits associated with AD [215]. As
such, numerous preclinical and clinical studies are investigating a paradigm in which WNT
signaling is activated through the use of GSK3β to treat AD [216].

In support of these clinical findings, animal models have been employed to iden-
tify potential mechanistic links between WNT signaling and the development of AD. In
general, these studies have shown dysregulation of WNT signaling as a common factor
contributing to age-associated pathologies in the rodent brain. Downregulation of several
WNT ligands such as Wnt2, Wnt3, Wnt3a, Wnt4, and Wnt9a, as well as the transcription
factors Lef1 and Tcf3 was observed in aging rodent brains [171,217]. Similar studies in both
aging rats and mice found reduced levels of Dvl2, Axin2, and nuclear β-catenin in the
hippocampus, suggesting a dampening of WNT signal [218,219]. Reduced levels of WNT
signaling in aging animals have also been attributed to increased expression of the WNT
antagonist Dkk1 expressed in rodent hippocampus [220,221]. As it relates to AD-associated
pathologies, loss of canonical WNT/β-catenin signaling has been shown to induce AD-
like neuropathological hallmarks in wild-type mice, and accelerate the development of
AD-like pathology in an AD mouse model [222]. Along similar lines, analysis of a mouse
model with an inducible Dkk1 expression cassette revealed that overexpression of Dkk1
in the adult brain reproduces several phenotypes in AD mouse models such as reduced
synaptic transmission, impaired long-term potentiation, enhanced long-term depression,
and long-term memory loss [223,224].
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Overall, from these studies, a general model has emerged in which downregulation
of WNT signaling occurs in AD whereas activation of WNT signaling may be protective
against induction of AD-related phenotypes.

4.2. Amyloid-Centric Mechanisms by which WNT Modulates AD-Related Phenotypes
4.2.1. WNT and APP Post-Translational Modification

After generation in the ER, APP undergoes post-translational modifications and
reaches the cell surface through the constitutive secretory pathway [225]. In particular,
phosphorylation of APP at T688 has been extensively studied because of its association
with AD as well as its effect on amyloidogenic processing of APP [225]. A variety of kinases
are capable of phosphorylating the T668 residue including ERK1/2, GSK3β, CDK5, and
JNK [190,191,226,227]. GSK3β activity is inhibited during active canonical WNT/β-catenin
signaling, whereas JNK is expressed during active WNT/PCP signaling. Together, this
suggests elucidating the mechanisms of WNT signaling and its effects on APP processing
will require a nuanced approach in differentiating between canonical and non-canonical
WNT pathways.

Previous studies in neurons support these findings, demonstrating that APP is mainly
phosphorylated by GSK3β and JNK kinases [228,229]. In particular, several lines of evi-
dence suggest that GSK3β modulates APP processing resulting in increased production
of Aβ [230]. For example, GSK3β phosphorylation of APP has been shown to modulate
amyloidogenic and non-amyloidogenic APP processing at the T668 amino acid site of
APP [15,225]. In addition, JNK activation enhanced APP phosphorylation at the same
amino acid site, favoring amyloidogenic cleavage of APP. The same study also showed in-
hibition of the JNK pathway reduced Aβ deposition in neurons by shifting APP processing
to the non-amyloidogenic pathway [231].

4.2.2. WNT Signaling and APP Endocytosis

The levels of cell surface APP and rate of endocytosis influence the relative levels of
amyloidogenic versus non-amyloidogenic processing [232]. More specifically, at the plasma
membrane APP can be cleaved by α-secretase to release soluble sAPPα which precludes
subsequent amyloidogenic processing and Aβ formation [12]. Indeed, it has been suggested
that reduced α-secretase activity might be a contributing factor to AD pathogenesis [233].
The unprocessed APP molecules that avoid non-amyloidogenic processing are internalized
through clathrin-mediated endocytosis [232]. These internalized APP molecules can be
recycled to the cell surface or undergo amyloidogenic processing [12].

Studies have demonstrated that the WNT co-receptor LRP6 binds to APP and re-
duces the rate of endocytosis, subsequently elevating non-amyloidogenic processing by
α-secretase and concurrent reduction in Aβ production [195]. Other studies suggest WNT
signaling regulates APP endocytosis through lysosomal activity [196]. Specifically, WNT5a
was shown to bind to APP and regulate its trafficking by decreasing APP levels in the
trans-Golgi network and increase the levels of lysosomes. Normal APP trafficking was
restored through inhibition of lysosomal activity [196]. This same study also found that
WNT3a binds to APP and regulates retrograde APP trafficking, whereas retromer inhibition
reversed this effect.

4.2.3. Regulation of APP processing by WNT Signaling

APP not processed at the cell surface by α-secretase is internalized from the plasma
membrane to early endosomes [12,14]. From early endosomes it can either enter recycling
endosomes to be trafficked back to the cell surface or travel back to the trans-Golgi network
via retromer-mediated pathways [17]. Alternatively, early endosomes can mature into late
endosomes where the increasingly acidic pH fosters beta-amyloid precursor protein cleav-
ing enzyme (BACE1) activity and cleavage of APP to generate CTF-β, which is then cleaved
by γ-secretase to generate Aβ [14]. In neurons, a large percentage of Aβ is degraded by a
variety of endosomal enzymes and proteases [14]. In lieu of intraneuronal degradation, Aβ
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can be exocytosed to the extracellular space [14]. In AD patient brains, these various cleaved
products of APP amyloidogenic processing accumulate inside neurons [19]. In particular,
increased intraneuronal accumulation of CTF-β in enlarged endosomal compartments is a
pathological hallmark of AD progression and thought to contribute, in part, to downstream
synaptic loss [17].

As it relates to WNT signaling, the WNT ligands WNT3a and WNT5a were also
shown to regulate amyloidogenic processing and Aβ via activation of canonical WNT/β-
catenin and WNT/PCP signaling, respectively [197]. Activation of canonical and non-
canonical WNT signaling increases non-amyloidogenic processing of APP and decreases
amyloidogenic APP processing. Moreover, activation of WNT signaling decreased the
Aβ42/Aβ40 ratio [198]. In this same study, activation of WNT signaling reduced BACE1
levels via β-catenin dependent transcription [198]. Mechanistically, another study showed
that Bace1 transcription was repressed by binding of Tcf4 to the promoter of Bace1 during
active canonical WNT/β-catenin signaling [199]. Alternatively, inhibition of WNT signaling
using ICG001 or XAV939 increased amyloidogenic processing in animal models of AD [222].

4.2.4. Interaction of APP and PSEN1 with Components of the WNT Signaling Pathway

Numerous studies have shown that APP and presenilin-1 (PSEN1) can reciprocally
regulate WNT signaling activity which might impact downstream AD-related phenotypes.
For example, one study demonstrated that APP binds to β-catenin in vitro and in vivo [234].
In the same study, overexpression of APP was observed to modulate the distribution of
β-catenin from the nucleus to the cytoplasm and alter WNT target gene expression. Another
study investigating the AICD, produced after cleavage of full-length APP, revealed that
AICD inhibited WNT signaling [235]. More specifically, this study showed that AICD
interacts with and activates GSK3β, enhancing its kinase activity and degradation of
cytoplasmic β-catenin. As a result, AICD-mediated GSK3β activity inhibited canonical
WNT/β-catenin signaling as demonstrated by repressed expression of the WNT target
gene c-Myc in neural cells [235]. Further studies have suggested that modulation of
phosphorylated GSK3β and nuclear β-catenin levels may contribute to AD progression
through altered WNT signaling [234].

PSEN1 has also been revealed to interact with components of the WNT signaling
pathway including β-catenin and GSK3β. For example, it has been shown that PSEN1
complexes with β-catenin to increase its stability in the cytoplasm and is mostly localized
in the ER and Golgi [236,237]. However, β-catenin levels are significantly reduced in the
brains of AD patients with PSEN1 mutations [238]. Zhang and colleagues demonstrated
that pathogenic mutations to the PSEN1 gene reduce the ability of PSEN1 to stabilize
β-catenin, and thus prevent β-catenin degradation [238]. Additionally, pathogenic PSEN1
mutations were discovered to cause the mis-trafficking of β-catenin translocation to the
nucleus when PSEN1 and β-catenin were complexed [239]. Takashima and colleagues
showed that tau and GSK3β bind to residues 250–298 of PSEN1 [200]. In turn, this increased
PSEN1 binding activity with GSK3β led to greater phosphorylation of tau and downstream
formation of pathogenic tau aggregates [200]. In addition, it is hypothesized that mutated
PSEN1 could play a regulatory role in the Akt/GSK3β apoptotic cascade. In this vein, it
has been observed that inhibition of the PI3K/Akt signaling pathway leads to activation
of GSK3β and apoptosis [240,241]. As such, increased activation of GSK3β mediated by
mutated PSEN1 might increase the vulnerability of the cell to stressful, pro-apoptotic
stimuli, such as neurotoxic Aβ peptides [242]. Together, these studies show that pathogenic
mutations in PSEN1 can regulate different components of the WNT signaling pathway to
promote AD-associated pathologies.

4.3. Role of WNT Signaling in Modulating Tau-Related Phenotypes in AD

Several studies have shown that WNT signaling and GSK3β regulation play a role
in modulating tau phosphorylation. Tau phosphorylation is mediated by a variety of
kinases including GSK3β [243]. As such, it has been shown that GSK3β phosphory-
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lates AD-associated tau residues [201,202]. Indeed, inhibition of WNT signaling induces
GSK3β-mediated tau phosphorylation [209,244]. Moreover, it has been suggested that
DKK1 is responsible for this WNT inhibition and subsequent elevation of tau phos-
phorylation [213,244]. Alternatively, activation of canonical WNT signaling has been
shown to reduce pathological tau phosphorylation in APP-PS1 mice through its action
on GSK3β [245]. Similarly, activation of WNT signaling can also inhibit Aβ-induced tau
phosphorylation [246]. Because of the role of WNT signaling in modulating tau-related
pathologies, several therapies have been explored to utilize GSK3β inhibitors to increase
neuronal β-catenin levels and prevent GSK3β-mediated tau phosphorylation [209,247].
However, it should be noted that it has been demonstrated that WNT signaling regulates
the inflammatory response in microglia [204]. Other experiments investigating the rela-
tionship between microglia and tau using mouse models found elevated levels of IL-1, a
pro-inflammatory cytokine, exacerbated tau phosphorylation [248,249]. Thus, it could be
suggested that inhibition of WNT signaling long-term through GSK3β inhibition could
exacerbate pro-inflammatory responses and promote enhanced neurotoxicity.

4.4. WNT and Inflammatory Responses in AD

Recent investigations of WNT and microglial activation have demonstrated a di-
chotomy between anti- and pro-inflammatory microglia phenotypes during active WNT
signaling. Studies have shown that activation of canonical WNT/β-catenin signaling
inhibits microglial activation and ameliorates neuroinflammation [250–252]. Canonical
WNT/β-catenin activation via TWS119 shifted microglia phenotype from pro- to anti-
inflammatory, promoting neurological recovery following ischemic stroke in a mouse
model [251]. Another study demonstrated that inhibition of canonical WNT/β-catenin sig-
naling by AXIN2-mediated β-catenin degradation drove the transformation of microglia to
an active pro-inflammatory phenotype. In turn, microglial activation and pro-inflammatory
response could be reduced via the delivery of a WNT agonist [203]. These studies provide
evidence for WNT-mediated regulation of protective microglia phenotypes.

As it relates to AD, WNT signaling activity has been shown to increase microglia sur-
vival during AD. For example, one study showed that microglia survival and microgliosis
was restored following WNT activation via treatment with Wnt3, LiCl, or TDZD-8 [253].
Another study revealed that the loss of neuronal LRP6 led to a significant increase in
microglia activation and neuroinflammation [195]. Contrary to these findings, other studies
have demonstrated WNT activation led to activation of microglia and a pro-inflammatory
response evidenced by high expression of cytokines IBA1, CD68, and CD11b [254–257].
Results in another study showed that WNT signaling increased the expression of pro-
inflammatory cytokines in microglia [204]. Microglia under neuroinflammatory conditions
were observed to have elevated expression of β-catenin. Activation of WNT signaling
by WNT3a showed increased expression of pro-inflammatory immune response genes in
microglia, as well as stimulate inflammatory transformation in microglia [204]. Findings
from this study suggest active WNT signaling in microglia serves to exacerbate AD-related
neuroinflammation compared to other studies demonstrating WNT-associated mediation
of AD pathologies. These contrasting findings bring to light a potential cell-type depen-
dent effect of WNT signaling on microglial activation and phenotypes and subsequent
AD-related pathology.

Mechanistically, numerous studies have demonstrated crosstalk between TREM2-
mediated microglial activation and WNT signaling. In one such study, RNA-seq of a Trem2
knockout in a PS2-APP AD mouse model revealed a reduction in positive regulators of
canonical WNT signaling such as Fz9, Sulf2, Bambi, Ptk7, Aspm, and Dkk2 [258]. In further
support of this interaction, another study demonstrated that the proliferative response of
activated microglia utilized both TREM2 and WNT signaling [253]. These Trem2 knockout
mice were observed to have reduced microglia proliferation and survival, but increased
microglial apoptosis. Concurrently, reduced protein levels of β-catenin and inactive GSK3β
were observed. Together, these data suggest that TREM2 functioned to inactivate GSK3β
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by phosphorylation via PI3K/Akt signaling, thus causing accumulation of β-catenin and
transcription of survival genes.

4.5. The Role of DKK1 and LRP6 in Synaptic Loss in AD

Studies interrogating aberrant WNT signaling have revealed a potential connection to
mediating synaptic dysfunction and synapse loss in AD. It has been well-established DKK1
promotes AD pathologies such as Aβ-mediated neurotoxicity and synapse loss [205,206,259].
For example, exposure to Aβ oligomers induced the expression of DKK1 and caused loss
of synaptic sites whereas inhibition of DKK1 reversed Aβ-mediated synaptic loss [205]. In
addition, Purro and colleagues observed that Aβ rapidly increased expression of DKK1
which functioned to disassemble synaptic components leading to synaptic loss, indicating
that DKK1 is required for Aβ-mediated synaptic loss. In addition to canonical WNT
signaling, DKK1 induced activation of non-canonical WNT/PCP signaling pathway which
also caused Aβ-driven synapse disassembly [206,207]. This Aβ-mediated synapse loss was
DKK1-dependent and required activation of the non-canonical WNT/PCP pathway [206].
The relationship between Aβ and DKK1 can be described by a positive feedback loop
in which Aβ induces expression of DKK1 [207,213] which promotes synaptic loss and
increased Aβ production.

Additional evidence indicates that LRP6 and WNT signaling are necessary for main-
taining synaptic integrity, function, and memory. Deficiency of the WNT receptor LRP6
exhibited increased APP processing and exacerbated Aβ pathology in an amyloid mouse
model [195]. This finding suggests that AD progression is accelerated by decreased LRP6-
mediated WNT signaling. Another study demonstrated that APP was a co-activator of
both canonical WNT/β-catenin and non-canonical WNT/PCP signaling pathways through
interactions with the WNT-associated LRP6 and Vangl2 receptors [260]. In addition, LRP6
binds to the E2 domain of APP [261] preventing further cleavage by secretases and limiting
Aβ deposition [195,260]. Consequently, activation of canonical WNT signaling enhanced
synapse stability and reduced Aβ production, whereas activation of WNT/PCP pathway
caused synaptic retraction and increased Aβ production [260].

Together, these studies demonstrate that WNT signaling dysfunction leads to Aβ

production and associated synapse loss [260,262]. Thus, several studies have explored
whether restoration of WNT signaling can ameliorate Aβ-induced synaptic loss. For exam-
ple, WASP-1, a synergistic ligand of WNT3a, blocked Aβ aggregation in vitro and reduced
pathological tau phosphorylation in vivo [208]. In turn, WASP-1 expression could rescue
hippocampal synaptic impairments induced by AD pathologies such as Aβ oligomers.
Another study investigating Aβ oligomers revealed that activation of non-canonical WNT
signaling could prevent post-synaptic damage caused by these oligomers [263].

5. Future Trends: Improvement in Model Systems

Part of the difficulty of reconciling the role of WNT and AD have been limitations in
the models used [264]. Experimental model systems and conditions vary greatly between
studies proving increased difficulty in elucidating the effects of upregulation or downregu-
lation of β-catenin stability during AD. An additional consideration in these models is the
differentiation between analysis of cytoplasmic β-catenin, and nuclear β-catenin. A major-
ity of studies report on cytoplasmic β-catenin which does not correlate with transcriptional
changes by regulation from the β-catenin-TCF/LEF complex. Numerous FAD models have
been employed to investigate the effects of WNT signaling during AD, however FAD only
represents roughly 5% of total AD cases in humans [265]. Notably, β-catenin was only
slightly reduced in SAD patients compared to controls, unlike in FAD [238]. In turn, this
necessitates SAD models with limited confounding variables to investigate the extent to
which WNT signaling affects AD pathology.
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Human Induced Pluripotent Stem Cell (hiPSC)-Based Approaches

Human cell models represent great platforms for genetic studies as the intricate nature
of human diseases cannot be fully recapitulated by animal models. Major evolutionary
differences between human and animal models contribute to the structural and biological
complexity of human tissues and organs [266–269]. In turn, human induced pluripotent
stem cells (hiPSCs) have emerged as a powerful resource to elucidate the underlying mech-
anisms of pathogenic diseases including AD. AD animal models are hindered by their
complexity due to confounding variables making investigation of molecular, biochemical,
and cellular phenotypes more difficult. The ex vivo culture of neuronal cells extracted
from cadaveric tissues provides other modalities to studying AD, however the sources of
these cells are scarce and disease phenotypes are rapidly lost after prolonged culture. As a
result, hiPSCs have become an attractive model due to unlimited self-renewal and their
ability to differentiate into nearly any cell type of the human body. In addition, numerous
protocols have been developed to direct the differentiation of hiPSCs to a myriad of neural
cell types including neurons [270–272], astrocytes [273,274], microglia [275], and oligoden-
drocytes [276]. Additionally, studies have demonstrated that FAD and SAD neural cells
derived from hiPSCs exhibit disease relevant phenotypes such as elevated secreted Aβ42
levels, increased Aβ42/40 ratio, and hyperphosphorylation of tau [101,277–279]. More
recently, CRISPR-based gene editing techniques have been applied for the generation of
AD-associated disease hiPSC lines [280,281]. These isogenic lines are advantageous as they
establish a defined condition and mitigate confounding variables due to age, sex, or gender
identity between patient and controls to more closely study genetic modifications [282,283].
In the future, these hiPSC-based methods can be employed to resolve some of the unan-
swered questions as it relates to the multifaceted role of WNT signaling in AD onset and
age-related progression.

6. Conclusions

A link between WNT signaling and AD-related phenotypes has been well-established
through epidemiological analysis, clinical studies, and animal models. Specifically, WNT
signaling influences AD-associated pathologies including Aβ deposition, tau hyperphos-
phorylation, inflammatory response, synaptic loss, and cognitive decline. Although the
cellular and molecular mechanisms by which WNT modulates such pathologies has not
been precisely defined, it has been suggested that WNT signaling regulates multiple levels
of the pathological hierarchy. As it relates to amyloid pathologies, WNT plays multiple
roles in APP processing including regulating APP post-translational phosphorylation, al-
tering cell surface APP levels and endocytosis, modulating APP endosomal trafficking
and processing, and influencing Aβ degradation. In addition, WNT signaling regulates
the kinases responsible for phosphorylating tau, mediates chronic inflammatory processes
induced by microglia activation, and influences synaptic integrity. Moving forward, ther-
apeutic advances that seek to modulate WNT signaling and its dysfunction in AD will
require a more thorough understanding of the multiple effects of WNT at these various
pathological levels.
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