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Abstract: Schwann cells (SCs) are myelinating cells that promote peripheral nerve regeneration.
When nerve lesions form, SCs are destroyed, ultimately hindering nerve repair. The difficulty in
treating nerve repair is exacerbated due to SC’s limited and slow expansion capacity. Therapeutic
use of adipose-derived stem cells (ASCs) is emerging in combating peripheral nerve injury due
to these cells’ SC differentiation capability and can be harvested easily in large numbers. Despite
ASC’s therapeutic potential, their transdifferentiation period typically takes more than two weeks.
In this study, we demonstrate that metabolic glycoengineering (MGE) technology enhances ASC
differentiation into SCs. Specifically, the sugar analog Ac5ManNTProp (TProp), which modulates cell
surface sialylation, significantly improved ASC differentiation with upregulated SC protein S100β
and p75NGFR expression and elevated the neurotrophic factors nerve growth factor beta (NGFβ)
and glial cell-line-derived neurotrophic factor (GDNF). TProp treatment remarkably reduced the SC
transdifferentiation period from about two weeks to two days in vitro, which has the potential to
improve neuronal regeneration and facilitate future use of ASCs in regenerative medicine.

Keywords: metabolic glycoengineering; human adipose stem cells; cell differentiation; Schwann cell;
nerve regeneration

1. Introduction

Schwann cells (SCs) are the critical glial cells due to their roles in the development,
maintenance, function, and regeneration of nerves in the peripheral nervous system [1–3].
SCs are able to improve nerve regeneration after nerve injury through decreased expression
of myelin-related protein and increased expression of cell adhesion molecules, neurotrophic
factors, and cytokines [4–7]. These changes facilitate axonal regeneration by guiding distal
nerve stump and basal lamina growth. In addition, axonal regeneration requires renewed
axon–Schwann cell interactions, which leads to axonal remyelination and restoration of the
physiologic nerve function [8,9]. Unlike nerves from the central nervous system, peripheral
nerves are able to regenerate following injury, but often inadequately [10]. When nerve
lesions form, SCs are damaged, ultimately leading to poor functional recovery in patients.
The difficulty in treating peripheral nerve repair is exacerbated due to the SCs’ limited and
slow expansion capacity [11,12].

Adipose-derived stem cells (ASCs) that have been differentiated towards a Schwann-
like cell phenotype can act as a therapeutic alternative [13,14]. ASCs differ from SCs in
that they can be harvested in large numbers using minimally invasive techniques [15–17],
and have been widely reported in augmenting peripheral nerve regeneration [18,19]. Prior
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research has established that morphological changes to ASC-derived Schwann-like cells
(dASCs) are dependent on a cocktail of extrinsic factors, such as forskolin, and several
neurotrophic factors for maintenance [13]. These extrinsic factors cause the cells to exhibit
elongated spindles and to express the glial markers, GFAP, S100, and p75, characteristic
of SCs [20–22] and myelin proteins and structures (when in co-culture with neurons) [23].
Similarly, when implanted in nerve conduits to connect the ends of a murine peripheral
nerve gap in vivo, dASCs promote nerve regeneration through SC-like functions by reduc-
ing muscle atrophy, increasing nerve conduction velocity and myelination rates, as well as
inducing significant improvement in the restoration of function when compared to nerve
conduits without exogenously added cells [23–25]. Despite these many promising benefits,
barriers to using dASCs therapeutically for peripheral nerve repair include a differentiation
process that typically takes at least two weeks [13]. During this extended induction pe-
riod, many ASCs undergo apoptosis, reducing SC yield [23,26] and significantly hindering
clinical translation efforts.

In this study, we sought to improve ASC transdifferentiation into SCs via metabolic
glycoengineering (MGE, Figure 1A). MGE is a strategy where non-natural hexosamines
with modified N-acyl groups are supplied to cells or living animals; when appropriately
designed, the sugar analogs intercept biosynthetic pathways and are incorporated into
cell surface glycans [27–29]. Recently, our team has demonstrated “second generation”
thiolated analog Ac5ManNTProp (TProp) [30] that replaces natural cell surface sialic acids
with their thiolated counterparts, thereby improving the differentiation of human neural
stem cells (hNSCs) as well as their adhesion to extracellular matrix components [31]. In the
current study we extend the repertoire of beneficial therapeutic activities made possible
through thiol-modified MGE analogs by demonstrating the ability of TProp to facilitate SC
differentiation from ASCs. Overall, these studies showed that MGE more efficiently induces
differentiation of ASCs to SCs compared to conventional methods currently available.
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Figure 1. (A) Overview of MGE: ASCs are incubated with TProp resulting in incorporation into
cell-surface displayed sialoglycans, thereby increasing the cell surface expression of thiol groups.
(B) Cellular metabolic activity was determined by the MTT metabolic assay after 3 days of incubation
with EtOH (vehicle control) or Ac5ManNTProp (TProp). All results were normalized to the vehicle
control samples. Dose-response experiments showed that TProp slowed the growth of the cells at
concentrations over 100 µM. Student’s t-test statistical analyses were used to compare differences
between vehicle control and exposed conditions. Mean ± SEM; n = 3 independent experiments;
** p < 0.01, *** p < 0.001. (C) Cell surface thiols were quantified by flow cytometry with ethanol
control samples arbitrarily set to a value of 1.0. Mean ± SEM; n = 3 independent experiments;
* p < 0.05, ** p < 0.01, one-way ANOVA with Tukey’s post-test. These results indicated the optimized
concentration of TProp was 50 µM, a non-cytotoxic level that maximized cell surface; accordingly,
50 µM was used for subsequent experiments in this study.

2. Materials and Methods
2.1. Metabolic Activity

Human adipose stem cells (ASCs) were a gift from Dr. Warren Grayson’s laboratory at
Johns Hopkins University. Human subcutaneous adipose tissue was obtained in the form
of lipoaspirate from a healthy 47-year-old Caucasian female donor undergoing elective
liposuction surgery, with written informed consent, and with the Johns Hopkins University
Institutional Review Board approval. ASCs were isolated as previously described [6,32,33]
and their characteristics have been reported previously [34]. These cells were isolated from
the lipoaspirate tissue of an adult female patient with approval from the Johns Hopkins
Medicine Institutional Review Board. To access the impact of TProp on ASC proliferation,
1.0 × 104 ASCs per well were seeded in a 96-well plate and placed in a water-saturated
incubator at 5.0% CO2. The maintenance medium used was DMEM supplemented with
10% (v/v) FBS, 5 ng/mL basic fibroblast growth factor (bFGF; PeproTech), and 100 U/mL
penicillin/100 µg/mL streptomycin (P/S, Invitrogen, Waltham, MA, USA) [35,36]. After
24 h, either TProp or an equal volume of the solvent vehicle, ethanol (to a maximum of 0.1%,
v/v) were added to the wells at concentrations between 0–200 µM. After 3 days, an MTT as-
say was performed as described in our previous publication [30] and the absorbances were
read at 570 nm with 630 nm as the reference wavelength by using a multiwell plate reader.

2.2. Flow Cytometry

Cell surface thiol (CST) display was measured by flow cytometry, as described in
our previous publications [37–39]. To quantify CSTs, ASCs were incubated with TProp at
concentrations of up to 100 µM. Cells were harvested after 3 d and washed twice with PBS.
The cells then were resuspended with 5.0 mM (+)-biotinyl-3-maleimidopropionamidyl-
3,6-dioxaoctane-diamine (MB; Pierce Biotechnology, Waltham, MA, USA) in PBS at room
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temperature. After 1.0 h cells were centrifuged and washed three times with ice-cold avidin
staining buffer (PBS containing 5.0% FBS and 0.1% NaN3). The cell suspension was next
mixed with FITC-labeled avidin (Sigma, St. Louis, MO, USA) for 15 min on ice. Finally,
cells were washed three times with avidin staining buffer and analyzed by flow cytometry
on a BD Canto II instrument. For each measurement, ~104 cells were counted in triplicate
from three replicate samples.

2.3. ASC Schwann Cell Differentiation

ASCs of passages three to five with 5 × 104 cells were plated into experimental and
control wells in a 24-well plate. After 2 days in the maintenance medium, the culture
media in the experimental groups were replaced with the medium previously reported
to induce the differentiation of ASCs into Schwann-like cells [13]. Briefly, ASCs were first
incubated with 1.0 mM β-mercaptoethanol (BME; Sigma-Aldrich, St. Louis, MO, USA)
in DMEM medium for 24 h followed by the addition of 35 ng/mL all-trans-retinoic acid
(Sigma-Aldrich, St. Louis, MO, USA) in DMEM medium for 72 h. After this, cells were
incubated in SC-conditioned DMEM medium containing 14 µM forskolin (Sigma-Aldrich,
St. Louis, MO, USA), 5 ng/mL platelet-derived growth factor-AA (PDGF; PeproTech, Rocky
Hill, NJ, USA), 10 ng/mL bFGF, and 200 ng/mL recombinant human heregulin-β1 (HRG;
PeproTech, Rocky Hill, NJ, USA) with or without 50 µM TProp. Media were changed every
other day. For the TProp group, analog was replenished at each change of media.

2.4. Identification of Schwann-Like Cells by Immunofluorescence

Immunocytochemical assessment of ASC markers was performed after the ASCs
were cultured in the SC-conditioned medium for either 2 or 14 days. After culturing, the
cells were fixed at room temperature in 4% (w/v) paraformaldehyde for 15 min and then
blocked with 5% goat serum for 1.0 h. After the time elapsed, antibodies with specificity
for S100 calcium-binding protein β (S100β) and p75 neurotrophin receptor (p75), both
from Santa Cruz Biotechnology, Inc. (Dallas, TX, USA), and beta-catenin (β-catenin, Sigma,
St. Louis, MO) were added and incubated at 4 ◦C overnight. The secondary antibodies goat
anti-rabbit Cy3- and donkey anti-mouse FITC-conjugated from Fisher Scientific (Hampton,
NH, USA ) were added for 1.0 h at room temperature. In addition, cell nuclei were stained
with DAPI (Sigma-Aldrich, St. Louis, MO, USA). Fluorescence microscope imaging (Leica
DMi8 microscope, Leica Microsystems, Wetzlar, Germany) was then performed on the
stained cells. The percentages of S100 and p75 positive cells were calculated by using
ImageJ (v 1.70, NIH, Bethesda, MD, USA) Cell Counter plugin. The number of S100 and
p75 positive cells was determined by manually counting the number of cells displaying
biomarker protein immuno-reactivity. DAPI-positive cells that stained bright blue were
automatically counted and designated as the total cell number. Their ratio was presented
as the percentage. The positive area (area of β-catenin positive cells per total cell area) and
mean intensity of β-catenin positive cells were automatically calculated by using ImageJ
(v 1.70, NIH, Bethesda, MD, USA). Three independent experiments were performed. At
least three random images of each sample were analyzed for statistics.

2.5. Detection of Secreted Nerve Growth Factor Beta (NGFβ) and Glial Cell Line-Derived
Neurotrophic Factor (GDNF) by Enzyme-Linked Immunosorbent Assay (ELISA)

During the differentiation of ASCs to Schwann-like cells, their media were collected at
day 2 and day 14, and centrifuged at 300× g for 10 min at 4 ◦C. The concentrations of NGFβ
and GDNF in the supernatant from each group were measured via ELISA using human
NGFβ and human GDNF ELISA Kit (Boster Bio, Pleasanton, CA, USA). The absorbances of
each well were recorded using a spectrophotometer with a reference wavelength of 450 nm.
The concentrations of NGFβ and GDNF were determined using a standard curve derived
from authentic samples of these proteins. All measurements were repeated three times
from independent technical replicates.
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2.6. mRNA Extraction and RT-qPCR Analysis

Transcript quantification began by isolating mRNA from the test cells using the
RNeasy Mini Kit (Qiagen, Germantown, MD, USA) followed by cDNA synthesis us-
ing a cDNA Reverse Transcription Kit (Applied Biosystems, Waltham, MA, USA). Real-
time quantitative PCR (RT-qPCR) was performed using the QuantStudio 3 Real-Time
PCR System (Thermo Fisher, Hampton, NH, USA). The primers used were forward 5′-
GAAGAAATCCGAACTGAAGGAGC-3′ and reverse 5′-TCCTGGAAGTCACATTCGCCGT-
3′ (S-100β), forward 5′-CATCACCTGGAGGACTTCTACC-3′ and reverse 5′-CAGTGTACTG
GATGCTCTTCAGG-3′ (NCAM, neural cell adhesion molecule), forward 5′-CTGGAGAGG
AAGATTGAGTCGC-3′ and reverse 5′-ACGTCAAGCTCCACATGGACCT-3′ (GFAP, glial
fibrillary acidic protein), 5′-GGCAATGGACACGCAACTGATC-3′ and reverse 5′-TGATCG
ACAGGATCATGGTGGC-3′ (PMP22, peripheral myelin protein 22), forward 5′-CTATCCTG
GCTGTGCTGCTCTT-3′ and reverse 5′-ACTCACTGGACCAGAAGGAGCA-3′ (P0, myelin
protein zero), and forward 5′-GGAGCGTGGCTACTCTTTTG-3′ and reverse 5′-GGCTGGA
AGAGTGTCTCAGG-3′ (GAPDH). The first stage of RT-qPCR involved one cycle of reverse
transcription for 30 min at 50 ◦C. The second stage involved one cycle of predegeneration
for 10 min at 95 ◦C. The third stage involved 40 cyclic reactions at 95 ◦C for 10 min followed
by 60 ◦C for 30 s. The fourth stage involved one default melting cycle. Relative mRNA
expression was then calculated using the 2−∆∆Cq method and the data were normalized
using GAPDH mRNA expression.

2.7. Statistical Analysis

Statistical differences between the two groups were compared using the Student’s
t-test. One-way analysis of variance followed by a multiple comparison Tukey’s post-test
was used for the multiple groups’ statistical analyses. Each experiment was carried out at
least three times, and the data were reported as mean ± SEM. A significant difference was
considered by p < 0.05.

3. Results
3.1. Metabolic Impact of Thiol-Modified ManNAc Analogs in ASCs

To determine the optimal concentration of the ManNAc analog TProp, we tested its
impact on metabolic viability in ASCs at various concentrations using MTT assays. Ethanol
was used as the solvent control to establish a baseline (for context, in our past experience,
the small concentrations of ethanol used as a delivery vehicle for MGE analogs have not
affected biological activity [30]). Following 3 days of treatment with TProp, ASCs showed a
moderate decrease in cell proliferation as analog concentration increased from 0 to 100 µM
(Figure 1B). There was only a slight decrease in cell proliferation (7.2%) at concentrations
up to 50 µM, with a decrease in viability from 92.8% to 87.5% as the analog concentration
increased from 50 µM to 100 µM and a further decrease to 78.5% and 67.3% at 150 and
200 µM, respectively. The flow cytometry study (Figure 1C) indicated that the maximal
display of cell surface thiol groups in cells treated with TProp peaked at 50 µM of this
analog, approximately doubling their expression levels compared to the ethanol-treated
control cells. Thus, this optimized concentration of 50 µM TProp was used for the remainder
of the experiments reported in this study.

3.2. Differentiation of ASCs to a Schwann Cell Phenotype

The ASC differentiation procedure is outlined in Figure 2A. The morphologies and
biomarkers of differentiated ASCs were evaluated after 2-day and 2-week differentiation
periods. Optical microscopy showed that ASCs maintained their original flattened morphol-
ogy whereas TProp-dASCs developed a spindle-shaped cell morphology similar to genuine
SCs (Figure 2B). Immunofluorescence staining (Figure 2C) after 2 days of incubation in the
maintenance medium showed negligible S100 (2.001 ± 0.7413% positive cell percentage,
2485± 930.6 positive intensity) and P75 protein expression (1.666± 0.6158 and 4832± 1469)
in ASCs whereas cells cultured in the differentiation media (dASC) expressed both proteins



Cells 2023, 12, 1190 6 of 13

(14.02 ± 2.080%, 81,471 ± 795.8 S100 and 8.099 ± 2.169%, 7561 ± 1143 P75 positivity)
at measurable levels (Figure 2D,E). When TProp was introduced into the differentiation
process, cells expressed higher levels of S100β (33.80 ± 3.385%, p < 0.001; 12,810 ± 545.1,
p < 0.001) and P75 (42.19 ± 5.890%, p < 0.001; 12,581 ± 706.1, p < 0.01) than those from the
dASC group, indicating that TProp boosted cell differentiation in two days.

With the extension of the induction period to 2 weeks, the rate of S100β-positive cells
percentage and their protein expression increased (Figure 3A), 8.029 ± 1.752, 35.34 ± 4.301,
and 67.84 ± 1.376%; 6531 ± 1161, 14,378 ± 1175, and 22,013 ± 1795 for ASC, dASC, and
TProp-dASC groups, respectively (Figure 3B). Both the dASC (p < 0.01) and TProp-dASC
(p < 0.001) groups expressed significantly higher S100 levels than the ASC group, and
furthermore, the TProp-dASC group had a higher S100β level (p < 0.01) than the dASC
group. Quantification of P75 positive cell percentage and expression intensity (Figure 3C)
confirmed the SC differentiation. The TProp-dASC (57.37 ± 1.796%, p < 0.001; 18,701 ± 943,
p < 0.001) and dASC (42.17 ± 4.826%, p < 0.01; 13,763 ± 1380, p < 0.001) groups showed
significantly higher P75 positivity than the ASC group (5.511 ± 1.022% and 5809 ± 1125)
after 14 days of differentiation.

3.3. RT-PCR Results

To determine the effects of TProp on ASC differentiation, RT-qPCR was used to mea-
sure transcript levels of SC markers (GFAP, S100, PMP22, NCAM, and P0) in differentiated
ASCs two days post-induction. Transcript levels were normalized to GAPDH levels allow-
ing a comparison of gene expression in the TProp-treated (TProp-dASC) and untreated
groups (dASC). Significant upregulation of S100β, GFAP, and PMP22 was observed in the
TProp-treated group (2.96 ± 0.34), compared to its untreated counterpart (1.47 ± 0.191)
(p < 0.001) (Figure 4). Transcript levels of NCAM and P0 also trended higher in the TProp-
dASCs group (2.21± 0.30), compared to the dASC group (1.72 ± 0.176), but this result was
not statistically significant (p > 0.05).
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Figure 2. Characterization and comparison of Schwann-cell-like differentiation from ASCs with
and without TProp after two days of treatment. (A) Schematic of the protocol used to differenti-
ate ASCs into SC-like cells. (B) Optical microscopy images showed the flattened morphology in
undifferentiated ASCs (ASC) and differentiated ASCs (dASC), whereas a spindle-shaped Schwann
cell morphology was observed in the differentiated ASCs treated with 50 µM TProp (TProp-dASC).
(C) Immunofluorescence staining indicated higher levels of S100 (green) and P75 (red) protein ex-
pression in the TProp-dASCs. The scale bar is 25 µm. Quantitative analysis based on percentage of
positively stained cells and intensity of S100 (D) and P75 (E). Data represented mean ± SEM (n = 3);
** p < 0.01, and *** p < 0.001, one-way ANOVA with Tukey’s post-test.
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Figure 3. Characterization and comparison of Schwann-cell-like differentiation from ASCs with and
without TProp after fourteen days of treatment. (A) Bright field images and immunofluorescence
staining indicated the different levels of S100 (green) and P75 (red) protein expression in undifferenti-
ated ASCs (ASC), differentiated ASCs (dASC), and differentiated ASCs treated with 50 µM TProp
(TProp-dASC). The scale bar is 25 µm. Quantitative analysis of positive cell percentage and intensity
of S100 (B) and P75 (C). Data represented mean ± SEM (n = 3); ** p < 0.01, and *** p < 0.001, one-way
ANOVA with Tukey’s post-test.
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Figure 4. Transcript analysis of Schwann cell differentiation in ASCs. The RT-qPCR analysis for
Schwann cell differentiation markers after 2 days of treatment with 50 µM TProp treatment (TProp-
dASC) in differentiation medium showed significantly higher mRNA levels of GFAP, S100, and
PMP22, but not for NCAM and P0. Statistical analysis of the RT-qPCR was carried out using the
(2−∆∆Ct) method, which calculates the relative changes in mRNA levels normalized to an endogenous
reference (GAPDH) relative to a calibrator (without analog treatment, dASC) that serves as the control
group; the differences between treated and control samples were expressed as fold changes. * p < 0.05,
*** p < 0.001 (n = 3, mean ± SEM; Student’s t-test; ns, no significant difference).

3.4. Secretion of Neurotrophins

Concentrations of the NGFβ and GDNF secreted by ASCs, dASCs, and TProp-dASCs
were determined by using ELISA. Overall, the concentrations of NGF and GDNF secreted
by TProp-dASCs were higher than in the other two groups at both the 2- and 14-day
time points (Figure 5A,B). GDNF secretion was higher at day 14 compared to day 2 in all
groups whereas NGFβ levels showed a decrease of 39.34% and 40.71% for the dASC and
TProp-dASC groups, respectively. For NGFβ, TProp-dASCs secreted significantly greater
levels (p < 0.001) than either ASCs and dASCs at day 2 (140.45 ± 2.81 vs. 18.34 ± 6.86
and 122.91± 6.37 pg/mL). At day 14, TProp-dASCs secreted significantly higher levels of
NGFβ than those observed from ASCs (83.61 ± 1.67 vs. 9.22 ± 0.61 pg/mL, p < 0.001),
and dASCs (74.31 ± 2.46 pg/mL, p < 0.01). The levels of GDNF secreted by TProp-dASCs
(98.71 ± 3.80 pg/mL at 2 days and 122.84 ± 2.20 pg/mL at 14 days) were higher than those
from dASCs (60.71 ± 1.01 pg/mL, p < 0.001 at 2 days and 84.71 ± 1.01 pg/mL p < 0.01 at
14 days) and ASCs (18.57 ± 2.82 pg/mL, p < 0.001 at 2 days and 25.51 ± 2.12 pg/mL,
p < 0.001 at 14 days). Moreover, Figure 5C showed that TProp-dASCs at 2 days se-
creted significantly higher levels of both NGFβ (140.45 ± 2.81 pg/mL, p < 0.001) and
GDNF (98.71 ± 3.80 pg/mL, p < 0.05) than the levels of these proteins secreted by dASCs
at 14 days (NGFβ 74.31 ± 2.46 pg/mL and GDNF 84.71 ± 1.01 pg/mL).

3.5. Wnt Signaling Activation

Wnt signaling activation was monitored in ASCs that were treated, or not, with TProp.
In these experiments, TProp-dASCs experienced significantly increased (p < 0.01) β-catenin
expression (Figure 6A), specifically, levels increased approximately twofold (4.74 ± 2.23%)
compared to dASC (2.93 ± 0.39%) (Figure 6B). Similarly, the β-catenin positive intensity of
TProp-dASCs (24,048 ± 4586) was more than double (p < 0.01) that of untreated dASCs
(10,104 ± 794.6, Figure 6C). A schematic representation of how TProp promotes the differ-
entiation of dASCs into Schwann cell-like cells is shown in Figure 6D. This representation
is based on experiments that showed that TProp-dASC caused a nearly twofold expression
of β-catenin compared to dASC, which increased β-catenin translocation to the nucleus.
After translocation to the nucleus, β-catenin presumably forms a multiprotein complex that
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activates the transcription of downstream genes, thereby promoting the differentiation of
dASCs into Schwann cell-like cells via the Wnt signaling pathway.
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Figure 5. ELISA-based quantification of neurotrophic growth factors from ASC, dASC, and TProp-
dASCs. Nerve growth factor (NGFβ, (A)) and glial-cell-derived neurotrophic factor (GDNF, (B))
secretion levels at 2 days (red bars) and 14 days (blue bars). (C) Comparison of NGFβ (purple circles)
and GDNF (green squares) secretion between dASCs at 14 days and TProp-dASCs at 2 days. Both
NGFβ and GDNF levels were increased in TProp-dASCs as compared with dASCs at either day 2 or
day 14 time points. Furthermore, the levels of both of these factors were higher with TProp stimulation
on day 2 than without TProp stimulation on day 14. Data are expressed as mean ± SEM. * p < 0.05,
** p < 0.01, and *** p < 0.001, one-way ANOVA with Tukey’s post-test for (A,B), and Student’s t-test
for (C).
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Figure 6. Wnt/β-catenin signaling activation. (A) Immunofluorescence staining of β-catenin (red)
in dASCs and TProp-dASCs. Quantification of area fraction (B) and intensity of positive β-catenin
cells (C). β-catenin was more highly expressed in TProp-dASCs compared to dASCs. ** p < 0.01,
Student’s t-test. TProp-dASCs experienced significantly increased β-catenin signaling compared to
dASCs. (D) Schematic representation of how TProp activates cell β-catenin for ASC differentiation.
TProp enters ASCs through metabolic glycoengineering. Metabolic-treated dASC (TProp-dASC)
caused a nearly twofold expression of β-catenin compared to dASC, which led to more β-catenin
translocation to the nucleus. After translocating to the nucleus, β-catenin formed a complex to
activate the transcription of downstream genes, thereby promoting the differentiation of ASCs into
Schwann-cell-like cells.
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4. Discussion

ASCs are being widely investigated both in vitro and in vivo as therapeutic cells able
to aid in nerve regeneration due to their ability to differentiate into SC [13,24]. Despite
extensive efforts to develop reliable methods to differentiate ASCs from SCs as therapeutic
cells, current protocols generally take several weeks to complete the in vitro differentia-
tion [13,14,40,41]. This study highlights a potential solution for the long in vitro preparation
time required before in vivo implantation that hinders clinical translation efforts by re-
ducing the differentiation timeframe of human ASCs from several weeks to two days. In
particular, we compare a standard ASC differentiation protocol that requires two weeks
with MGE-enabled differentiation using TProp that promotes the phenotypic development
of human ASCs to an SC-like morphology, with greatly increased SC biomarkers expression
and significantly secreted NGFβ and GDNF proteins level in two days. As a caveat, these
protocols were optimized for rodent cultures. Consequently, because rat development
is shorter than human development, longer differentiation protocols may be needed to
achieve comparable differentiation in human cells.

To date, the majority of therapeutic applications of MGE have pursued cancer diag-
nostics or therapeutics [42,43]. In the current study, we pursue a less frequently explored
aspect of MGE, which is its ability to alter cellular differentiation. For example, ManNProp
promoted monocytic differentiation of HL60-cells [44]; contrarily, 3F-Neu5Ac inhibited
osteogenic and adipogenic differentiation of mesenchymal stromal cells [45]. In previous
studies, our team showed that thiolated ManNAc analogs can enhance the neural differen-
tiation of hEBD cells and hNSCs [27,30], and recently, we showed that TProp suppresses
adipogenic differentiation in hASCs without interfering with glial cell differentiation [30].
By introducing thiol-modified monosaccharide analogs into cellular metabolic pathways,
resulting in biosynthetic incorporation of these non-natural sugars into the cell surface
glycans, the previous studies indicated that MGE could manipulate cellular physiology
and responses to promote ASC differentiation in ways that promise therapeutic value. In
the current study, we have added a therapeutically relevant endpoint to these pioneering
studies by demonstrating that MGE facilitates the rapid differentiation of ASCs into cells
with an SC-like phenotype with the ability for enhanced secretion of neurotrophic factors.

Our findings, described in this report, demonstrated that conversion of the flattened
fibroblast-like morphology of undifferentiated ASCs into spindle-shaped and bi/tripolar
cells with elongated processes consistent with an SC-like morphology was enhanced by
TProp (Figure 2). The differentiation percentage of ASCs into Schwann cells can vary
depending on several factors such as culture conditions, cell source, and differentiation
protocols. Several studies have reported successful differentiation of ASCs into Schwann
cells with varying differentiation percentages from 40–80% [18,19]. Although ASCs can
differentiate into Schwann cells under the published protocol, the use of specific sugar
(TProp) stimulation can significantly enhance the differentiation percentage, from ~10% and
42% to 42% and 68% on day two and fourteen, respectively. In addition, the differentiation
process is time-dependent, and longer induction periods lead to higher differentiation
efficiencies. In particular, after 2 days of transdifferentiation, expression of the SC markers
S100 and P75 significantly increased in TProp-treated cells compared to untreated cells. In
addition, we observed MGE-dependent changes in morphology that were accompanied by
expression changes at the protein (Figures 2 and 3) and mRNA (Figure 4) levels consistent
with SC differentiation, indicating the valuable role of MGE in this process. Mechanistically,
we implicated β-catenin accumulation in TProp-dASCs (Figure 6), consistent with the
involvement of Wnt signaling in previous studies with hEBD cells [27] and hNSCs [30].
The increase in β-catenin, just one of the multifactorial beneficial cell responses elicited by
MGE for neural regeneration, includes its partitioning to the inner surface of the plasma
membrane where it organizes cell adhesion molecules (consistent with the impact of TProp
on cell adhesion [31]) as well as to the nucleus where it associates with transcription factors
and directs neurogenic differentiation (Figure 5D).
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ASCs represent a rich source of neurotrophic growth factors [46,47], which exert
multiple beneficial effects for neurorestoration and tissue regeneration [48]. Our findings in
the current report demonstrate that differentiation of human ASCs leads to upregulation of
NGFβ and GDNF, consistent with previous studies [49,50]. NGFβ and GDNF were tested
in this study because they are important for cell survival and neurite outgrowth during
development and regeneration [51]. In particular, NGFβ is a key component in axonal
regeneration and sprouting of primary sensory neurons [52], whereas GDNF promotes
neuron survival and axon outgrowth [53]. NGFβ plays a significant role in promoting both
sensory neuron survival and fiber outgrowth in peripheral sensory neurons [54], modulates
the activity of immune cells, reduces inflammation, and promotes a favorable environment
for nerve regeneration [55], which makes it a prominent factor in maintaining the integrity
of the peripheral nervous system. Clinical studies have shown promising results for the
use of NGFβ as a therapeutic agent for peripheral nerve injuries and conditions [56]. In our
in vitro differentiation model, we evaluated the ability of MGE to modulate the production
and release of neurotrophic factors in ASCs. For the first time, we demonstrated that
TProp-dASCs produce and release higher levels of GDNF and NGFβ than those from
dASCs (Figure 5). Accordingly, the ability of MGE to increase levels of secreted GDNF
and NGFβ, and to do so rapidly (i.e., after two days), represents an important advance
for efforts to use ASCs therapeutically for nerve regeneration. These findings represent
the first evidence for the positive role of MGE in the modulation of neurotrophic factors
expression and release in stem cells. One benefit of time-accelerated differentiation observed
after two days is the ultimate shortening of treatment regimens, which will facilitate
clinical translation of ASC-based therapies. A biological benefit is that although GDNF
concentrations were maintained in both treatment groups in the 14-day differentiation
protocol, NGFβ levels were down regulated during the longer two-week differentiation
protocol. By incorporating MGE into the protocol, the high levels of NGFβ observed at the
two-day time point in theory can be maintained for in vivo cell transplantation along with
concomitant therapeutic benefits.

5. Conclusions

This study is the first to focus on promoting the differentiation of SCs from ASC
through MGE. A key advance we report herein is that an MGE approach, specifically
the use of the TProp analog, significantly reduces the transdifferentiation period of ASCs
into SCs in two days compared to traditional ASC differentiation protocols that require
a minimum of two weeks. Importantly, the SCs derived from MGE-treated ASCs were
phenotypically similar to mature myelinating SCs and demonstrated the ability to secrete
neurotrophins in vitro. In summary, MGE induction provides a novel strategy for obtaining
precursor cells for use in nerve tissue engineering.
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