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Abstract: Stem cells’ self-renewal and multi-lineage differentiation are regulated by a complex
network consisting of signaling factors, chromatin regulators, transcription factors, and non-coding
RNAs (ncRNAs). Diverse role of ncRNAs in stem cell development and maintenance of bone
homeostasis have been discovered recently. The ncRNAs, such as long non-coding RNAs, micro
RNAs, circular RNAs, small interfering RNA, Piwi-interacting RNAs, etc., are not translated into
proteins but act as essential epigenetic regulators in stem cells’ self-renewal and differentiation.
Different signaling pathways are monitored efficiently by the differential expression of ncRNAs,
which function as regulatory elements in determining the fate of stem cells. In addition, several
species of ncRNAs could serve as potential molecular biomarkers in early diagnosis of bone diseases,
including osteoporosis, osteoarthritis, and bone cancers, ultimately leading to the development
of new therapeutic strategies. This review aims to explore the specific roles of ncRNAs and their
effective molecular mechanisms in the growth and development of stem cells, and in the regulation
of osteoblast and osteoclast activities. Furthermore, we focus on and explore the association of altered
ncRNA expression with stem cells and bone turnover.

Keywords: stem cells; lncRNA; miRNA; osteoblastogenesis; osteoclastogenesis; osteoporosis; os-
teoarthritis; and bone cancer

1. Introduction

Stem cells can develop into various cell types in the body during early stages of life
and growth. In many tissues, they serve as an internal repair system, dividing essentially
to replenish other cells, throughout the life of humans and other organisms. Upon division,
each new cell has the potential to either remain a stem cell or become another type of cell
with a more specialized function, such as a muscle cell, a red blood cell, or a brain cell. Stem
cells are distinguished from other cell types by two important characteristics. First, they are
unspecialized in nature, capable of renewing themselves through cell division, even after a
long period of inactivity [1,2]. Previous studies suggest the potential role of non-coding
(ncRNAs) in stem cell cycle regulation and developmental processes such as self-renewal,
differentiation, and proliferation [3–6]. In last decades, the number of studies in ncRNAs has
increased dramatically. ncRNAs are ribonucleic acid (RNA) molecules that are transcribed
from DNA but not translated into protein. Sometimes ncRNAs are referred as RNA genes
or functional RNA. Functionally important ncRNAs are transfer RNA (tRNA), ribosomal
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RNA (rRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), micro RNA
(miRNA), small interfering RNA (siRNA), extracellular RNA (exRNA), Piwi-interacting
RNA (piRNA), and long non-coding RNA (lncRNA) [7]. The exact number of ncRNAs
encoded within the human genome is unclear; however, recent studies suggest the existence
of many thousands [8]. Different classes of ncRNAs participate in various cellular processes,
e.g., RNA maturation (snRNA and snoRNA), gene expression and regulation (miRNA,
piRNA, lncRNA, and circRNA), and protein synthesis (rRNA and tRNA) in eukaryotic
cells [9]. The majority of the genome in both prokaryotes [10] and eukaryotes is transcribed
into different classes of ncRNAs. According to the length, ncRNAs can be categorized
into three categories: (i) a length of nucleotides less than 50 (miRNA, siRNA, and piRNA);
(ii) a length of nucleotides ranging from 50 to 500 (rRNA and tRNA); and (iii) a length
nucleotides greater than 200 (lncRNA and circRNA) [7,11]. A wide range of ncRNAs
(miRNA, snRNA, snoRNA, piRNA, and lncRNA) control the growth and differentiation of
stem cells and regulate stem-cell-mediated regeneration (cells and tissues) [3]. The ncRNAs
interplay in epigenetic, transcription, and post-transcription mechanisms that determine
the stem cell fate and improve the disease condition [12]. This review aims to explore the
existing knowledge of ncRNAs in regulating the growth and development of stem cells
with a special focus on the regulation of bone development and several bone disorders.
Furthermore, this review will be helpful in designing potential treatment strategies for
bone disorders in the near future.

2. Stem Cells

Based on their source, potential to differentiate, and stage of development, there are
four types of stem cells: embryonic stem cells (ESCs), adult stem cells, cord blood cells, and
induced pluripotent stem cells. An embryonic stem cell is derived from the inner cell mass
of four- or five-day-old blastocytes capable of differentiating into all types of cells. Adult
stem cells are not derived from embryonic tissue, are found in various organ systems (brain,
bone marrow, skin, and blood), and maintain the homeostasis in which they exist. Unlike
ESCs, adult stem cells are not pluripotent, meaning they cannot become every cell type
in the human body. Adult stem cells differentiate to replenish dying cells and regenerate
damaged tissues. In many adult tissues, such as bone marrow, muscle, and brain, stem
cells divide asymmetrically, producing two cells: one cell is genetically identical (stem cell),
and the other cell is involved in tissue repair and regeneration. Cord blood stem cells are
present in the umbilical cord and placenta. The ability of stem cells to differentiate into
cell types has opened new avenues of scientific investigation and potential therapies for a
myriad of diseases [13–15].

In ESCs, bones originate from three distinct lineages: (i) somites (form axial skeleton),
(ii) the lateral plate mesoderm (forms the limb skeleton), and (iii) the cranial neural crest
(forms branchial arch, and craniofacial bones and cartilage). Mesenchymal stem cells
(MSCs) present in the developing embryo where ossification occurs. There are two bone
formation pathways: (i) intramembranous ossification in which bone rises directly within
preexisting mesenchymal connective tissue, and (ii) endochondral ossification in which
bone rises within hyaline cartilage, developed from mesenchyme). After birth, MSCs and
skeleton stem cells (SSCs) are responsible for bone homeostasis in the body [16–18].

3. Stem Cells Regulation

The growth and development of stem cells is a complex process, where numerous sig-
naling pathways interplay predictory roles. The Wnt signaling pathway is a key regulatory
pathway that plays a crucial role in the self-renewal and differentiation of stem cells. Wnt
signaling is controlled by a delicate balance between positive and negative regulators, while
disruption induces cancer development [19]. The assessment of the pluripotent abilities of
MSCs via Oct4 and Sox2, mRNA expression factors, linked with cell stemness, these highly
expressed in (ESCs), affect cell proliferation and differentiation [20,21]. c-Myc is a regulatory
factor in cell proliferation and metabolism. Moreover, c-Myc gene overexpression induces
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tumorogenesis [22,23]. p53 regulates c-Myc, Sox2, and Oct4 expression, and assists stem
cells in an undifferentiated state [24,25]. Pluripotent stem cells (PSCs) have diverse roles in
developing medicines and understanding the biological process of embryonic development
and specific diseases. The PSCs’ functions (self-renewal and multi-lineage differentiation)
are regulated by several growth factors, including LIF, FGF4, BMPs, chromatin regulators,
transcription factors, signaling pathways, and ncRNAs. Transcription factors including
Oct4, Sox2, Nanog, and Klf4 are significantly expressed by PSCs, and maintain stemness
and pluripotency. Importantly, ncRNAs with more than 200 bp in length act as essential
epigenetic regulators in stem cell pluripotency and its specific lineage. Hence, exploring
the molecular mechanisms underlying the determination of PSCs’ fate is significant and
will have potential applications [26–28].

4. ncRNAs in Stem Cells Growth and Development

Stem cell growth, development, and differentiation are dynamic processes regulated
by the interactions between external signaling, epigenetic factors, and other molecules
that regulate gene expression. The two classes of ncRNAs (lncRNAs and miRNAs) are
potential regulators of stem cell function. MiRNAs including miR-132, miR-145, miR-128-
3p, miR-204-5p, miR-342-5p, miR-1297, hsa-miR-302, miR-26b-5p, and miR-10a significantly
regulate the function of stem cells. H19, AK141205, MEG3, Pnky, ANCR, TINCR, HULC,
SNHG7, and EPB41L4A-AS1 are the lncRNAs that are involved in stem cell growth and
differentiation [5,26].

4.1. lncRNAs and Stem Cell Pluripotency

LncRNA is a class of RNA molecules with more than 200 nucleotides. Recent studies
indicate the involvement of lncRNAs in several processes, including genomic imprinting,
chromosome silencing, chromosome modification, transcriptional interference, and tran-
scriptional activation. The altered expression of lncRNAs may induce changes in related
proteins and uncontrolled transcription, developing the risk for various diseases [29–31].
In a study, 51 lncRNAs were abnormally expressed in postmenopausal women with os-
teoporosis (OP). However, some lncRNAs participate in the pathological process of OP
by regulating mRNA expression or osteoclast differentiation [32]. In the Notch signaling
pathway, the regulatory effect of H19 (lncRNA) on the expression of delta-like ligand-1
(DLL1), delta-like ligand-3 (DLL3), delta-like ligand-4 (DLL4), Jagged-1 (JAG1) and Jagged-
2 (JAG2), by regulating the expression of miRNAs (miR-17, miR-107, miR-27b, miR-106b,
and miR-125a) downstream, enhanced the expression of bone morphogenetic protein-9
(BMP 9) and induced MSCs osteogenic differentiation [33].

The study on PSCs and ESCs expressed that 133 lncRNAs were upregulated and
104 lncRNAs were downregulated in PSCs and ESCs compared with human fibroblasts [34].
Many lncRNAs regulate pluripotent transcription factors, including Oct4, Sox2, and Nanog.
In a recent study, multiple pluripotency-associated lncRNAs were identified and embedded
in the chromatin regulatory network with RNA-Seq and RAT-Seq [35–37]. lncRNAs present
in the nucleus interact with chromatin modification factors, RNA binding proteins, and/or
transcription factors to regulate gene expression. Moreover, lncRNA Gm15055 may recruit
PRC2 to maintain H3K27me3 levels on HOXA genes [38]. In one mechanism, lncPRESS1
acts with SIRT6, inhibiting SIRT6 attachment to chromatin and regulating the histone H3K56
and H3K9 promoter acetylation to protect hESC pluripotency [39]. Another study reports
that lncRNA-ES1 (AK056826), lncRNA-ES3 (BC026300), and lncRNA-ES2 (EF565083) are
diversely expressed in hESC nuclei, and bind near the TSS of the Oct4 and Nanog promoters
to increase hESC pluripotency. LncRNA-ES1 and lncRNA-ES2 interact physically with
SUZ12 and SOX2, and are expressed as a modular scaffold for SUZ12 (or PRC2) and
SOX2 in hESCs. Furthermore, the SOX2 factor binds with lncRNAs to prevent the binding
of other pluripotency-associated transcription factors. LncRNA Zeb2-NAT deficiency
enhances reprogramming efficiency and maintains ESCs’ self-renewal and pluripotency.
Thus, Zeb2-NAT may be treated as an early marker for pluripotency loss [35,40].
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4.2. lncRNAs and Stem Cells Differentiation

LncRNA is transcribed from the different genomic regions, including exons, introns,
intergenic, and others. At present, more than 30,000 lncRNAs are identified in humans
and mice, while few are recognized for their functions [41]. The self-renewal and dif-
ferentiation characteristics of PSCs are efficiently regulated by lncRNA. LncRNA also
functions as an essential regulator in a variety of cellular processes, like chromatin remod-
eling, transcription, post-transcriptional modification, intracellular trafficking, metabolism,
and differentiation [27,42,43]. However, lncRNA is an essential component of the three-
dimensional genome structure that mediates the development of gene regulatory chromo-
some loops [44,45]. Such chromatin loops may bring distant enhancer elements near to the
core promoter and induce optimal gene expression [46,47]. In an investigation, functional
analysis of the lncRNA, Snhg14, abundantly expressed in both ESCs and PSCs, confirmed
that Snhg14 is required to maintain stem cell pluripotency. Moreover, lncRNA Oplr16 (Oct4
promoter-interacting lncRNA 16) is another pluripotency-associated chromatin RNA factor
that coordinates intrachromosomal looping and DNA methylation in the Oct4 promoter
region. Wang et al. used CRIST-seq to identify another reprograming-associated lncRNA,
Peblr20 (Pou5F1 enhancer binding lncRNA 20), which binds to the Oct4 enhancers. Thus,
Peblr20 utilizes a novel trans-epigenetic RNA mechanism to control stem cell fate [48,49].

4.3. miRNAs and Bone Stem Cells Growth and Development

MiRNAs are small ncRNAs originating from the hairpin or double-stranded RNA
precursor (introns and exons) by RNA polymerase II [50]. This was first discovered in
1993 by Lee and colleagues [51]. MiRNAs are the most abundant class of small ncRNAs,
ubiquitously expressed in animals, plants, and viruses, indicating their evolutionary signif-
icance [52]. MiRNA binds to the 3′ untranslated regions (UTR) of target mRNA, activates
its translation and regulates stability [53]. According to the miRBase database (v-22), the
release added 48 new species, now containing 38,589 hairpin precursors and 48,860 mature
miRNAs from 271 organisms, including humans, animals, plants, unicellular algae, and
viruses. Specifically, 1917 annotated hairpin precursors and 2654 mature miRNAs have
been identified in humans [54]. More than 60% of all protein-coding gene expression is
regulated by miRNAs. Moreover, miRNAs are expressed in fundamental biological pro-
cesses like proliferation, differentiation, survival, and apoptosis in many cell types [55,56].
However, altered miRNA expression may contribute to pathological conditions in humans
including cardiovascular disease, cancer, psychiatric disease, autoimmune disease, and neu-
rological disease [57–60]. MiRNAs regulate gene expression through different mechanisms
and mediate gene silencing at the post-transcriptional level [55].

Recent evidence suggests that miRNAs also regulate stem cell function and develop-
ment by targeting multiple cell-cycle-associated genes (e.g., cyclins, CDKs, and CDKIs) and
coordinating with the stem cell cycle progression. However, the mechanism underlying
miRNA-mediated stem cell regulation is still incompletely understood. Initially, miRNA’s
role in stem cell development was observed in knockout mice lacking Dicer and DGCR8;
these are the components of miRNA biogenesis [61,62]. Dicer-deficient mice expressed
defective cell cycle progression [63]. DGCR8-deficient ESCs showed either delayed or
reduced expression of differentiation markers, and delayed kinetics of cell cycle progres-
sion. Mostly, such ESCs (DGCR8-deficient) are arrested in the G1 stage of cell cycles. Here,
the main function of the miRNA pathway is to promote the ESCs G1–S-phase transition
in cell cycle progression. The similarity in the phenotype of DGCR8 and Dicer mutants
confirms that Dicer in ESCs functions mainly in the miRNA pathway. In stem cells, the
predominant function of miRNAs is the regulation of cell cycle progression during cell
differentiation [61,64,65]. In a recent study on mice, the cloning and sequencing of miRNAs
miR-290–295 cluster and miR-296 are specific to ESCs, and their levels decrease as the stem
cells differentiate. Collectively, miR-290–295 and miR-296 maintain pluripotency and in-
duce differentiation [66,67]. Further, miR-21 and miR-22 levels increase substantially in the
induction of differentiation. Studies on hESCs also show that pluripotent stem cells have
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unique miRNAs whose levels decrease with differentiation [61,68]. The endogenous small
interfering RNAs (endo-siRNAs) and the piRNAs are two new classes of sncRNAs. MiRNA
and siRNA synthesis depends on the Dicer pathway, whereas piRNAs are synthesized from
a long single-stranded precursor by Piwi proteins. PiRNAs are usually 26–31 nucleotides
long. PiRNAs are essential for stem cell self-renewal because Piwi proteins present on
piRNA are required for stem cell maintenance. Moreover, a piRNA derived from a sub-
telomeric region in Drosophila melanogaster has been found to be associated with germline
stem cell self-renewal [69,70]. The fields of stem cells and miRNAs have converged with the
identification of several stem-cell-specific miRNAs. In mouse ESCs, mirtrons, and canonical
and shRNA-derived miRNAs have been identified. MiRNAs seem to regulate stem cell
fate by finetuning protein levels of various factors [61,71].

Moreover, miRNAs are engaged in the regulation of osteoblast and osteoclast activity.
For instance, miR-140-3p may be involved in the regulation of osteoblast differentiation
by the acting growth factor (TGF) β3 signaling pathway, whereas inhibiting miR-31 ex-
pression intercepts osteoclast activity [72,73]. The role of miRNA in osteogenesis is now
emerging. MiR-125b and miR-26a prevent the differentiation of MSCs into osteoblasts. In
one mechanism, miR-26a prevents osteogenic differentiation by inhibiting human adipose-
tissue-derived stem cells (ADSCs) whereas the miR-125b mechanism is unknown. As
key players in the complex interplay among diverse RNA species, miRNAs have been
considered research hotspots for several years [74,75].

4.4. lncRNAs in Osteogenic Differentiation

In bone tissue formation, MSCs differentiate osteogenically into osteoblasts, chon-
drocytes, and osteocytes. Such osteogenic differentiation stimulates ALP expression and
calcium deposition, which is stimulated and regulated by several factors, including lncRNA.
Deficiency in regulating factors may cause osteoporosis and osteogenesis imperfecta, par-
ticularly for elderly people and postmenopausal women. Hence, the understanding of the
lncRNA regulatory contribution in osteogenesis may explore potential therapeutic targets
for osteogenesis-deficient diseases [76,77].

In humans, MSCs osteogenesis is directed by the lncRNAs H19 and linc-ROR. H19
may be unregulated during osteogenic-related gene expression, and in vivo increases bone
formation by targeting miR-22 and miR-141, which act as potent inhibitors of osteogenesis.
Moreover, miR-22 and miR-141 may downregulate β-catenin expression, attenuating the
Wnt/β-catenin signaling for osteoblastic activity [78]. Similarly, linc-ROR may also enhance
the expression of osteogenic genes by targeting miR-138 and miR-145 [79]. Furthermore, the
lncRNAs MEG3 and AK141205 may promote osteogenesis by dissociating SOX2 from the
BMP4 promoter [80]. Osteogenesis of hADSCs downregulates expression of the lncRNA
MIAT, whose deficiency encourages osteogenic differentiation in vitro and stimulates bone
formation in vivo, indicating that MIAT inhibits osteogenesis whereas MIAT silencing
reverses TNF-inhibited osteogenesis [81,82]. Further, osteogenesis of hBMSCs downregu-
lates the expression of the lncRNA DANCR. Deficiency in DANCR expression increases
ALP and osteogenic marker gene expression, promoting the cell cycle in the S phase,
whereas overexpression of DANCR causes opposite effects [83]. Interestingly, lncRNA
MIR31HG downregulation dramatically promotes osteogenesis and significantly reduces
the osteogenic differentiation inhibition caused by hADSC inflammation. MIR31HG may
also interact with NF-κB to inhibit bone formation. However, MIR31HG and NF-κB form a
regulatory loop that improves osteogenesis in hADSCs under an inflammatory microenvi-
ronment. Given the importance of MIR31HG, it may be a therapeutic target for inhibiting
inflammation and improving bone formation [84]. LncRNA ANCR silencing promotes
osteoblast differentiation because it may interact with EZH2 to catalyze H3K27me3 in the
runt-related transcription factor-2 (RUNX2) promoter and inhibit RUNX2 expression [85].
Osteogenic differentiation is regulated by lncRNAs such as H19 (lncH19), KCNQ1OT1,
nuclear-enriched transcript 1 (NEAT1), metastasis-associated lung adenocarcinoma tran-
script 1 (MALAT1), lncRNA LINC00707, lncRNA HULC, lncRNA HOTAIR, maternally
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expressed gene 3 (lncRNA MEG3), XIXT, and DGCR5 in human bone marrow mesenchymal
stem cells (hBMSCs) [86,87]. The lncRNA (AK141205) regulates the process of osteogenic
differentiation of MSCs by upregulating CXCL13, while ANCR suppresses osteogenesis
of periodontal ligament stem cells (PLSC) by sponging miR-758 [26,88,89]. The downreg-
ulation of MEG3 promotes osteogenic differentiation of human dental follicle stem cells
by regulating the pathway Wnt/β-catenin [90]. The interaction of lncRNA and miRNA in
several osteogenic signaling pathways, such as Wnt/β-catenin and TGF-β/BMP-SMAD-
dependent and -independent pathways, is shown in Figure 1.
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Figure 1. The contribution of various long non-coding RNAs and microRNAs in osteogenic pathways.
Numerous lncRNAs and miRNAs have been shown to engage in different osteogenic pathways
including BMP, transforming growth factor-β (TGF-β), and Wnt/β-catenin cascades, leading os-
teogenic differentiation in BMSCs. The binding between BMP and TGF-β with receptors activates
SMAD-dependent and SMAD-independent cascades. SMAD2/3 (R-SMAD) is phosphorylated
through the TGF-β SMAD-dependent signaling pathway. R-SMAD (phosphorylated) potentially
interacts with SMAD4 and enters the nucleus. Further, R-SMAD and SMAD4 with CBP and P300
co-activators influence RUNX2 expression. Within the nucleus, R-SMAD interacts with HDAC4/5
and inhibits RUNX2 expression. Interestingly, non-phosphorylated R-SMAD is broken down by
ubiquitination. Several ncRNAs including lncH19-miR-675 and lncH19-miR-675 positively regulate
TGF-β SMAD-dependent pathways while lncHOTAIR-miR-17-5p regulates negatively. Significantly,
Smurf1/2 and SMAD6/7 express inhibitory action in the BMP SMAD-dependent cascade (R-SMAD
and SMAD1/5/8). Specifically, ncRNAs including lncKCNQ1OT1-miR-320a, lncKCNQ1OT1-miR-
214, lncNEAT1-miR-29b-3p, and lncLOC103691336-miR138-5p are associated with BMSC growth and
differentiation. Moreover, the SMAD-independent signaling event encourages the phosphorylation
of RUNX2, DLX5, and OSX. The phosphorylation of RUNX2, DLX5, and OSX is significantly favored
by lncHULC-miR-195, lncH19-miR-188, lncMALAT1-miR-143, and lncMALAT1-miR-34c axes. The
Wnt/β-catenin pathway induces osteogenic differentiation in BMSCs through β-catenin transporta-
tion into the nucleus and following target gene expression. The Wnt/β-catenin pathway is positively
regulated by lncLINC00707-miR-370-3p, lncH19-miR-141, lncHULC-miR-195, lncLINC00707-miR-145,
lncLINC-ROR- miR-138, lncFAM83H-AS1-miR-541-3p, and miR-145. In RUNX2, lncXIXT-miRNA-
30a-5p, and lncDGCR5-miR-30d-5p are the positive regulators while lncMEG3-miR-133a-3p inhibits
RUNX2 expression.
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4.5. lncRNAs in Osteoclastogenesis

Osteoclastogenesis is a bone resorption process caused by the specialized cells called
osteoclasts, developed by the myeloid progenitor [91]. Different mediators like RANKL,
TGF-β1, and BMP are involved in the crosstalking between the osteoblast and osteoclast
mechanisms, essential for bone health and bone metabolism [92]. Deregulation in osteoclast
differentiation and activation is a sign of OP. LncRNA functions in distinct stages of osteo-
clast differentiation and maturation, such as monocytes to pre-osteoclasts, pre-osteoclasts to
mature osteoclasts (bone resorption activity), and activation of mature osteoclasts (efficient
bone resorption activity). Several lncRNAs are differently expressed in different phases of
osteoclastogenesis, including lncRNA-4348, 4602, and 5840, in pre-osteoclasts, mature osteo-
clasts, and activated osteoclasts, respectively. Further exploration shows that 170 lncRNAs
are identified as upregulated, and 348 lncRNAs are identified as downregulated in phases
of osteoclastogenesis. Downregulation of lncRNA Gm12310 and Gm12308 are correlated
with tumor necrosis factor, implicated in osteoclastogenesis [93,94]. In mice, the lncRNA
AK077216 was shown to be significantly upregulated during osteoclastogenesis. In vitro,
AK077216 promotes osteoclast differentiation and bone resorption in RAW264.7 cells. Im-
portantly, AK077216 upregulates NFATc1, which acts as a key regulator in RANKL-induced
osteoclast differentiation; this action is mediated through NIP45, which is repressed by
lncRNA (AK077216) [95,96]. In the RAW264.7 cells model, Lee et al. revealed that lncRNA-
Jak3 was identified as upregulated at three stages (pre-osteoclasts, mature osteoclasts, and
activated osteoclasts) of osteoclast differentiation [97].

5. Exosomal ncRNAs and Bone Stem Cells

Exosomes exist as membrane-bound extracellular vesicles synthesized inside the
eukaryotic cells and act as a trans-regulatory element by transporting proteins. Exosomes
contain biologically active molecules like DNA, RNAs (lncRNA, miRNA, circRNA, and
tRNA), and some proteins, which are transferred to target cells. Exosomes communicate
between the cells through endocytosis, ligand-receptor interactions, direct membrane
fusion, or through signaling pathways [98,99]. Exosomes with low molecular weight, small
size, stable structure, less toxicity, and other characteristics are employed as “nano-medicine
carriers” in tissue regeneration and/or disease treatment [100,101]. Importantly, ncRNAs
are present in exosomes that perform diverse functions including bone remodeling and
bone-related disease [102]. BMSCs, osteoclasts, osteoblasts, lymphocytes, and macrophages
secrete exosomes that regulate bone metabolism [103]. In bone metabolism, osteoblast
differentiation is intercepted by exosomes secreted by osteoclasts [104]. However, the
solicitation of osteoblast differentiation is regulated by exosomes produced by BMSCs
and osteoblasts as well. In bone homeostasis, osteoblasts, osteoclasts, chondrocytes, and
other cells secrete exosomal ncRNAs, which are involved in the regulation of bone-related
diseases by inhibiting osteoclast differentiation, enhancing chondrocytosis, and promoting
angiogenesis. Exosomal miRNAs secreted from MSCs exhibit potential regulatory effects
on osteogenesis [102]. In humans, during BMSC osteogenic differentiation, the expression
of exosomal miRNAs plays a regulatory role, and a low expression of miR-885-5p serves as
a negative regulator by suppressing Wnt5 and RUNX2 [105].

Exosomal miRNAs in Osteoblast and Osteoclast Differentiation

Qin et al. determined how exosomes encouraged osteogenic differentiation, and miR-
NAs in exosomes (highly expressed: miR-27a, miR-206a, and miR196a) were identified,
in which miR-196a showed more functional potential [106]. A disturbance between os-
teogenic differentiation and osteoclast differentiation causes OP; such a disturbance may
be regulated by exosomal ncRNAs. In one study, exosomes containing miR-214 secreted by
osteoclasts were transferred to osteoblasts by Ephrin-A2/Eph-A2 and inhibited osteoblast
activity [107]. Interestingly, exosomal miR-214-3p inhibits osteoblasts, but this osteoblastic
inhibition may reverse and promote bone formation, which may be a potential treatment
for bone disease. Several studies reported that exosomal miR-30d-5p and miR-133b-3p
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might interfere with bone formation through the targeting gene RUNX2. However, miR-
30d-5p and miR-133b-3p are highly expressed in the osteoblast-derived exosomal body
(Figure 2) [102,108,109].
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Figure 2. Regulation of bone formation by miRNAs. Various miRNAs play a regulatory role
(activation or inhibition) in the differentiation of mesenchymal stem cells towards the formation of
bone cells such as osteoblasts and osteocytes. The miRNAs regulate various molecules involved in
signaling pathways, like Wnt, BMP2, DLX5, RUNX2, OSX, RANKL, SOST, and OPG, in osteogenesis
(bone formation) and osteoclastogenesis (bone resorption).

Moreover, osteoblast exosomes highly express miR-140-3p and inhibit the activity of
osteoblasts [110]. In other studies, miRNA let-7 was observed in exosomes of mineralized
osteoblasts and osteoblast precursors that promote osteogenesis through regulating the
mobility of axis-like protein (AXIN-2) and the AThook 2 gene [111,112]. MiR-503-3p
is expressed in osteoblast-derived exosomes and prevents osteoclast differentiation by
inhibiting the gene receptor activator of nuclear factor kappa B (RANK) [113]. Several
exosomal miRNAs secreted by mineralized osteoblasts, like miR-667-3p, miR-874-3p, miR-
6769b-5p, miR-7044-5p, and miR-7668-3p, are highly expressed, and capable of enhancing
the osteogenic differentiation of osteoblast precursors. This has been achieved through the
inhibition of AXIN1 expression and the promotion of β-catenin expression [102,114].

During the early stage of osteogenic differentiation in hBMSCs, the expressions of
exosomal miRNAs (miR-135b, miR-148a, miR-199b, and miR-218) increase significantly
whereas miR-221 expression decreases. The increased expression of miR-135b, miR-148a,
miR-199b, and miR218 is suggested to be involved as a regulator in bone formation in
hBMSCs (Table 1) [102,105,115]. Additionally, in osteogenesis, several other miRNAs
(miR-22, miR-27a, and miR-34a) have been identified in osteoblast-derived exosomes [115].
Therefore, exosomal miRNAs from osteocytic cells may modulate the differentiation of
osteoblastic and osteoclastic activity, and inhibit or promote the bone formation process.
In the management of bone disorders, like OP, OA, bone fractures, and several others,
targeting exosomal miRNA therapy may be the core strategy [102,116].
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6. Development of Bone Diseases

Bone tissue is a connective tissue where cells are arranged in rigid layers and in-
termingled with inorganic minerals. Bone cells called osteocytes are contained within a
framework of an organic matrix, consisting of collagen and other proteins, which harden
and strengthen the tissue. Bone diseases are a group of abnormal conditions that damage
the skeleton system of the body and cause a bone to be weak and fragile, reduce bone
remodeling, and accelerate bone to fractures. Low bone mineral density (BMD), OP, OA,
gout, osteogenesis imperfecta, fibrous dysplasia, achondroplasia, Paget’s disease, and bone
tumors are bone diseases characterized by progressive bone demineralization and damaged
micro-architecture [117–120]. Genetic mutations, nutritional deficiencies, age, gender, body
mass index (BMI), smoking, alcohol abuse, body weight, physical inactivity, and medi-
cations are significant inducers of bone disorders. OP is a disorder that is characterized
by a loss of bone mass, which can lead to an increased risk of fractures [121,122]. OP
accounts for about 200 million people worldwide; causing huge burdens of morbidity and
mortality annually [123]. Osteogenesis imperfecta is a genetic disorder that is characterized
by abnormal fragile bones [124]. Paget’s disease is a disorder that is characterized by the
abnormal breakdown and formation of bone [125]. Further, bone cancer is characterized
by uncontrolled growth of the bone cells, which is relatively rare. Tumors in other organs
metastasize in the bone by the homing property of cancerous cells [126]. Moreover, the
incidence of arthritis is reported as a major cause of disability [127]. Bone disorders can be
distinguished into two main types: those that affect bone growth and those that involve
damage or disease of the established bone [122].

7. ncRNAs and Bone Diseases

Several studies have reported an association between the abnormal expression of ncRNAs
and the development of bone metabolic diseases. The key role of ncRNA in the progress
of bone metabolic disease will assist in designing drugs for targeted therapy [128,129]. The
interaction of important ncRNAs and their contribution to bone diseases are discussed below.

7.1. lncRNAs and SNPs in Bone Disease

Association of lncRNAs with single nucleotide polymorphism (SNP) in the coding
and non-coding sequences of DNA is identified as a risk factor for the development of
BMD and OP. SNP in the genomic region (1p36) has been reported as diversely linked
with hip and spine BMD, and positively correlated with osteoporotic fractures [130,131].
In another study, Chen et al. reported that genomic variant rs6426749 (C/G) SNP at the
1p36.12 region was associated with lower BMD, and induced risk of OP. Genomic region
1p36.12 acts as an enhancer that regulates the expression of LINC00339, a lncRNA that plays
a role in bone metabolism [132,133]. A study identified 26 specific loci in the genome that
correspond to lncRNAs, efficiently associated with poor BMD and OP. In one investigation,
SNP rs6894139 (T/G) in the lncRNA (MEF2C-AS1) was associated with femoral neck BMD,
while SNP rs6465531 (G/A) in the lncRNA (LOC100506136) was linked with total hip BMD.
Additionally, SNP rs1808124 (T/C) in BDNF-AS was associated with lower lumbar spine
BMD [130].

7.2. circRNAs and Bone Diseases

Unlike linear RNAs, circRNAs do not possess 3′ and 5′ ends and are naturally ex-
pressed as closed-loop structures. CircRNAs are endogenous RNA transcripts having
limited protein-coding efficiency. Over a period, circRNAs were irrelevant byproducts
without any significant biological functions. Later, thousands of circRNAs and their bio-
genesis were discovered [134,135]. circRNAs regulate proliferation, differentiation, and
apoptosis in several bone pathologies, including OP, osteoarthritis (OA), osteosarcoma, and
lumbar intervertebral disc degeneration [136–139]. Many circRNAs are differentially ex-
pressed; they may accelerate or repress OP. In a recent investigation, circDNAH14 (circBase
ID hsa_circ_0016624) prevented OP by the regulation of BMP-2 and miR-98 sponging [140].
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In a clinical study, Liu et al. selected five samples for RNA sequencing among 40 post-
menopausal osteoporosis patients (PMOP). A total of 250 differentially expressed circRNAs
were estimated (64 circRNAs expressions were decreased, and 186 circRNAs were found to
increase). circRNAs_0043813, 0001649, and 0005654 were upregulated, while circ_0007059,
0001204, and 0001795 were downregulated in the top six differentially expressed circR-
NAs. Further, Liu et al. examined circ_0007059 expression in osteoporotic samples, which
were found to be reduced [141]. About 3938 upregulated and 1505 downregulated cir-
cRNAs were shown in osteoblast differentiation [142]. In OP, to prove the function of
circRNA_0048211, Qiao et al. collected 60 samples (bone marrow) from PMOP; samples
were cultured in an osteogenic induction medium. In the results, circRNA_0048211 pro-
tected OP by sponging miRNA-93-5p to regulate BMP-2 [143]. In osteogenesis regulation,
circRNAs could promote osteogenesis through upregulating FOXO1 in OP [137]. Further,
circRNAs including CDR1, CDK8, and SIPA1L1 are extensively implicated in osteogenesis
differentiation [144].

In osteoclastogenesis, circRNAs are differentially expressed. In a study conducted
on mature osteoclasts, 78 miRNAs and 38 circRNAs were found to be upregulated, while
24 miRNAs and 135 circRNAs were found to be downregulated [93]. Tumor necrosis
factor-alpha (TNF-α) promotes bone resorption by osteoclast differentiation and inhibit-
ing osteoblasts. Liu et al. examined the reduced level of circHmbox1 in TNF-α-induced
osteoclast differentiation. However, circHmbox1 may inhibit RANKL-induced osteoclast
differentiation by binding to miRNA-1247-5p. In OP, circRNAs have many miRNA-binding
sites, function as miRNA sponges, and activate autophagy (osteoblast and osteoclast differ-
entiation and proliferation) [145,146]. CircRNAs regulate several pathways, including the
Wnt/β-catenin signaling pathway, BMP signaling pathway, and MAPK signaling pathway,
which play a significant role in osteoporosis management. BMP2-induced osteogenesis
was proved by the expression of circRNA_33287. This was upregulated in maxillary si-
nus membrane stem cells: circRNA_33287 downregulation inhibited several osteogenic
biomarkers, such as RUNX2, ALP, and Osterix, while the upregulation exerted the opposite
effect. However, circRNA_33287 is capable of inducing osteogenesis [144,147].

7.3. piRNAs and Bone Disease

Piwi-interacting RNAs (piRNAs) are a new subclass of ncRNAs that perform regula-
tory functions by explicitly interacting with Piwi proteins [148]. piRNAs play crucial roles in
the differentiation, proliferation, and maintenance of mammalian germ cells [149,150]. piR-
NAs are also expressed in somatic cells (heart, brain, bone marrow, and other tissues), some
of which eliminate mRNAs (post-transcriptional level), thereby affecting disease pathogene-
sis [148,151]. Piwi proteins guide piRNA to recognize and eliminate target mRNA [152]. In
recent studies, piRNAs were expressed in the exosomes secreted by BMSCs. Exosomes are
significantly expressed during the BMSCs’ osteogenic differentiation, indicating piRNAs’
contribution to osteogenesis [153,154]. PiR-63049 expression was shown to significantly
increase in both bone tissues and plasma of PMOP and osteoporotic rats. Overexpression of
piR-63049 could prevent osteoblastogenesis of BMSCs, while reduced piR-63049 expression
could promote osteoblastogenesis by the Wnt2b/β-catenin signaling pathway. Addition-
ally, in vivo knocking down of the expression of piR-63049 could attenuate bone loss by
promoting bone formation. piRNA is also involved in tumor development: in patients with
multiple myeloma the expression of piRNA-823 is upregulated [148,151]. The expression of
piR-36741 is upregulated during the osteogenic differentiation of hBMSCs, while silencing
of piR-36741 prominently suppresses osteogenic differentiation, resulting in reduced ex-
pression of osteogenic phenotype, osteoblast marker, and matrix mineralization. However,
piR-36741 administration alleviated ovariectomy-induced osteoporosis in mice. Moreover,
piR-36741 played a protective role in the osteogenic differentiation of BMSCs in mice with
osteoporosis, where high expression reduced bone loss or demineralization [154,155].
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7.4. siRNA and Bone Disease

Fire and colleagues discovered the silencing property of siRNAs in 1998 [156]. This
has become an innovative approach to downregulating the expression of the target gene,
particularly knocking down the gene in vitro or in vivo. siRNA is involved in several
bone-specific pathways [157,158]. siRNAs express enormous potential as therapeutics
in managing bone disorders including OP and bone cancer. In addition, the therapeutic
approach of siRNA in bone disorders can be safe and efficient. In vivo delivery of siRNA to
bone-specific cells is more challenging; however, various delivery systems such as polymer-
mediated delivery, peptide-based delivery, lipid-based delivery, siRNA conjugate delivery,
and delivery of therapeutic siRNA in cancer cells have been developed. However, a more
efficient and cell-specific delivery system is needed [159]. Moreover, siRNA may have
significant contributions to therapy. The potential ability of siRNAs is to knock down gene
expression when the mRNA sequence is known. This may provide an inexpensive and
efficient strategy for the management of a wide range of diseases. In bone regeneration,
siRNA interferes with the expression of BMP inhibitors such as chordin and noggin, which
manifests enhancing bone formation [160,161]. Different siRNAs target various regions
of the same mRNA, with varying RNAi efficacies [162]. Almost 58–78% of siRNAs were
observed to induce silencing of genes with >50% efficiency whereas only 11–18% of siRNAs
induced 90–95% silencing [163]. To overcome siRNA delivery issues, various techniques
have been developed to preserve and promote uptake by the target cells, and protect
against enzymatic degradation within the cellular environment [164].

7.5. ncRNAs and Bone Cancer

The majority of cases of osteosarcoma (OS), a high-grade primary bone tumor, are
found in teens and young adults. Pathologically, this illness is marked by spindle cells and
aberrant osteoid development [165,166]. In human malignancies, long non-coding RNAs
are typically expressed abnormally and support the growth, development, and spread
of tumors [167–170]. As a result, they can be used as therapeutic, diagnostic, prognostic,
and predictive biomarkers [171–174]. Numerous lncRNAs with either oncogenic or tumor-
suppressive functions have been reported to have differential expression in osteosarcoma.
In particular, 25,733 lncRNAs were found in research by Li et al., including 403 that were
constitutively elevated in 34 pathways and 798 that were downregulated in 32 pathways
(by a factor of two, p < 0.05) [175].

Several lncRNAs are overexpressed in osteosarcoma, and one of them is metastasis-
associated lung adenocarcinoma transcript 1 (MALAT-1), a lncRNA that controls the
recruitment of pre-mRNA-splicing factors to transcription sites. The level of MALAT-1
expression is closely associated with the tumor’s propensity to metastasize. Dong et al. dis-
covered in a different investigation that MALAT-1 promotes osteosarcoma cell proliferation,
migration, invasion, and lung metastasis via the PI3K/Akt pathway (Figure 3) [176].

P50-associated COX-2 extragenic RNA (PACER), another lncRNA, is overexpressed
in osteosarcoma cell lines and clinical tissues. In osteosarcoma, PACER has carcinogenic
consequences by activating the COX-2 gene through the NF-B signaling cascade [177].
LncRNA MEG3 is underexpressed in several human malignancies, including non-small-
cell lung cancer, colorectal cancer, and osteosarcoma. According to gain- and loss-of-
function experiments, it is controlled by the lncRNA Ewing-sarcoma-associated transcript-1
(EWSAT1). When MEG3 is downregulated in the presence of EWSAT1, osteosarcoma
cells grow, invade, and migrate. As a result, the advanced clinical stage (I/II vs. III)
and the existence of distant metastasis are related to lower MEG3 expression in human
osteosarcoma tissue [178–181].
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Another highly upregulated liver cancer lncRNA-HULC was first discovered to
have an oncogenic role in human hepatocellular carcinoma. Its gene, which has a tran-
script length of 500 bp and connects with ribosomes, is found in the chromosomal region
6p24.3 [182,183]. By lowering their expression, HULC works as a sponge for many miR-
NAs, including miR200a-3p, miR-9, and miR107 [184,185]. In hepatocellular carcinoma
and colorectal carcinoma cell lines, it promotes tumor cell proliferation, invasion, and
angiogenesis. In osteosarcoma cell lines and tissue samples, HULC is overexpressed. This
overexpression is associated with an advanced clinical stage and a low rate of overall sur-
vival in osteosarcoma patients. In osteosarcoma cell lines, HULC inhibition decreases cell
growth and invasion [186–188]. Breast, ovarian, lung, and hepatocellular carcinomas are
among the malignancies in which HOTAIR is thought to be responsible for the pathogene-
sis [189–192]. By suppressing gene expression by histone H3K27 trimethylation and acting
as a modular scaffold by binding PRC2 through the 5′ domain and LSD1/CoREST/REST
complexes through the 3′ domain, it encourages the development and proliferation of
tumor cells [193,194]. Although it is connected to other cancer forms, this molecular process
in osteosarcoma is yet unclear. An intriguing case-control research in the Chinese popula-
tion with 900 cases and 900 controls found that the HOTAIR gene variation rs7958904 was
linked to a lower risk of osteosarcoma [195]. The lncRNA called HOXA transcript at the
distal tip (HOTTIP) is overexpressed in osteosarcoma samples and is associated with an
advanced clinical stage and a significant risk of metastasis [196]. In a number of malignant
tumors, elevated expression of HOTTIP is linked to enhanced tumor cell proliferation,
migration, and invasion [196–198]. It does so through controlling RNA-binding proteins,
EMT-related molecules including E-cadherin, Snail1, Slug, and others, as well as HOXA
genes like HOXA13. In osteosarcoma cell lines, HOTTIP knockdown prevents cell division,
migration, and invasion [199–201].

The gene for taurine-upregulated gene 1 (TUG1), a 7.1-kb lncRNA, is found at chromo-
somal position 22q12.2 [202]. To promote osteosarcoma cancer, it appears to be stimulated
by p53, interacts with polycomb repressive complex 2 (PRC2), and silences specific genes
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implicated in the G0/G1 cell cycle arrest [203]. In this situation, TUG1 functions as a
miR-9-5p sponge and reduces POUF2F1 expression, indicating the existence of a com-
petitive miR–lncRNA regulation network [204]. Additionally, it stimulates the growth of
osteosarcoma tumors by upregulating EZH2 through miR-144-3p. Additionally, TUG1
knockdown inhibits Wnt/-catenin pathway activation, which is overridden by EZH2 over-
expression [205]. It is interesting to note that osteosarcoma tissue clinical samples have
high levels of TUG1 expression, while osteosarcoma cell line U2OS has impaired TUG1
expression, which slows cell growth and favors cell death [202]. In osteosarcoma tissue
samples, TUG1 is overexpressed, and its overexpression is linked to a poor prognosis [206].

8. Therapeutics Approach of ncRNAs in Bone Disease

In modern medical science, ncRNAs may be the potential and efficient therapeutic
option for targeting numerous bone disorders including osteoporosis, osteoarthritis, bone
fractures, and bone tumors. Some important ncRNAs (lncRNA, miRNA, circRNA, piRNA,
siRNA, and tRNA) and their role in managing bone disorders are discussed below.

8.1. lncRNAs in Osteoporosis and Osteoarthritis Treatment

Bone fragility and risk of fractures are common in OP patients [207]. Huang et al.
sequenced RNA (from femur subchondral tissues) and identified different gene expres-
sions including 602 lncRNAs in patients with a femoral neck fracture and femoral head
osteonecrosis. Further, data indicated that bone fractures were closely associated with
specific lncRNAs. However, the differential expression of lncRNAs in fragility fractures
compared with standard fractures needs to be explored [208]. lncRNAs are crucial for
proper bone healing after a bone fracture by inflammation and angiogenesis [209]. lncRNAs
also promote or suppress inflammatory pathways, implicated in bone homeostasis [210].
The role of lncRNAs in bone fractures is still unclear. Different lncRNAs such as H19,
HOTAIR, and linc-p21 are identified as altered in the bone inflammatory state (rheumatoid
arthritis and osteoarthritis) (Figure 4).

Further, H19, HOTAIR, and linc-p21 express potential targets for inflammatory modu-
lation in osteoporotic patients [210,211]. LncRNA HOTAIR was significantly downregu-
lated in synoviocytes of rheumatoid arthritis patients [212]. In rheumatoid arthritis (RA),
HOTAIR overexpression reduced the secretion of IL-23 and IL-17, and decreased the num-
ber of pro-inflammatory cells (Th17), as well as diminishing levels of IL-1β, phospho-p65,
and TNF-α in cartilage [213,214]. Moreover, lncRNA linc-p21 was found to be decreased in
the blood of patients with rheumatoid arthritis, while its expression increased in human T
cells [215]. Despite this, NKILA, ANRIL, and NEAT1 also regulate NF-kB signaling, a key
player in inflammatory events, contributing to proper bone healing [216].

8.2. miRNAs in Bone Diseases and Fractures

Healing of bone fractures is the proliferative process that facilitates bone repair frac-
ture [217]. Initially, MSCs are recruited to the site of the fracture and differentiated as
fibrocytes, osteoblasts, or chondrocytes, and these cells undergo several biomechanical
stages whereby new bone is formed [218]. The aforementioned phases are potentially
regulated by miRNAs. Overexpression of miR-214-5p was reported in patients suffering
from intra-articular calcaneal and/or hand fractures, while its downregulation promoted
osteoblastic cell viability and resisted apoptosis [219]. Using a mouse model with a femoral
fracture, miR-186 activated the BMP signaling pathway to promote fracture healing by
inhibiting SMAD6 [220]. Another study showed the therapeutic impact of miR-29b-3p
in femoral fracture repairing: an in vivo injection of miR-29b-3p improved healing in
14 days post-fracture [221]. The miRNAs miR-16, miR-25, miR-101, miR-19b-1, miR-92a,
and miR-129-5p levels were shown to be dysregulated in bone fractures. Moreover, cells
having miR-218 overexpression significantly promoted bone volume at 2 to 4 weeks post-
fracture [222,223]. However, miRNAs regulate different cell functions but their effect in OP
has not yet been well studied in well-characterized bone [123].
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Figure 4. Regulatory action of various exosomal ncRNAs including lncRNA, miRNA, circRNA,
and tRNA in osteoporosis, osteoarthritis, and bone fracture repairing. The expression of exosomal
ncRNA may potentially modulate bone diseases. The major source cells that contribute exosomes,
which participate in osteoporosis, are BMSCs, HUCMSCs, hBMSCs, MSCs, osteocytes, osteoclasts,
osteoblasts, and osteoporotic plasma; in osteoarthritis are hBMSCs, MSCs, plasma, chondrocytes, and
synovial fluids; and in bone fracture repairing are MSCs, M1D, M2D, and endothelial progenitors.

8.3. Treatment of Osteoporosis by Exosomal miRNAs

Exosomal miRNAs have significant roles in the pathological process and are a clinical
marker for OP diagnosis. As shown in Table 1, exosomes containing miR-21 in osteoporosis
patients interfere with osteogenesis events by the potential targeting of small mothers
against decapentaplegic homolog-7 (SMAD7) [105]. In one study, MSC-derived exosomal
miR-21 extracted from OP patients was expressed significantly higher than MSC-derived
exosomal miR-21 extracted from healthy individuals [224]. Song et al. showed that inhibi-
tion in the levels of exosomal miR-155 secreted by vascular endothelial cells may reverse
the inhibition of osteoclast differentiation and thereby prevent bone resorption. Hence,
exosomal miR-155 may have the potential to be used in treating OP [225]. In a recent
study, it was observed that exosomal miR-186 extracted from BMSCs could promote osteo-
genesis in OP postmenopausal women [226]. By injecting exosomal miR-151-5p in vivo,
bone reduction may be prevented [227]. Therefore, the therapeutic impact of exosomal
miRNAs in OP management has great potential. It is suggested that several miRNAs are
highly expressed in exosomes, and increase or inhibit osteogenesis by regulating MSC
differentiation. In OP treatments, signaling pathways, miRNAs, and related proteins have
huge implications [228].
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Table 1. Differential expression and regulation of exosomal ncRNAs in osteoporosis, osteoarthritis,
and bone fracture repairing/healing by the different pathways.

Exosomal ncRNAs Class
of ncRNAs

Sources of
Exosome

Differential
Expression of

ncRNAs

Types
of

Pathway
Mechanisms Ref.

In Osteoporosis

miR-186 miRNA BMSCs Increase Hippo signaling Promoting osteogenesis [226]

lncRNA -H19 lncRNA BMSCs Increase Angpt1/Tie2-NO
signaling

Highly promoting osteogenesis
and angiogenesis through

mediating Angpt1/Tie2-NO
signaling

[229]

hsa_circ_0006859 circRNA Serum Increase miR-431-5p

Hsa_circ_0006859 suppressing
osteoblastic differentiation and

promoting adipogenic
differentiation of hBMSCs

[230]

circ-Rtn4 circRNA circ-Rtn4 modified
BMSCs N/A miR-146a

Reducing the cytotoxicity and
apoptosis of MC3T3-E1 cells

induced by TNF-α
[231]

miR-1263 miRNA HUCMSCs Increase Mob1 Inhibiting BMSCs apoptosis and
preventing osteoporosis in rats [232]

NONMMUT000375.2
NONMMUT071578.2 lncRNA Osteoclasts N/A Genes related to

osteoclast
Repressing the osteogenic

differentiation of MC3T3-E1 cells [233]

miR-29a miRNA hBMSCs exosome Increase Noggin Promoting osteogenesis [234]

miR-20a-5p miRNA Breast cancer cells
(BCCs) N/A SRCIN1 Promoting the proliferation and

differentiation of osteoclasts [235]

miR-155 miRNA Vascular endothelial
cells Increase N/A Inhibiting osteoclast induction [225]

LncRNA MALAT1 lncRNA BMSCs N/A miR-34c/
SATB2 axis

Promote osteoblast
activity/enhance the activity of
osteoblasts in osteoporotic mice

[236]

miR-31a-5p miRNA BMSCs Increase N/A Promoting osteoclastogenesis and
bone resorption [237]

miR-21 miRNA MSCs Increase SMAD7 Inhibition of osteogenic gene
expression [224]

lncRNA
RUNX2-AS1 lncRNA MM cells N/A RUNX2 Inhibiting the osteogenicity of

MSCs [238]

tRF-25
tRF-38
tRF-18

tRNA
Osteoporotic

plasma
Exosomes

Increase N/A Expressing good accuracy in the
diagnosis of osteoporosis [239]

miR-218 miRNA Osteocytes Decrease Wnt signaling Inhibited osteoblast
differentiation [240]

miR-151-5p miRNA BMSCs N/A N/A
Promoting osteogenic

differentiation and protecting
bone reduction

[227]

miR-214 Osteoclasts Increase EphrinA2/
EphA2

Inhibiting the function of
osteoblasts [107]

miR-214-3p miRNA Osteoclasts Increase N/A Inhibiting osteoblast bone
formation [241]

miR-7044-5
pmiR-7668-3p

miR-874-3p
miR-667-3p

miR-6769b-5p

miRNA and
piRNA

Mineralized
osteoblasts Increase AXIN1

β-catenin

Promoting the osteogenic
differentiation of osteoblast

precursors
[114]

miR-140-3p miRNA Osteoblasts N/A BMP2 Inhibiting the formation of
osteoblasts [110]

Let-7
AXIN2 miRNA

Osteoblast precur-
sors/mineralized

osteoblasts
Increase HMGA2 Promoting osteogenesis [111,112]

miR-503-3p miRNA Osteoblast N/A RANK Preventing osteoclast
differentiation [113]

miR-218
miR-148a
miR-199b

miRNA hBMSCs Increase or
Decrease N/A

Increased/decreased significantly
during the early stage of

osteogenic differentiation of
hBMSCs

[105]

miR-133b-3p
miR-30d-5p miRNA Osteoblasts N/A RUNX2 Inhibiting osteoblast

differentiation [108,109]
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Table 1. Cont.

Exosomal ncRNAs Class
of ncRNAs

Sources of
Exosome

Differential
Expression of

ncRNAs

Types
of

Pathway
Mechanisms Ref.

In Osteoarthritis

circ_0001846 circRNA Human
chondrocyte cells Increase miR-149–5p/

WNT5B axis
Modulating IL-1β-induced

chondrocyte cell damage [242]

circ-BRWD1 circRNA Human
chondrocyte cells N/A miR-1277/

TRAF6 axis Contributing to OA development [243]

circRNA_0001236 circRNA MSCs Increase miR-3677-3p/Sox9
axis

Enhancing chondrogenesis and
suppressing cartilage degradation [244]

lncRNA H19 lncRNA The fibroblast-like
synoviocyte Decrease miR-106b-5p/

TIMP2 axis
Inhibiting the degradation of the

matrix in osteoarthritis [245]

miR-8485 miRNA Chondrocytes N/A Wnt/β-catenin,
GSK-3β

Stimulating the cartilage
differentiation of BMSCs [246]

miR-9-5p miRNA BMSCs N/A SDC1 Reducing inflammation and
OA-like injury [247]

miR-26a-5p miRNA hBMSCs Increase PTGS2 Delay synovial fibroblast damage
in vitro and reduce OA damage [248]

miR-320c miRNA hBMSCs Increase N/A

Promoting the proliferation of
hBMSC chondrocytes and

downregulating matrix
metallopeptidase 13

[249]

miR-100-5p miRNA Human exfoliated
deciduous teeth Increase mTOR-3′

untranslated region

Inhibiting the inflammation of
temporomandibular joint

(TMJ) chondrocytes
[250]

miR-100-5p miRNA IPFP-MSCs Increase mTOR

Promoting the abnormal gait of
OA mice and reducing the

pathological changes of articular
cartilage in vivo

[251]

miR-135b miRNA MSCs Increase Sp1
Promoting chondrocyte

proliferation, thereby promoting
cartilage repair

[252]

miR-92a-3p miRNA MSCs chondrocyte Increase WNT5A
Promoting cartilage proliferation

and matrix gene expression in
MSCs

[253]

miR-95-5p miRNA Primary
chondrocytes Increase HDAC2/8

Regulated cartilage development
and homogenous balance by
direct targeting HDAC2/8

[254]

lncRNA PCGEM1 lncRNA Synovial fluid Increase N/A
Exosomal lncRNA PCGEM1 may
be a novel indicator to distinguish

early OA from late OA
[255]

lncRNA KLF3-AS1 lncRNA MSCs Increase miR-206/GIT1 axis
Promoting the expression of GIT
and alleviating the chondrocyte

damage induced by IL-1β
[256]

lncRNA KLF3-AS1 lncRNA MSCs Increase Col2a1 Inhibiting IL-1β-induced
chondrocyte apoptosis [257]

miR-140-5p miRNA Human synovial
MSCs Increase N/A

Promoting cartilage regeneration
and delaying the progression of

knee OA
[258]

miR-185-5p
miR-7107-5p miRNA Synovial fluid N/A TLR signaling

pathway

Suppress chondrocyte/
chondrogenesis; promote

inflammation
[259]

lncRNA HULC lncRNA Chondrocytes Increase N/A Promoting cell apoptosis and
inhibiting cell proliferation [260]

miR-193b miRNA Plasma Decrease HDAC3
Promoting histone H3 acetylation
and regulating the metabolism of

primary human chondrocytes
[261]

miR-200C miRNA Synovial fluid Increase N/A
miR-200C increased 2.5 times in

OA exosomes compared
with non-OA patients

[262]
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Table 1. Cont.

Exosomal ncRNAs Class
of ncRNAs

Sources of
Exosome

Differential
Expression of

ncRNAs

Types
of

Pathway
Mechanisms Ref.

In Bone Fracture Repairing

miR-5106 miRNA M1D Increase SIK2 Inducing osteogenic
differentiation of BMSCs [263]

miR-126 miRNA MSCs Decrease HIF-1α Promoting bone fracture
repairing/healing [264]

miR-128-3p miRNA MSCs N/A SMAD 5 Regulate bone formation and
fracture healing [265]

LncRNA-MALAT1 lncRNA Endothelial
progenitors N/A miRNA-124 Leading to bone repair [266]

miR-125b-5p
miR-338-3p

miR-21
miR-4532

miRNA MSCs Increase N/A May help to enhance bone
formation and angiogenesis [267]

8.4. Treatment of Osteoarthritis by Exsomal miRNAs

OA is bone degeneration in joints that causes cartilage degeneration, synovitis, chronic
pain, and disability. OA is characterized by extracellular matrix (ECM) loss and cartilage
destruction; treatment is focused on attenuating pain symptoms [268]. In OP progression,
OA may be treated by joint-replacement surgery. However, complete repair or regeneration
of damaged articular cartilage is difficult [269]. Exosomal miR-26a-5p derived from hBMSC
are highly expressed in OA, and inhibit synovial fibroblast damage and prostaglandin-
endoperoxide synthase-2, which are significant in OA treatment (Table 1) [248]. Existing
evidence suggests that TGF-β1 regulates Sp1 through MSC-derived exosomal miR-135b,
promoting chondrocyte proliferation and cartilage repair [252]. Interestingly, using exoso-
mal miR-92a-3p from MSCs enhances the expression of ECM genes in MSCs and promotes
cartilage proliferation [253]. The gene histone deacetylase (HDAC) is targeted by miR-
193b, supporting histone (H3) acetylation and directing the metabolism of primary human
chondrocytes [261]. Interleukin-6 (IL-6)-mediated inflammation is inhibited by miR200C.
In studies, exosomal miR-200C expression in synovial fluid of OA patients was found to
increase by 2.5 times more than in healthy individuals [102,262]. Moreover, miR-4454 is
associated with the inflammatory response, and miR-199b is involved in cartilage forma-
tion. Researchers have examined 50 miRNAs in the exosomes of synovial fibroblasts with
differential expression [270,271].

Several inflammatory factors are linked to the stimulation of exosomal ncRNAs that
regulate OA. A pathway, HDAC2/8, is involved in the inhibition of cartilage development
through cartilage-specific genes. However, miR-95-5p in primary chondrocytes regulates
cartilage development through HDAC2/8 [254,272]. Overexpression of miR-100-5p has
been identified in stem cells that are linked with temporomandibular joint (TMJ) inflam-
mation. Upregulation of miR expression may be associated with the occurrence and
progression of OA [102,273].

Experimentally, a BMSC-derived exosomal miR-9-5p injection reduces inflammation
and OA-like injury in the mouse. In one study, exosomal miR-9-5p targeting the syndecan-1
gene, upregulation led to an exacerbation of inflammation and OA damage [247]. Exosome-
like vesicles from chondrocytes of OA patients were shown to stimulate inflammation
and increase the production of mature IL-1β by macrophages through the miR-449a-
5p/ATG4B/autophagy pathway, thereby aggravating synovitis and accelerating OA pro-
gression [274]. Chondrocytic exosomal miR-8485 stimulates cartilage differentiation in
BMSCs by promoting the Wnt/β-catenin pathway [246].

9. Concluding Remarks and Future Prospectives

Conclusively, several non-coding miRNAs, including miR-290-295, miR-302, miR-17-
92, miR-106b-25, and miR-106a-363, and lncRNAs, including H19, HOTAIR, lncRNA-ES1,
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lncRNA-ES3, and lncRNA-ES2, are differentially expressed in ESCs and efficiently control
the self-renewal and pluripotency status of stem cells. The miRNAs miR-134, miR-296,
and miR-470 are functionally upregulated to suppress negative regulators and to enhance
pluripotent transcription factors such as mouse genes Nanog, Oct4, c-Myc, and Sox2 in an
epigenetic manner in ESCs. The 3′UTR regions of mRNAs are the principal recipients of
miRNA activity. However, silent mutations in the predicted target interfere with miRNA
activity and inhibit the downregulation of corresponding genes. The deregulated cell cycle
is linked to tumorigenesis, which is further linked to metastasis, invasion, and therapeutic
resistance. Although ncRNAs also act as tumor suppressor genes targeting oncogenic
pathways, including miRlet-7, miR-31, miR-34, and miR-17-92, these are associated with
the prognosis of cancer patients. Hence, the ncRNA-based bone disease treatment strategy
can be highly significant, as it interferes with cell cycle abnormalities within the disease
microenvironment. NcRNAs inhibit or promote cell cycle regulators and modulate disease
development in diseases including OP, OA, and bone tumors. Despite the different ther-
apeutic applications, ncRNAs studies will greatly encourage the understanding of bone
health as well as its disease status.
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