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Abstract: Intracerebral hemorrhage (ICH) is a significant health concern associated with high mortal-
ity. Cofilin plays a crucial role in stress conditions, but its signaling following ICH in a longitudinal
study is yet to be ascertained. In the present study, we examined the cofilin expression in human ICH
autopsy brains. Then, the spatiotemporal cofilin signaling, microglia activation, and neurobehavioral
outcomes were investigated in a mouse model of ICH. Human autopsy brain sections from ICH
patients showed increased intracellular cofilin localization within microglia in the perihematomal
area, possibly associated with microglial activation and morphological changes. Various cohorts of
mice were subjected to intrastriatal collagenase injection and sacrificed at time points of 1, 3, 7, 14,
21, and 28 days. Mice suffered from severe neurobehavioral deficits after ICH, lasting for 7 days,
followed by a gradual improvement. Mice suffered post-stroke cognitive impairment (PSCI) both
acutely and in the chronic phase. Hematoma volume increased from day 1 to 3, whereas ventricle
size increased from day 21 to 28. Cofilin protein expression increased in the ipsilateral striatum on
days 1 and 3 and then decreased from days 7 to 28. An increase in activated microglia was observed
around the hematoma on days 1 to 7, followed by a gradual reduction up to day 28. Around the
hematoma, activated microglia showed morphological changes from ramified to amoeboid. mRNA
levels of inflammatory [tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), and interleukin-6
(IL-6) and anti-inflammatory markers [interleukin-10 (IL-10), transforming growth factor-β TGF-β,
and arginase I (Arg1)] increased during the acute phase and decreased in the chronic phase. Blood
cofilin levels increased on day 3 and matched the increase in chemokine levels. slingshot protein
phosphatase 1 (SSH1) protein, which activates cofilin, was increased from day 1 to 7. These results
suggest that microglial activation might be the sequel of cofilin overactivation following ICH, leading
to widespread neuroinflammation and consequent PSCI.

Keywords: cofilin; ICH; microglial activation; neuroinflammation; post-stroke cognitive impairment;
cofilin rods/aggregates

1. Introduction

The global prevalence of intracerebral hemorrhage (ICH) was 17.9 million, accounting
for 3 million deaths in 2017 [1]. Fifty percent of ICH patients die within the first month,
50% become severely disabled, and surgical intervention is the only treatment option [2–4].
Primary injury develops in the first few hours due to hematoma expansion that increases
intracranial pressure, leading to herniation and death. Secondary injury is attributed mainly
to hematoma expansion and oozing out of blood products in the hematoma. Degradation
products of the hematoma, such as hemin, thrombin, and ferrous iron, initiate glial activa-
tion, neuronal damage, neuroinflammation, and reactive oxygen species formation, thus
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leading to neurological impairments [3,5]. Microglia, the primary immune cells in the cen-
tral nervous system, account for 10–15% of all cells in the brain [6–10], are activated within
minutes of brain injury, and persist for a month [11,12]. Different phenotypes of microglia
contribute to secondary brain injury and neuroinflammation. The two main microglial
phenotypes, M1 and M2, reflect contrasting effects on the inflammatory response [13]; the
M1 phenotype enhances inflammation and releases inflammatory mediators, such as tumor
necrosis factor-α (TNF-α), Interleukin 1β (IL-1β), and interleukin-6 (IL-6), whereas the
M2 phenotype inhibits inflammatory responses and is responsible for debris removal and
tissue repair. Activated microglia and persistent neuroinflammation contribute to cognitive
impairment in such conditions as Parkinson’s disease [14], aging, Alzheimer’s disease [15],
ischemic stroke [16,17], hemorrhagic stroke [18], and some psychiatric disorders [19].

Cofilin is an actin-depolymerizing protein that plays a crucial role in the actin filament
turnover [20]. Cofilin regulates actin dynamics by maintaining globular actin (G-actin)
monomers through depolarizing and severing filamentous actin (F-actin) [20,21]. Multiple
kinases and phosphatase processes modulate cofilin phosphorylation/dephosphorylation.
Cofilin is inactivated by LIM and TES kinases through phosphorylation at serine-3 residue
(Ser3) but is reactivated by slingshots (SSH), chronophin, and phosphoprotein phosphatases
(PP1/PP2A) [22–25]. Persistent cofilin activation results in saturated actin filaments
and the formation of cofilin–actin rods, which are involved in neurotoxicity, impaired
synaptic integrity, and dendritic spine loss [26]. The three major mechanisms for cofilin
rods/aggregates include cofilin dephosphorylation, high cofilin/F-actin ratio, and cofilin
oxidation [27]. In addition, cofilin is implicated in cell death as activated cofilin translocates
to mitochondria and increases mitochondrial permeability, releasing cytochrome C and acti-
vating caspases [28,29]. A recent study on four ischemic mouse models showed that cofilin
activation leads to cofilin–actin rod formation in neuronal processes [30]. Our previous
in vitro studies have demonstrated that cofilin knockdown restores the cell viability [31]
and decreases the microglia activation [31,32]. Treatment with a newly synthesized novel
cofilin inhibitor (CI) improved neuronal viability and diminished microglial activation and
neuroinflammation in an in vitro ICH model [33]. We have also demonstrated that cofilin
knockdown by siRNA before ICH reduces neuronal apoptosis, microglial activation, and
oxidative stress and improves neurobehavioral deficits [34].

This study investigated cofilin expression, microglial activation, and its morphological
alteration in the human ICH brain autopsy specimens. Next, we looked at spatiotemporal
cofilin signaling, microglial activation, and neuroinflammation in mice ICH model, which
was complemented by the assessment of infarct volume, ventricle size, motor dysfunctions
and post-stroke cognitive impairment (PSCI). Additionally, we also measured plasma
cofilin and cytokine levels.

2. Materials and Methods
2.1. Human Autopsy Brain Sections

For immunohistochemistry, autopsy paraffin-embedded brain sections were obtained
from tissue archives of the University of Toledo, Department of Pathology. The study
included 8 control cases and 10 hemorrhagic brain injury cases (Table S1). An experienced
pathologist selected tissue sections adjacent to intracerebral hemorrhage from the study
subjects and corresponding sections from the control subjects with no history of brain
injury. The post-mortem delay ranged from 24–72 h for controls and 15–68 h for patients
with hemorrhagic brain injury. The IBC protocol was reviewed and approved by the
IBC committee to work on human autopsy brain sections. The current study does not
include human subjects, radioactive substances, or pathogens. All animal work was
reviewed and approved by the University of Toledo’s Institutional Animal Care and Use
Committee (IACUC). The animal use procedures complied with University guidelines,
State and Federal regulations, and the standards of the “Guide for the Care and Use of
Laboratory Animals”.
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2.2. Animals

All animal studies were conducted according to the National Institutes of Health guide-
lines and were approved by the University of Toledo Animal Care and Use Committee.

2.3. Experimental Design

ICH was induced by injecting collagenase into the left striatum of mice using stereo-
taxic injections (Stoelting, Wood Dale, IL, USA). Under isoflurane anesthesia, a small hole
in the skull above the left striatum of each mouse was made, and a Hamilton syringe needle
was inserted to deliver the collagenase (0.6 µL, 0.09 units). The stereotaxic coordinates used
for collagenase injection were 1 mm anterior to bregma, 2 mm lateral to the midline, and
3 mm depth from the skull surface. The needle was slowly withdrawn (after 10 min), and
the wound was sutured. Mice were placed on a heated pad to recover from the surgery and
then transferred to a clean cage. Sham mice received only insertion of the needle without
collagenase injection.

For the spatiotemporal signaling of cofilin, a total of 126 C57BL/6 male mice (8–14-week-
old) were obtained from Jackson Laboratory and randomly divided into the control group
(sham surgery) and the ICH group. Animals were assessed for neurobehavioral parameters
[such as, rotarod, grip strength, and neurologic deficit scores (NDS) performed by an expert
investigator blinded to the study plan, and findings were recorded for all animals and
compared among ICH groups 24 h before the hemorrhagic injury and after 1, 3, 7, 14, 21,
and 28 days. T-maze was used to evaluate spatial working memory in the acute and chronic
periods. Animals were sacrificed at different times, and brain and blood samples were
collected to perform various biological assays. Different cohorts of animals were sacrificed
at 1, 3, 7, 14, 21, and 28 days (acute phase 1 to 3 days and chronic phase 7 to 28 days).
All efforts were made to minimize the number of animals used and their suffering. We
observed no deaths in this study.

2.4. Neurobehavioral Tests

A description of all behavioral tests is provided in detail in the Supplementary Materials.

2.5. Western Blotting

For Western blotting (WB) analysis, different cohorts of mice were euthanized with
CO2, and brains were removed and collected to examine potential changes in the expression
levels of cofilin at different time points (days 1, 3, 7, 14, 21, and 28). Brain tissues were
collected from the hemorrhagic sides (ipsilateral) and non-hemorrhagic sides (contralateral)
using a 1 mm-diameter micro-punch needle. Brain tissues were homogenized in a buffer
containing 10 mM HEPES (pH 7.9), 1.5 mM MgCl2, 10 mM KCl, 10 mM DTT, 4 mM
PMSF, 10% NP40, 100 mM Na OrthoV, 1 M NaF, 200 mM NaPP, and protease inhibitor
cocktail (Sigma–Aldrich, St. Louis, MO, USA). Protein concentrations were measured
using Bradford reagent following the manufacturer’s instructions (Bio-Rad, Hercules, CA,
USA). The samples were analyzed by loading equivalent amounts of protein onto 12%
SDS-polyacrylamide gels. Proteins were separated using gel electrophoresis, transferred
onto a polyvinylidene fluoride membrane (PVDF), and blocked with 5% BSA for 1 h
to inhibit non-specific binding. The membranes were incubated overnight at 4 ◦C with
the following primary antibodies: rabbit anti-cofilin (1:1000; Cell Signaling Technology,
Inc. Denvers MA, USA), rabbit anti-p-cofilin (1:500; cell signaling), rabbit anti-ROCK1
(1:1000; Cell Signaling), rabbit anti-SSH1 (1:1000; Abcam, Waltham, MA, USA), rabbit
anti-LIMK1 (1:1000; Cell Signaling), rabbit anti-p-LIMK (1:1000; Cell Signaling), mouse anti-
synaptophysin (1:1000; Abcam), and mouse anti-PSD95 (1:1000, Cell Signaling). The next
day, the blots were washed with TBST and incubated with horseradish peroxidase (HRP)-
conjugated secondary antibodies (goat anti-rabbit and goat anti-mouse, Cell Signaling)
for 1 h at room temperature. The images were captured using a Syngene Imaging System
(Frederick, MD, USA). The images were analyzed using ImageJ Software, Version 1.53t 24.
GAPDH (1:1000; Cell Signaling Technology) was used as a loading control.
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2.6. Histology

For histological assessments, sham and ICH mice were anesthetized with Ketamine/
Xylazine (100 mg/kg and 10 mg/kg, respectively, i.p.) and then transcardially perfused
with 1X PBS, followed by 4% paraformaldehyde. Mice brains were isolated and placed
in 4% paraformaldehyde for 24 h, followed by paraffin-embedded sections (5 µm). Brain
sections were deparaffinized, followed by Luxol fast blue/cresyl violet staining to measure
brain ventricles and hematoma volume. Hematoxylin and eosin (H&E) staining was used
to examine brain lesions. Additional sections were used for immunohistochemistry.

2.7. Immunohistochemistry

Brain sections from human subjects and different cohorts of mice were deparaffinized,
followed by antigen retrieval in a pressure cooker for 15 min, washed with 1XPBS for 5 min,
and finally blocked with 5% BSA in TBST for 2 h on a rocker. The primary antibodies were
added and incubated overnight at 4 ◦C, 1:1000, rabbit anti-IBA1 (Wako, Japan) and 1:1000,
mouse anti-cofilin (Abcam, Waltham, MA, USA) and mouse anti-F-actin (Thermofisher
Scientific, Waltham, MA, USA). The next day, slides were washed with 1XPBS, and the
secondary antibodies were added and incubated for 1 h at room temperature (Taxes red
labeled donkey anti-rabbit IgG (1:1000; Jackson, Immunoresearch, West Grove, PA, USA)
and Alexa Fluor donkey anti-mouse IgG (1:1000; Jackson, Immunoresearch). Slides were
washed with 1X PBS and mounted with DAPI (Molecular Probes, Eugene, OR, USA).
The images used to assess the localization of cofilin in microglia and cofilin with F-actin
were detected using fluorescent microscopy. Cofilin and microglia intensity around the
hemorrhage was determined using Image J software (NIH, Bethesda, Maryland, USA), and
quantitative analysis of microglia was assessed by counting the activated cells around the
hematoma using ImageJ software (NIH).

2.8. Microglia Morphology Analysis

Morphological changes of microglia in the human and mouse brain sections were
quantified using ImageJ and appropriate plugins of FracLac for the ImageJ analysis [35].
Images were converted to photomicrographs of binary and outline images. We used a
box-counting dimension method that is exquisitely sensitive to the morphological features
of microglia. We quantified cell complexity, shape, size, and length using fractal dimen-
sions, span ratio, density, and radius ratio [36–38]. The analysis was applied to single-cell
microglia outline images.

2.9. Quantitative Real Time-PCR

Gene expression was performed by quantitative real-time PCR (qRT-PCR). Total RNA
from the ipsilateral and contralateral regions of different time points of ICH and sham
brain tissues was isolated using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). The
complementary DNA (cDNA) was synthesized using the iScript cDNA synthesis kit (Bio-
rad, Hercules, CA, USA). The mRNA expression level of the brain tissues was detected by
qRT-PCR via SsoAdvanced Universal SYBR Green Supermix (Bio-Rad) using an Applied
Biosystems (Waltham, MA, USA) Real-Time-PCR instrument system. The 18S gene was
used as a housekeeping control. Gene abundance was analyzed using the 2−∆∆CT method
to calculate relative changes in the expression of the target gene relative to the control.
Results were shown as fold changes relative to the control group. All the sequences of the
primers are listed in Table S2 (Supplementary Materials). A total of 28 mice were used in
this experiment.

2.10. ELISA

Plasma cofilin was measured using a commercially available mouse cofilin enzyme-
linked immunosorbent assay (ELISA) kit (Biotechne, Minneapolis, MN, USA). Briefly, 10 µL
of each plasma sample mixed with 90 µL diluent was applied to the mouse cofilin kit to
estimate cofilin concentrations (pg/mL) according to the manufacturer’s instructions.
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2.11. Cytokine Proteome Profiler Array

The inflammatory cytokine/chemokine levels in the serum of sham mice and ICH mice
on day 3 after ICH were analyzed using the Mouse Cytokine Proteome Profiler Array Panel
A kit (R&D system, Minneapolis, MN, USA) according to the manufacturer’s instructions.
Briefly, 200 µL serum samples mixed with array buffers and detection antibody cocktails
were incubated overnight at 4 ◦C on a platform shaker with pre-coated captured antibody
array membranes. The signal was developed with West-Femto Maximum Sensitivity
Substrate (Thermofisher Scientific), and images were captured with a Syngene Imaging
System (Frederick, MD, USA). ImageJ-protein array was used to quantify spot density;
then, the background signal was subtracted from each value. Finally, we compared the
spot density on different arrays to evaluate the relative changes in cytokine/chemokine
levels between sham and day 3 ICH groups. A total of 8 mice were used in this experiment
(n = 4 sham and n = 4 ICH).

2.12. Statistics and Data Quantification

Data are shown to be normally distributed, which is confirmed by Shapiro–Wilk’s
test. Quantifiable data were reported as mean ± SEM and statistical significance was set at
p < 0.05. One or two-way ANOVA, followed by Sidak post hoc comparisons, was used to
compare data for more than two groups. In addition, repeated-measures ANOVA followed
by Sidak post hoc comparisons was used for neurobehavioral data analysis when equal
variances and normal distribution were observed. Two-tailed unpaired Student’s t-test
was used to compare the mean of the two groups. All statistics were performed using
GraphPad Prism version 9.2 (GraphPad Software, San Diego, CA, USA).

3. Results
3.1. Cofilin Expression Is Increased in Human ICH Autopsy Brain Sections

To evaluate cofilin expression and microglial activation in human ICH autopsy brain
sections, we performed immunohistochemistry using cofilin (mouse monoclonal) as a
cofilin marker and IBA1 (ionized Ca2+—binding adapter molecule 1, rabbit monoclonal)
as an activated microglial marker. We found that cofilin rods/aggregates were highly
expressed around the hematoma in ICH subjects (Figure 1). Cofilin intensity was sig-
nificantly higher in ICH compared to the controls (t-test; p < 0.0001) (Figure 1A,C). We
observed significant differences in microglia counts/field between ICH and controls (t-test;
p < 0.0004) (Figure 1B,D). Intracellular cofilin rods/aggregates were localized to activated
microglia in the ICH group and associated with microglia morphology changes compared
to the control group (Figure 1). Male and female ICH patients showed increased cofilin in-
tensity and microglia count around the hemorrhage compared to control groups (Figure S1).
Some patients in the ICH group also showed cofilin rods/aggregates around the nucleus,
raising the question of the impact of nuclear cofilin rods on transcription (Figure S2). We
next characterized microglial morphological alterations in ICH and control brain sections
using FracLac for ImageJ analysis. We observed activated amoeboid microglia around the
hematoma area in the ICH group compared to the ramified to de-ramified microglia in the
control group. We measured microglial complexity (area and perimeter), span ratio, density,
radius length, and branches (processes) features using ImageJ and observed microglial
area and perimeter dramatically decreased, but the thickness, span ratio, and max/min
radius length were increased significantly in the ICH group compared to the control group
(Figure 1E–I). The number of microglia branches, process endpoints, junctions, and slab
voxels, as well as the length of the branches, were markedly decreased in the ICH group
compared to the control group, indicating that amoeboid microglia were the dominant form
following ICH (Figure 1J–N). These results suggest that cofilin and microglia are activated
and upregulated around hematomas in the ICH group contributing to secondary injury.
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Figure 1. Cofilin and microglia are activated in human ICH brain sections. Human autopsy ICH and
control brain sections were assessed for cofilin and microglial activation using immunofluorescence.
(A) A significant increase is observed in cofilin and microglial activation around hemorrhagic areas
after ICH compared to the control group (scale bar 20 µm; white arrows represent localization of
cofilin in microglia, and arrowheads represent the cofilin activation in the neuropil area). (B) Analysis
of microglia morphologies: binary images are outlined and then skeletonized to study the mor-
phological alteration of microglia in the ICH and control groups using ImageJ plugin protocols.
(C,D) Quantification analysis of cofilin intensity and microglia counts were performed using ImageJ
software. (E–N) Summary data and statistical analysis of microglial morphology (shape, complexity,
branch, and process) using FracLac protocols. Data are expressed as mean ± SEM, where p < 0.05 was
considered significant (n = 8 control; n = 10 ICH; unpaired Student’s t-test). Anti-cofilin (a marker
of active cofilin) and anti-IBA1 (a marker of active microglia/macrophage). * p < 0.05; ** p < 0.01;
*** p < 0.001; **** p < 0.0001).

3.2. Changes in Neurofunctional Parameters after ICH

A schematic of the experimental design is presented in Figure 2A. Neurobehavioral
parameters (rotarod, grip strength, and NDS) and body weight measurements were as-
sessed before (baseline) and after ICH at various time points (1, 3, 7, 14, 21, and 28) and
compared with the sham group. The reduction in the rotarod latency time following ICH
was not significant on days 1, 3, 7, 14, and 21, and a significantly enhanced latency time
was observed on day 28, suggesting motor learning during repeated testing (p < 0.01;
Figure 2B). Following ICH, mice exhibited a sustained functional deficit of the forelimb
strength lasting up to day 7, and a significant improvement was observed on days 21 and
28 (p < 0.001; Figure 2C). NDS observed on day 1 lasted until day 14 day, followed by a
significant decrease on day 21, indicating a recovery phase following ICH (Figure 2D). The
mice exhibited a reduction in body weight after ICH, and the recovery was noted from
days 14 to 28 (Figure 2E).
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Figure 2. Experimental design and assessment of motor and cognitive deficits following ICH. Male
mice were subjected to ICH and assessed for motor and cognitive deficits at different time points (A).
Schematic of experimental design. Animals were assigned randomly to seven groups, sham, and six
ICH groups, with different time points (1, 3, 7, 14, 21, and 28 days). Different cohorts of mice were
subjected to intra-striatal collagenase injection-induced ICH, and sham mice had an insertion of only
the needle (total of 126; n = 28 control (sham) and n = 98 (ICH). (B) The reduction in rotarod latency
time following ICH was significantly improved by day 28. (C) Following ICH, mice exhibited a
sustained functional deficit of forelimb strength that lasted for 7 days, with a significant improvement
observed on days 21 and 28. (D) NDS was observed on day 1 and lasted until day 14, followed
by a significant decrease on day 21. (E) The mice exhibited a decrease in body weight after ICH,
and recovery was detected on day 7 and progressively increased on day 28. (F,G) The spontaneous
alternation rate was significantly reduced in ICH compared to the sham group on days (1–4) and
(11–14), whereas the side preference rate increased dramatically in the ICH group compared to the
sham group. Repeated measure one-way ANOVA or two-way ANOVA followed by Sidak’s post
hoc comparisons for rotarod, grip strength, NDS, and body weight; and unpaired Student’s t-test for
T-maze was used for analysis. Data are expressed as mean ± SEM, where p < 0.05 was considered
significant. * Difference within groups relative to baseline. (n = 7 mice for rotarod; grip strength;
NDS and body weight, and n = 10 mice per group for T-maze test; ns = not significant; * p < 0.05;
** p < 0.01; *** p < 0.001; **** p < 0.0001). # Difference of contralateral and ipsilateral regions in different
time-points after ICH (# p < 0.05).

We evaluated acute and chronic PSCI after ICH using T-maze for spontaneous alterna-
tion and side preference on days 1, 2, 3, and 4 (acute) and days 11, 12, 13, and 14 (chronic)
phases. We found a significant reduction in the percent alternation rate in the ICH (acute
(p < 0.0001) and chronic (p < 0.001) phases) compared to the sham group (Figure 2F,G). The
percent of side preference was also significantly increased in the ICH group compared to
the sham in acute (p < 0.0001) and chronic (p < 0.0001) phases, indicating impaired spatial
alternation following ICH (Figure 2F,G).

3.3. Spatiotemporal Cofilin Signaling in Mice after ICH

Mouse brains were dissected, and WB was performed to observe cofilin expression
levels in hemorrhagic (ipsilateral) and (non-hemorrhagic (contralateral) hemispheres. To
understand cofilin-related signaling, we investigated upstream and downstream signaling
cascades (Figure 3B–E). The expression of SSH1 was significantly increased on days 1, 3,
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and 7 after ICH (Figure 3B), suggesting cofilin overactivation. We observed significant
downregulation of ROCK1 on day 3 (Figure 3C), p-LIMK1 on days 1, 3, and 7 (Figure 3D),
and LIMK1 on day 3 (Figure 3E) on the hemorrhagic side after ICH compared with the
sham group. However, no significant changes were observed in SSH1, ROCK1, p-LIMK,
and LIMK1 on the contralateral side from day 1 to day 28 (Figure 3B–E). Cofilin expression
was significantly increased in the ipsilateral area on days 1 and 3 and decreased from
day 7 to day 28 compared to the sham group (p < 0.01, Figure 3F). Cofilin expression
increased on days 3 and 7, and a decrease was observed from day 7 through day 28 in
the contralateral region (Figure 3F), suggesting cofilin offside effects on the contralateral
hemisphere. The expression of p-cofilin was significantly increased on day 1 and decreased
from day 3 until day 28 in the ipsilateral region compared to the sham group. No significant
changes were observed on the contralateral side (Figure 3G). These observations suggest
that cofilin overactivation at different time points after ICH could be mediated by the
increased SSH1/LIMK1 activity.
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Figure 3. Cofilin and its upstream/downstream signaling. Animals from different cohorts were
sacrificed on days 1, 3, 7, 14, 21, and 28, brains dissected, and contralateral and ipsilateral regions
isolated for Western blotting. (A) Representative blots from different cohorts with different antibodies.
A total of 25 µg of protein was loaded into each gel lane. The sham group was used as a control,
GAPDH as a loading control, SSH1, ROCK1, p-LIMK, and LIMK as markers for cofilin signaling;
cofilin was used as a marker of active cofilin, and p-cofilin was used as a marker of inactive cofilin.
(B–G) Quantifying band intensities (normalized to GAPDH, n = 4 mice per group). (B) SSH1 was
significantly increased on days 1, 3, and 7 after ICH compared to the sham group on the ipsilateral
side, while a decrease was observed up to day 28. (C) ROCK1 was significantly decreased on day 3;
(D) p-LIMK was significantly reduced on days 1, 3, and 7, and (E) LIMK1 was markedly reduced on
days 3 and 7 (B–E). No significant changes in SSH1, ROCK1, p-LIMK, and LIMK1 were observed
on the contralateral side. (F) Cofilin was significantly overexpressed on day 3 compared with the
sham group, and a decrease was observed from day 3 up to day 28. In the ipsilateral region (around
the hemorrhage), cofilin was significantly increased on days 1 and 3 compared with the sham group.
Cofilin expression was decreased from day 7 to 28 compared with the sham group. (G) p-cofilin was
significantly increased on day 1 and decreased from day 3 to 28 compared to the sham group. No
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significant changes were noted on the contralateral side. Two-way ANOVA followed by Sidak’s post
hoc comparisons was used for analysis. Data are expressed as mean ± SEM, where p < 0.05 was
considered significant. * Difference within groups relative to the sham group (* p < 0.05; ** p < 0.01;
*** p < 0.001). $ Difference within ICH groups vs. ICH on day 3 in the ipsilateral region ($ p < 0.05;
$$ p < 0.01; $$$ p < 0.001) and # Difference of contralateral and ipsilateral regions in different time-
points after ICH (# p < 0.05; ## p < 0.01; ### p < 0.001).

3.4. Synaptic Dysfunction in Mice after ICH

PSD-95 did not show changes at the various time points after ICH compared with
the sham group, but a significant decrease in the contralateral region compared with the
ipsilateral side was observed on days 1 and 3 (Figure 4A,B). Synaptophysin, a presynaptic
marker, showed a significant reduction on day 14 in the ipsilateral region compared with
the contralateral side. Then, a decrease was observed until day 28, suggesting cofilin
overactivation and formation of rods/aggregates might have resulted in synaptic loss and
PSCI (Figure 4A,C). Nevertheless, synaptophysin showed an increase on the contralateral
side up to day 21 and was significantly increased on day 14 compared to the ipsilateral
side, indicating protective mechanisms to compensate for the loss of synapses around the
hemorrhage or the loss of motor function. The results show that synaptophysin and PSD95
regulation changes might have contributed to the motor and cognitive decline after ICH.
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Figure 4. Synaptic dysfunction following ICH. Contralateral and ipsilateral regions isolated from
different cohorts of mice were used for Western blotting to assess proteins for synaptic dysfunction.
(A) Representative blots from different cohorts with different antibodies. A total of 25 µg of protein
was loaded into each gel lane. GAPDH as a loading control, PSD95 as a marker for post-synaptic,
and synaptophysin as a presynaptic marker. (B,C) Western blot analysis normalized to GAPDH;
n = 4 mice per group. (B) PSD95 was significantly decreased on the contralateral side on days 1 and 3
compared to the ipsilateral side, suggesting an off-target effect to compensate for the loss of post-synaptic
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expression on the ipsilateral side. (C) A decreased trend was observed in synaptophysin from day 1
up to day 28 in the ICH group. On day 14, a significant decrease on the ipsilateral side was observed
compared to the contralateral side. Two-way ANOVA followed by Sidak’s post hoc comparisons was
used for analysis. Data are expressed as mean ± SEM, where p < 0.05 was considered significant.
$ Difference within ICH groups vs. ICH on day 3 in the ipsilateral region ($ p < 0.05) and # Difference
of contralateral and ipsilateral regions in each different time-points after ICH (# p < 0.05; ## p < 0.01).

3.5. Cofilin–Actin Rods/Aggregates and Microglial Activation in Mice after ICH

To assess the expression of cofilin rods/aggregates and microglial activation, coronal
sections of paraffin-embedded mouse brain tissues were stained with anti-cofilin and anti-
IBA1. Cofilin intensity/immunofluorescence was significantly upregulated on days 1 and
3 after ICH (p < 0.01; Figure 5A–C) compared with the sham group and decreased from
day 7 to 28, which coincides with the protein expression increase from day 1 to day 3 and
reduces from day 7 to day 28 in the ipsilateral side compared with the sham group. Cofilin–
actin rods/aggregates started to develop from day 1 through day 28 (Figure 5A,B) and
(Figure S3), suggesting the buildup of cofilin aggregates on days 1 and 3 and rods on days
7 to 28 (chronic period of ICH). Intracellular cofilin rods/aggregates were localized to the
activated microglia in the ICH groups and were associated with microglia morphological
changes compared with the sham group (Figure 5B). The number of activated microglia
was significantly increased from day 3 (p < 0.001; Figure 5B) through day 14 (p < 0.01;
Figure 5D) compared with the sham group, suggesting widespread neuroinflammation.
Microglia labeled with IBA1 ranged from ramified (inactive microglia) to de-ramified (pre-
active microglia) in the sham group. In contrast, amoeboid microglia were highly observed
around the hemorrhagic area in the ICH groups, indicating the microglial active state
(Figure 5B). mRNA levels of IBA1 significantly peaked on day 3 and gradually declined
until day 28 in the ipsilateral region compared with the sham group. We observed no
significant changes in IBA1 levels on the contralateral side from day 1 to day 28 (Figure 5E).
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Figure 5. Cofilin and microglia activation in the perihematomal area. Brains from different cohorts of
mice were fixed with paraffin for immunohistochemistry staining of cofilin and microglia. Another
set of brains from different cohorts was used for mRNA analysis (A,B). Anti-cofilin (a marker of active
cofilin) and anti-IBA1 (a marker of active microglia/macrophage) immunofluorescence microscopy
analysis of paraffin-embedded brain sections (A). Scale bar of 200 µm and (B) Scale bar of 50 µm.
(C,D) Quantification analysis of cofilin intensity and microglia counts were conducted using ImageJ
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software. (E) mRNA levels of IBA1 (microglia/macrophages) after ICH at different time points in the
contralateral and ipsilateral areas. (A–C) Cofilin was significantly activated on days 1 and 3 after ICH
compared with the sham group and decreased from day 7 to day 28. Cofilin–actin rods started to
develop from day 7 to day 28. Intracellular cofilin rods/aggregates localized to activated microglia in
the ICH groups and were associated with microglia morphological changes compared with the sham
group. (A,B,D) Activated microglia illustrated by staining of IBA1 significantly increased from day 3
to day 28 after ICH compared with the sham group. In the sham group, microglia labeled with IBA1
ranged from ramified (inactive microglia) to de-ramify (pre-active microglia). In contrast, amoeboid
microglia were mostly found around the hemorrhagic area in the ICH groups. (E) Microglia were
significantly increased on day 3 after ICH. Expression of active microglia decreased from day 7 to
day 28 compared with the sham group. Data are expressed as mean ± SEM, where p < 0.05 was
considered significant; n = 3 mice per group. * Difference within groups relative to sham group
(ns = not significant; ** p < 0.01; *** p < 0.001). $ Difference within ICH groups vs. ICH on day 3 in
the ipsilateral region ($$ p < 0.01; $$$ p < 0.001). One-way ANOVA or two-way ANOVA followed by
Sidak’s post hoc comparisons were used for analysis.

3.6. Inflammatory and Anti-Inflammatory Cytokines in Mice after ICH

Next, we examined mRNA levels for cytokines corresponding to M1/M2 microglial
polarization. TNFα, IL-1β, and IL-6, as M1 markers, were measured in the sham and ICH
groups at various time points (days 1, 3, 7, 14, 21, and 28) by quantitative polymerase chain
reaction using 18-S as a loading control. In the ipsilateral region (around the hemorrhage),
TNF-α was significantly increased on day 3, IL-1β on days 1 and 3, and IL-6 on day 1 after
ICH compared to the sham group. The expressions of TNF-α, IL-1β, and IL-6 decreased
from day 7 until day 28 compared with the sham group. In the contralateral region, no
significant changes were observed (Figure 6A). We observed a significant increase in IL-10,
TGF-β, and Arg1 (M2 markers) on day 3, and the levels reduced from day 7 until day 28 on
the hematoma side, and no significant changes were detected on the other side (Figure 6B).
It can be assumed that the augmented levels of both microglia phenotypes by day 3 are
potentially contributing to the motor and PSCI after ICH.
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in sham and ICH groups at various time points (1, 3, 7, 14, 21, and 28 days) by quantitative polymerase
chain reaction in the ipsilateral and contralateral brain regions. (A) Inflammatory markers, e.g., TNF-
α, IL-1β, and IL-6. (B) Anti-inflammatory markers, e.g., IL-10, TGF-β, and Arg1. The 18-S was used
as a loading control. In the ipsilateral region (around the hemorrhage), (A) TNF-α was significantly
increased on day 3, IL-1β on day 1 and day 3, and IL-6 on day 1 after ICH in the ipsilateral region.
Expressions of TNF-α, IL-1β, and IL-6 decreased from day 7 to day 28 compared with the sham
group. (B) IL-10, TGF-β, and Arg1 were significantly increased on day 3 after ICH in the ipsilateral
region. IL-10, TGF-β, and Arg1 expressions decreased from day 7 to day 28 compared with the sham
group. Two-way ANOVA followed by Sidak’s post hoc comparisons was used for analysis. Data
are expressed as mean ± SEM, where p < 0.05 was considered significant. * Difference of sham vs.
different time-points of ICH in the ipsilateral region (* p < 0.05; *** p < 0.001), $ Difference within ICH
groups vs. ICH on day 3 in the ipsilateral region ($ p < 0.05; $$ p < 0.01; $$$ p < 0.001) and # Difference
of contralateral and ipsilateral regions in each different time-points after ICH (# p < 0.05; ## p < 0.01;
### p < 0.001), (n = 4 mice).

3.7. Effect of ICH on the Blood Profile

To determine plasma cofilin levels after ICH, we collected mouse plasma at different
time points (1, 3, 7, 14, 21, and 28 days) and compared it to the sham group. After ICH,
plasma cofilin levels were significantly increased on day 3 (p < 0.0296, Figure 7A) compared
to the sham group. Cofilin levels slightly decreased from day 7 until day 28 after ICH
compared to day 3 and reached the same level as the sham group on day 28. These results
indicate that ICH markedly increases cofilin levels in plasma, especially on day 3, implying
peripheral inflammation. As cofilin peaked on day 3 after ICH, we further selected this
time to analyze serum cytokines using a cytokine/chemokine array. The results show that
13 cytokines/chemokines were significantly increased in the ICH group on day 3 compared
to the sham group (p < 0.001, Figure 7B–D). The pattern of increase in plasma cofilin with
serum cytokines/chemokines may reflect a progressive pathological state, contributing to
peripheral inflammation after ICH.
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arrays were performed. (A) Plasma levels of cofilin were significantly increased on day 3 compared
with the sham group, and a gradual decrease was observed from day 7 to day 28 (n = 3 mice per
group). (B) Representative bands of the proteome profiler mouse cytokine array in sham and ICH
day 3 groups. (C,D) Quantitative analyses of detected cytokines and chemokines by proteome array;
relative densities were normalized against the sham group (n = 2 membrane per group pooled from
4 mice per group). Heat map representing global variations in cytokine/chemokine responses in
sham and ICH day 3, resulting in a significant increase in 13 cytokines/chemokines in the ICH group.
Data are expressed as mean ± SEM, where p < 0.05 was considered significant. *Difference within
groups relative to sham group (ns = not significant; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.001).
(One-way ANOVA followed by Dunnett’s post hoc comparisons or two-way ANOVA followed by
Sidak’s post hoc comparisons).

3.8. Histopathological, Hematoma, and Ventricular Volume Changes after ICH

Hematoma lesion volume and ventricle size were measured using Luxol fast blue/cresyl
violet staining of sham and ICH brain sections. Cresyl violet staining showed clearance
of hematoma but the concomitant enlargement of the ventricles from day 7 to day 28
after ICH in the hemorrhage side. Interestingly, this difference was also apparent on the
contralateral side; we observed a gradual increase in ventricle size (Figure 8A,B,D). H&E
staining showed histopathological changes in the hemorrhagic area. The total volume
of ipsilateral ventricles, a sign of cerebral atrophy, was significantly larger in ICH mice
on days 21 and 28 compared to sham (Figure 8C). The image of the sham group showed
that neurons had clear spherical nuclei with abundant cytoplasm. On the hemorrhage
side, the staining was light, with loose tissue and damaged nuclei from day 1 to day 28.
The number of cells decreased and were swollen with structurally deformed cytoplasm.
We observed extensive vacuolization on day 28 around the hemorrhagic area, consistent
with cell damage compared with the sham group (Figure 8B). The results indicate that
ventricular enlargement possibly occurs due to demyelination and causes brain atrophy
and, eventually, chronic cognitive impairment after ICH.
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Figure 8. Changes in hematoma and ventricle size after ICH. Coronal sections were prepared from
paraffin-embedded brains of sham, and ICH groups were stained for (A) Luxol fast blue, Cresyl violet
(CV staining), and (B) Hematoxylin and eosin (H&E staining). Images were collected on the Olympus
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OlyVIA microscope and were displayed with a scale bar of 2 mm, 200 µm, and 50 µm. (A–B) Changes
in ventricle sizes after ICH in contralateral and ipsilateral regions. (B) H&E staining showed
histopathological changes on the ipsilateral side of the brain after ICH. (C) Increase in ventricle
extension on days 21 and 28 compared with the sham group. (D) Hematoma volume significantly
increased on day 3 and decreased on day 7 onwards. Data are expressed as mean ± SEM, where
p < 0.05 was considered significant. * Difference of sham vs. different time-points of ICH in the
ipsilateral region (** p < 0.01; **** p < 0.0001), $ Difference within ICH groups vs. ICH on day 3 in
the ipsilateral region ($$$ p < 0.001) and # Difference of contralateral and ipsilateral regions in each
different time-points after ICH (#### p < 0.0001), (two-way ANOVA followed by Sidak’s post hoc
comparisons or one-way ANOVA followed by Dunnett’s post hoc comparisons ), (n = 3 mice).

4. Discussion

In the present study, we investigated the cofilin expression in human ICH autopsy
brains and the spatiotemporal signaling of cofilin following ICH in mice. We report for the
first-time alterations in cofilin expression and cofilin localization within microglia in brain
tissue of human ICH and mouse ICH longitudinal study stretching from day 1 to day 28.
We showed that ICH causes motor deficits following ICH, and PSCI is observed in both
acute and delayed phases. Furthermore, we demonstrate increased infarct volume from
days 1 to 3 and ventricular enlargement after days 21 to 28. We demonstrate that cofilin
overactivation on days 1 to 3 correlates with the SSH1 increase, followed by microglia
activation on days 1 to 7. We also observed that brain mRNA levels of inflammatory
and anti-inflammatory markers increased during the acute phase and decreased in the
chronic phase. Furthermore, we observed blood cofilin levels increase on day 3, matching
the increase in chemokine levels. The study outcomes suggest that cofilin overactivation
due to SSH1 increase might play a role in microglial activation, neuroinflammation, and
subsequent PSCI.

The cellular mechanisms that trigger pathological changes around hematomas in ICH
patients are poorly understood. Multiple inflammatory cascades and cytotoxic mediators
are involved [39]. These are known to cause neuronal cell death, microglial activation,
and functional impairment, which are the features of secondary brain injury following
ICH [40,41]. Understanding the inflammatory processes after ICH in humans may con-
tribute to new therapeutic opportunities. Microglia are the resident immune cells of the
brain that maintain brain homeostasis and regulate neuronal networks and synaptic plas-
ticity. Microglia clear and engulf damaged debris through their phagocytic activity, but
excessive microglial activation after brain injury is associated with pathological injury and
neuroinflammation. The effects of toxic or protective microglia depend on their phenotype
and the severity of the brain ictus [42,43]. One study has shown activated microglia in
human brain sections from patients with spontaneous ICH, from day 1 of ICH to day 12,
which was associated with alterations of microglial size and morphology [44]. Similarly,
our study on humans and mice demonstrates that cofilin is overexpressed and colocalized
with activated microglia around hematomas in the ICH group, with morphological changes
contributing to neuroinflammation. In addition, studies have shown that activated cofilin is
redistributed in the cytoplasm, leading to changes in the cell shape [45,46]. The knockdown
of cofilin is associated with an increased amount of F-actin and a change in the microglial
cell morphology [47]. These observations concord with our immunohistochemical results
showing cofilin activation and redistribution and altered microglial morphology after ICH.

Moreover, the critical findings are the surge in inflammatory cytokines following ICH
on day 3, impairing the M-2 anti-inflammatory phenotype and reducing repair mecha-
nisms. In addition, M1 pro-inflammatory cytokines can aggravate brain injury and damage
neurons and oligodendrocytes. Furthermore, microglia were observed to recover from
their ameboid to ramified shapes on days 14, 21, and 28 on the ipsilateral side but were
accompanied by the formation of cofilin rods localized in their processes (Figure 4). These
results are consistent with the idea that cofilin rods/aggregates contribute to ICH, mainly by
morphological alterations of microglia and neuroinflammation. The surge of inflammatory
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mRNA levels (TNF-α, IL-1β, and IL-6) within 1 day of ICH and lasting for 3 days provides
evidence that cofilin overactivation is a starting point for widespread neuroinflammation.
The decrease in cofilin expression beyond day 3 coincides with the decline in inflammatory
markers. Nevertheless, the initial increase in anti-inflammatory markers (IL-10, TGF-β,
and Arg1) on day 3 and then the reduction from day 7 to 28 depicts that the endogenous
anti-inflammatory system does not recover from the initial onslaught of inflammation,
hampering the recovery following ICH. It also implies that the inflammatory response
in the CNS is a complex process that includes multiple steps with different mediators
playing several roles at different times. It could be inferred that the immune response
initially mounts an inflammatory response to clear damaged tissue but then tandemly
switches to an anti-inflammatory response to promote tissue healing and recovery, but
the severity of the injury overwhelms the antioxidant response. Plasma levels of cofilin
increase, and plasma chemokines/cytokines surge within 3 days of ICH also correlates
with cofilin brain levels. All these pieces of evidence point to cofilin overaction initiating
inflammatory crises. Our published study where cofilin knockdown by siRNA before
ICH reduced neuronal apoptosis, microglial activation, and oxidative stress and improved
neurobehavioral deficits adds credence to our findings [34].

Furthermore, the idea that cofilin is associated with and is the center stage for neu-
roinflammation is further evidenced by the upstream and downstream signaling pathways
found to be increased or decreased in our studies. To this end, SSHs is the leading player
that activates cofilin. Three mammalian SSHs have phosphatase activity on cofilin. How-
ever, SSH1 is highly effective in activating the cofilin [23]. SSH1 has an N-terminal domain
that interacts with cofilin, and Cys-393 residue is essential in eliminating the phosphate
group from Ser-3 of the cofilin [48]. In addition, SSH1 can dephosphorylate LIMK1 and
mitigate the LIMK1 enzymatic activity toward cofilin. SSH1 also has independent bundling
activity to stabilize F-actin and stimulate the F-actin disassembly [49,50]. Singla et al. sug-
gested that macrophage growth factor initiation could activate cofilin and control actin
dynamics by the SSH1 pathway [51]. LIM-kinase is an actin-binding protein that phospho-
rylates cofilin at Ser-3, reducing actin-binding and depolymerizing cofilin activities [52,53].
LIMK1/LIMK2 regulates cofilin phosphorylation activity; LIMK1 phosphorylates cofilin
by ras-linked C3 botulinum substrate 1 (Rac1), while LIMK2 inactivates cofilin through
Rho and cell division cycle 42 (CDC42) [54]. Downregulation of LIMK1 restrains the
lamellipodium development produced by Rac1 or insulin. Therefore, LIMK1 and LIMK2
phosphorylate cofilin via the Rac1 and Rho/CDC42 pathways [55]. An increase in SSH1
and a decrease in LIMK1 and pLIMK are conducive to cofilin activation and could be a
sequel for neuroinflammation.

The occurrence of PSCI after ICH suggests diverse pathophysiologic mechanisms
triggering this phenomenon. Our study shows that PSCI occurs in mice in the acute and
chronic phases after ICH, with findings in parallel with those observed in human ICH
patients [56]. In addition, we noted that mice suffer from severe PSCI in the acute and
chronic phases after ICH. The observed increase in infarct volume from day 1 to 3, which
was taken over by ventricular loss after day 21 to 28, suggests that PSCI is the possible
outcome of neuronal loss and tissue damage. The signaling pattern of decreased synap-
tophysin on day 14 in the ipsilateral region and PSD95 in the contralateral area indicates
PSCI following ICH. Since cofilin overactivation or rods/aggregates lead to a reduction
in synaptophysin and PSD95, it might be the possible cause of synaptic dysfunction and
PSCI observed in our results. The results are in line with other studies, in which cognitive
impairment occurs in the acute (5 days) [57] or chronic period (28 days [58] or 35 days [18])
after ICH. A previous study suggested that cofilin rod formation impairs synaptic struc-
ture and function in both in vivo and in vitro ischemic models [26]. Won et al. showed
that cofilin activation leads to cofilin–actin rods in neuronal processes in four different
ischemic mouse models implicating oxidative stress main culprit due to cofilin–actin rod
formations [30]. A recent study showed that cofilin rod formation is significantly increased
in the cortical core and penumbra after transient middle cerebral artery occlusion, causing
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degradation of microtubule-associated protein-2 (MAP2) and apoptosis [59]. Inhibiting
cofilin rod aggregation by overexpression of LIMK rescued the MAP2 and attenuated the
apoptosis, suggesting cofilin in direct inhibition as a treatment option for the ischemic
stroke [59]. Our findings are in consonance with the aforementioned studies, suggesting
that cofilin rods/aggregates might have been associated with microglial activation and
neuroinflammation, subsequently impacting synaptic plasticity and PSCI.

Dysregulation of cofilin signaling or expression has been implicated in several neuro-
logical conditions, including ICH [33,34], ischemic stroke [60], and traumatic brain injury
(TBI) [61]. Given the similarities between ICH, ischemic stroke, and TBI in terms of the
initial injury and subsequent inflammatory response, it is likely that cofilin dysregulation
or overexpression may play a role in the pathophysiology of neural injury in these con-
ditions. Cofilin overexpression has been linked to several key features of ischemic stroke
pathophysiology, including excitotoxicity, oxidative stress, and inflammation. Cofilin rod
aggregation in ischemic stroke can contribute to excitotoxicity by promoting dendritic spine
loss and disrupting the cytoskeleton, impairing synaptic plasticity and neuronal death [26].
Cofilin can also interact with other signaling pathways that enhance oxidative stress and
inflammation, contributing to the neurodegeneration [55]. Similarly, in TBI, the injury
can cause a complex cascade of events that result in tissue damage and cell death [62].
Cofilin overexpression may contribute to this damage by promoting inflammation and
disrupting cellular signaling pathways, which can aggravate tissue injury and contribute to
secondary damage. Therefore, the results of cofilin signaling in ICH might help understand
the pathophysiology of neural injury in ischemic stroke and TBI.

Several limitations need to be mentioned. First, sex and age are essential features that
impact the ICH outcomes. Studies have reported that women with spontaneous ICH show
less brain edema than men [63]. Female mice with ICH also display lesser neurological
deficits and brain edema than male mice, suggesting sex differences in ICH, likely mediated
by estrogen-reduced iron and hemoglobin-induced neurotoxicity [64–66]. Aged rats with
ICH show more severe neurological deficits and brain swelling than young rats, indicating
that age has a crucial effect on response to ICH [67]. Therefore, future studies involving
aged mice are warranted to study their impact on cofilin signaling after ICH. Moreover,
later time points, such as 3 months of survival after ICH, should also be considered to
evaluate long-term pathological alterations, particularly cognitive deficits. We noted that
cofilin was also overexpressed in the neuropil area, a finding that merits further studies
on cofilin’s impact on neuronal, astrocytic, and oligodendrocyte functions. Finally, there is
a limitation of not showing the direct role of cofilin by either blocking the phenotype or
knocking out the gene. Such a study would have conclusively established the direct role of
cofilin in neuroinflammation and other outcomes.

In conclusion, the results of the present study show for the first time that hemorrhagic
brain injury-induced cofilin rods/aggregates are associated with microglial activation
and microglial morphological alterations in humans and mice. These results support
the idea that longitudinal cofilin signaling is at the center stage of microglial activation,
neuroinflammation, motor impairments, and PSCI, offering novel potential therapeutic
avenues for ICH.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells12081153/s1, Table S1. Cases used for cofilin and microglial
immunostaining. Based on the final diagnosis, the cases were classified as control or hemorrhagic
brain injury. Table S2. Shows primer sequence for each gene. Figure S1. Cofilin and microglial
counts in male and female ICH patients. Immunofluorescence analysis of cofilin intensity and
microglia counts in male and female ICH patients compared to the control group were performed
using ImageJ software. Data are expressed as mean ± SEM, where p < 0.05 was considered significant
(n = 8 control, n = 10 ICH, unpaired Student’s t-test). * p < 0.05, *** p < 0.001, **** p < 0.0001).
Figure S2. Cofilin localization in and around the nucleus of human ICH patient brain sections
(Scale bar 20 µm). Immunohistochemistry staining indicated that cofilin localized around and in the
nucleus of ICH patients. Figure S3. Immunohistochemistry staining of cofilin and F-actin around the
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hemorrhagic region after ICH. Anti-cofilin (a marker of active cofilin) and anti-F-actin (a filamentous
actin) were used to stain the paraffin-embedded brain sections (Scale bar 200 µm). The data showed
cofilin-actin rods/aggregates after ICH at different time points (sham, days 1, 3, 7, 14, 21, and 28).
References [68–74] are referred to in Supplementary Materials.
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