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Chronic pain affects a significant amount of the population and is responsible for vast
worldwide socio-economic costs [1]. Moreover, conventional therapies are not very effective
in reducing pain [2]; in fact, clinicians report only 50 percent pain relief among patients
who respond to treatments. Since chronic pain is not a pure prolongation of acute pain, but
is based on structural and functional alterations of neural circuity [3], understanding the
molecular mechanisms underlying these alterations is crucial for developing new effective
therapies. Although progress has been made in describing the mechanisms underlying
pain, many essential questions on the molecular and cellular players driving chronic pain
still need to be answered. Thus, chronic pain continues to pose a challenge to preclinical
and clinical researchers. This Special Issue, featuring seven original research articles and
four reviews, discusses multiple pain models and offers insights at different levels: from
molecular to cellular, from transcriptional to post-translational, from synaptic to circuitry.
Further, diverse experimental tools, which will positively impact pain research, are offered
to the reader. The studies presented here not only push forward pain research, but they
also expand the current understanding of different pain modalities.

Chronic pain can have different aetiologies. This Special Issue discusses, for example,
chronic pain due to nerve injury [4,5], chronic pain associated with a genetic disease [6],
or chronic pain associated with cancer [7]. Hirth et al. characterized two mouse models
(KPC and KPPC models) based on the most common genetic alteration found in human
pancreatic cancer tissues (i.e., p53 and Kras) and suitable to study pain associated with pan-
creatic ductal adenocarcinoma (PDAC), the most prevalent type of pancreatic cancer [8,9].
They found that these models resemble characteristic of human pancreatic cancer, such
as duct-like structure, almost absence of necrosis, neuronal remodeling (i.e., hypertrophy
and increased nerve fibres density), marked neuroinflammation, as well as an exponential
increase in cancer-associated pain with the disease progression in the KPC model [7]. Inter-
estingly, the authors found the upregulation of several cytokines whose role in mediating
the interaction between cancer and nerve fibres or microenvironment is still unknown.
These could represent new mediators involved in the progression of both cancer and
cancer–associated pain [7].

An important pitfall for the development of more efficient therapies is the difficulty
in translating key findings derived from animal models to humans. In this view, the
access and use of human pluripotent stem cells have surely enriched the pain field and
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will continue to provide important translational insights. The original article by Schrenk-
Siemens and co-authors describes the generation of human stem cells-derived nociceptor-
like cells [10]. By varying the differentiation protocol, the authors produced different
nociceptive subpopulations with different nociceptive properties. Among the diverse
described protocols, one, in particular, generated a highly homogenous population of
nociceptive sensory neurons [10]. Thus, this article provides a novel, powerful translational
tool to mechanistic studies of sensitization processes [10].

Neurostimulation approaches, such as transcranial direct current stimulation (tDCS),
are emerging as new therapeutic approaches to treat refractory forms of neuropathic pain
in rodent models, as well as in clinical studies [11,12]. Whereas most of the previous
studies have focused on motor cortex stimulation, Li et al. showed that, also, the repetitive
neurostimulation of the posterior insula (PI tDCS) attenuates the development of nerve
injury-induced neuropathic allodynia and reverses the chronically established allodynia
for weeks, which mainly employs the descending opioid system [4]. Indeed, they found
that PI tDCS induced suppression of activity in several pain-associated brain regions, as
well as the spinal cord, detected as a reduction in c-Fos-positive neurons in these areas [4].

Patients affected by neuropathic or inflammatory chronic pain are burdened by hy-
persensitivity to mechanical stimuli. Among many possible contributing factors, spinal
disinhibition seems to play a prominent role. The original research article by Liu and
co-authors specifically studied the contribution of presynaptic GABAergic inhibition in
inflammatory mechanical hypersensitivity, taking advantage of a mouse transgenic model
carrying a conditional deletion of GABAA in NaV1.8-positive sensory neurons [13]. With a
combination of behavioral, molecular, and histological techniques, the authors described
how mice lacking presynaptic inhibition developed reduced allodynia in response to punc-
tuated, but not dynamic, stimuli [13]. Further, they correlated their findings to the number
of cells activated in the dorsal horn assessed via the presence of c-fos mRNA or c-Fos
proteins [13]. Of note, for their analysis, the authors additionally developed an ad hoc
system for image analyses, which may be beneficial for many experimental researchers to
standardize quantifications, and Liu et al. made these freely available [13].

Pain is a hallmark of Fabry disease (FD), a rare genetic disorder caused by a deficiency
of the enzyme alpha-galactosidase A (GLA). Deficiency of GLA leads to the accumulation
of globotriaosylceramide in dorsal root ganglia neurons. There are still vast gaps in
understanding the mechanisms linking such accumulation to the pain experienced by FD
patients. The work of Spitzel and co-authors characterized the cellular, molecular, and
behavioral phenotype of a knockout GLA mouse line, which mimics FD [6]. They carried
out their analyses by differentiating between young and old mice to further understand if
and to which extent age may influence certain pathological aspects. Spitzel et al. indeed
showed that, from a behavioral viewpoint, the GLA KO mice recapitulated what was
observed in FD patients [6]. Further, they detected alterations in the expression levels
of components of the molecular machinery responsible for inflammatory and immune
responses [6]. In sum, the authors provide data supporting a mechanistic link between
GLA dysfunction, altered immune response, and pain [6].

Modulation of inflammatory signaling was also found in a model of chronic pain
induced by nerve injury [5]. Using a new conditional mouse line, which loses ß2-AR
exclusively in microglial cells, Damo et al. demonstrated that specific activation of the
microglial ß2 adrenergic receptor can modulate nerve injury-associated neuropathic pain by
inducing a structural and functional change in microglial cells compared with an activated
state associated to the nerve injury model used in the study (spared nerve injury, SNI) [5].
Interestingly, this alteration of microglia was associated, at least in vitro, with changes in
cytokine release [5]. Application of a ß2 agonist to a culture of activated primary microglia
induced a reduction in pro-inflammatory cytokines and an increase in the release of anti-
inflammatory cytokines [5].

c-Fos is commonly used as a marker for active neurons in pain research and be-
yond [14–16]. Indeed, two articles in this Special Issue use this approach to identify active
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neurons [4,13]. Nevertheless, manually counting Fos-positive neurons is time-consuming
and may largely be influenced by human bias, subjectivity, and variability. For these
reasons, Beretta et al. developed an open source tool for ImageJ/Fiji, called Quanty-cFos,
for unbiased counting of cells that are either Fos-positive or that express c-Fos mRNA [17].
Importantly, Quanty-cFos lacks human bias and allows reproducibility across different
experiment counting cells in an automated or semi-automated way [17]. Furthermore, the
study provides in-depth, step-by-step teaching videos for a quick and efficient application
of the tool to other stainings, which are also performed also by non-experts [17].

In addition to the original research articles, this Special Issue contains four review
articles, discussing different aspects of chronic pain.

Mandel and Agarwal summarized and highlighted the involvement of a particular
form of post-translational modification (PTMs), called SUMOylation, in the onset and
progression of neurodegenerative diseases (NDDs) [18]. Post-translational modifications
are essential to maintain neuronal homeostasis and for several cellular functions [19,20].
Proper synaptic and cognitive functions require the reversible and dynamic conjugation of
a small ubiquitin-like modifier (SUMO) to specific substrates, and aberrant SUMOylation is
frequently associated with NDDs, such as diabetic peripheral neuropathy (DPN), a chronic
complication of diabetes. DPN can be characterized by neuropathic pain. Interestingly,
different studies have identified, as SUMOylation targets, several ion channels involved in
pain transmission, such as sodium channels 1.7 (Nav1.7), transient receptor potential V1
(TRPV1), and multiple voltage-gated potassium channels [18].

In addition to the original article by Damo et al. [5], the special role of glial cells in
pain is also highlighted in the review of Damo and Simonetti, which discusses the current
knowledge on the involvement of developmental molecules, such as Wnt, ephrins, and
semaphorins, in the pathogenesis and progression of chronic pain, both from the neuronal,
as well as glial, point of view [21]. Indeed, receptors and ligands of these pathways are
expressed in a wide variety of neuronal and glial cells. Wnt, ephrin, and semaphorin
signaling enhance neuronal excitability, peripheral sensitization, synaptic plasticity, as well
as the production and release of inflammatory cytokines [21].

Sensitization and maladaptive plasticity of the cellular units in the pain circuitry is
known to be sustained by changes in their transcriptional profile [22]. Epigenetic mecha-
nisms play a pivotal role in the modulation of transcription in adaptive processes in the
nervous system. Indeed, the last decade has seen the birth and fast growth of the pain
epigenetic field of research, involving the characterization of several epigenetic mediators
involved in pain and the identification of their downstream targets [23]. In this Special
Issue, Mauceri provides, first, an overview of the major epigenetic processes and their
molecular mediators—DNA methylation, histone post-translational modifications, and
non-coding RNAs—followed by a discussion of the role of such mediators in different
forms of chronic pain [24].

An important aspect of pain research focuses on the discovery or improvement of
therapeutic approaches. This is a timely and critical issue, as therapies to prevent or
handle chronic pain are still largely unsatisfactory. The review presented by Chen and co-
authors focuses on neuropathic pain, arising after spinal cord injury (SCI), and it critically
discusses the efficacy of activity-based interventions (ABI) in preclinical studies [25]. The
review thoroughly compares the different ABI approaches and makes an effort to draw
parallels and differences in regards to distinct parameters, such as duration or intensity [25].
As interventions based on physical activity are the main rehabilitative approach in the
treatment of SCI patients, this review provides readers with the necessary knowledge to
understand the scientific rationale for this therapeutic approach and opens avenues for
future research and interventional directions [25].

The studies presented in this Special Issue highlight new aspects underlying the
mechanisms of chronic pain of different origins, while also providing starting points for a
better understanding of pain signaling and, finally, for the development of new therapies.
At the same time, this Special Issue offers a glimpse into the complexity of chronic pain. For
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example, the dynamic molecular landscape involved in pain chronicity is reflected in two
reviews, highlighting post-translational and epigenetic modifications of numerous proteins.
Moreover, the interaction between the nervous system and immune mediators, namely,
cytokines, is challenged in three papers, which deal with three different types of chronic
pain, associated with nerve injury [5], cancer [7] and a genetic disease [6]. Furthermore, in
their review, Damo and Simonetti emphasize, once again, the important role of cytokines
as modulators of chronic pain [21]. This suggests that there are mechanisms common to
the different forms of pain, and it lays the basis for subsequent studies aimed at identifying
new common targets for the development of effective therapies. Finally, two studies in
this Special Issue describe the development of new tools for image analysis, which is
currently in high demand [13,17]. These systems, made freely available to the public, allow
standardization of protein or mRNA quantification and avoid biased and time-consuming
manual counting, while amplifying reproducibility among experiments through automatic
cell counting.

In conclusion, the chronic pain field continues to pose stimulating research questions.
This Special Issue examines several pain models and offers insights at various levels,
providing the reader with valuable, timely updates in such a complex scenario.
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