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Abstract: Aberrant Wnt signaling activation is frequently observed in many cancers. The mutation
acquisition of Wnt signaling leads to tumorigenesis, whereas the inhibition of Wnt signaling robustly
suppresses tumor development in various in vivo models. Based on the excellent preclinical effect
of targeting Wnt signaling, over the past 40 years, numerous Wnt-targeted therapies have been
investigated for cancer treatment. However, Wnt signaling-targeting drugs are still not clinically
available. A major obstacle to Wnt targeting is the concomitant side effects during treatment due
to the pleiotropic role of Wnt signaling in development, tissue homeostasis, and stem cells. Addi-
tionally, the complexity of the Wnt signaling cascades across different cancer contexts hinders the
development of optimized targeted therapies. Although the therapeutic targeting of Wnt signaling
remains challenging, alternative strategies have been continuously developed alongside technological
advances. In this review, we give an overview of current Wnt targeting strategies and discuss recent
promising trials that have the potential to be clinically realized based on their mechanism of action.
Furthermore, we highlight new waves of Wnt targeting that combine recently developed technologies
such as PROTAC/molecular glue, antibody–drug conjugates (ADC), and anti-sense oligonucleotides
(ASO), which may provide us with new opportunities to target ‘undruggable’ Wnt signaling.

Keywords: Wnt signaling; β-catenin; targeted cancer therapy; PROTAC; antibody–drug conjugate
(ADC); anti-sense oligonucleotide (ASO)

1. Wnt Signaling Pathway

In the early 1980s, Wnt signaling was first discovered when wingless, an essential
developmental gene of Drosophila, was found [1]. Concurrently, Int-1, a mammalian
wingless homolog, was identified as a driver gene for malignancy when its transcriptional
activation was induced by the murine mammary tumor virus [2]. Through wingless and
Int-1, a portmanteau name of ‘Wnt’ was created. Over the four decades since its discovery,
Wnt-mediated signaling has been extensively studied, revealing its evolutionarily con-
served roles in regulating diverse cellular processes, including embryonic development,
tissue homeostasis, and cell fate determination [3].

Wnt signaling consists of Wnt ligands, frizzled receptors (FZD family), co-receptors,
β-catenin destruction complexes, β-catenin/transcriptional partners, and other modulating
components [3]. Wnt is a secreted ligand and mediates autocrine and paracrine signal trans-
duction through its receptors and downstream effectors [4]. The intracellular downstream
signaling of Wnt ligands/receptors is broadly divided into β-catenin-dependent signaling
(also referred to as canonical Wnt signaling) and β-catenin-independent signaling (also
referred to as non-canonical Wnt signaling) according to its dependence on β-catenin, a
central effector of Wnt signaling (Figure 1). The type of Wnt ligands and their correspond-
ing receptors/co-receptors in β-catenin-dependent and -independent Wnt signaling vary
in each physiological context. For instance, among the 19 human Wnt ligands, Wnt3a is
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mainly involved in the β-catenin-dependent Wnt pathway. On the other hand, Wnt5a is
predominantly associated with the β-catenin-independent Wnt pathway. However, in some
cases, Wnt5A often acts the opposite way [5]. Of human frizzled (FZD) receptors, FZD1
and FZD7 are mainly related to the canonical Wnt pathway. In contrast, FZD2 and FZD6
are implicated with the non-canonical Wnt pathway [5]. However, due to the redundancy
and complexity of Wnt signaling, the precise pairs of working Wnt ligands/receptors are
still elusive in many biological contexts.

Cells 2023, 12, x FOR PEER REVIEW 2 of 24 
 

 

signaling vary in each physiological context. For instance, among the 19 human Wnt lig-
ands, Wnt3a is mainly involved in the β-catenin-dependent Wnt pathway. On the other 
hand, Wnt5a is predominantly associated with the β-catenin-independent Wnt pathway. 
However, in some cases, Wnt5A often acts the opposite way [5]. Of human frizzled (FZD) 
receptors, FZD1 and FZD7 are mainly related to the canonical Wnt pathway. In contrast, 
FZD2 and FZD6 are implicated with the non-canonical Wnt pathway [5]. However, due 
to the redundancy and complexity of Wnt signaling, the precise pairs of working Wnt 
ligands/receptors are still elusive in many biological contexts. 

 
Figure 1. Wnt signaling and its alteration in various cancers. Signal transduction of β-catenin-de-
pendent and independent Wnt signaling. The frequencies of genetic alteration of individual Wnt 
signaling modules in indicated cancers were summarized. 

Herein, we briefly describe Wnt signaling transduction, the understanding of which 
plays a key role in the development of targeting strategies (Figure 1). 

1.1. Wnt Ligands and Receptors 
So far, 19 secreted Wnt ligands and more than 18 Wnt receptors/co-receptors have 

been identified in the mammalian system [4]. Different combinations of Wnt ligands and 
their receptors/co-receptors operate in various physiological contexts [6]. Wnt ligands are 
lipid-modified glycoproteins. The extracellular transport of Wnt requires palmitoylation, 
a lipid modification mediated by a protein-serine O-palmitoyltransferase, porcupine 
(PORCN) [7]. Palmitoylated Wnt ligands bind to Wntless and are transported from the 
Golgi apparatus to the cell membrane for secretion. Secreted Wnts are recognized by the 
FZD receptor family [3,8]. These G-protein coupled FZD receptors act as primary Wnt 
receptors and transduce the Wnt signaling intracellularly [8,9]. There are ten FZD recep-
tors in humans. In addition, low-density lipoprotein receptor-related proteins 5 and 6 
(LRP5/6) bind FZD and act as typical co-receptors [10]. Additionally, diverse families of 
Wnt signaling modulators exist. Ring finger protein 43 (RNF43) or zinc and ring finger 3 
(ZNFR3) are transmembrane E3 ligases that act as negative regulators of Wnt signaling by 
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Herein, we briefly describe Wnt signaling transduction, the understanding of which
plays a key role in the development of targeting strategies (Figure 1).

1.1. Wnt Ligands and Receptors

So far, 19 secreted Wnt ligands and more than 18 Wnt receptors/co-receptors have been
identified in the mammalian system [4]. Different combinations of Wnt ligands and their
receptors/co-receptors operate in various physiological contexts [6]. Wnt ligands are lipid-
modified glycoproteins. The extracellular transport of Wnt requires palmitoylation, a lipid
modification mediated by a protein-serine O-palmitoyltransferase, porcupine (PORCN) [7].
Palmitoylated Wnt ligands bind to Wntless and are transported from the Golgi apparatus
to the cell membrane for secretion. Secreted Wnts are recognized by the FZD receptor
family [3,8]. These G-protein coupled FZD receptors act as primary Wnt receptors and
transduce the Wnt signaling intracellularly [8,9]. There are ten FZD receptors in humans. In
addition, low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6) bind FZD and
act as typical co-receptors [10]. Additionally, diverse families of Wnt signaling modulators
exist. Ring finger protein 43 (RNF43) or zinc and ring finger 3 (ZNFR3) are transmembrane
E3 ligases that act as negative regulators of Wnt signaling by inducing the lysosomal
degradation of FZD receptors. Conversely, secreted ligands, R-spondins (RSPOs 1-4),
serve as Wnt signaling enhancers [11,12]. R-spondins bind to the complex of leucine-rich
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repeat-containing G protein-coupled receptor 4-6 (LGR4-6) and RNF43/ZNFR3. This
interaction prevents the RNF43/ZNFR3-mediated lysosomal degradation of FZD and
maintains Wnt signaling transduction [13]. The non-Wnt protein, Norrie Disease Protein
(Norrin), also triggers the β-catenin-dependent Wnt pathway [14,15]. Though Norrin is
a cystine-knot-like growth factor, it activates Wnt signaling by interacting with FZD4,
Lrp5/6, and Tetraspanin-12 [14,15]. Several Wnts, receptors, and co-receptors, and various
Wnt modulators operate convergently and divergently. It is also possible that additional
unidentified Wnt co-receptors and modulators exist. The complexity of the Wnt signaling
cascade makes it challenging to understand the exact responses elicited by the specific
targeting of the Wnt signaling steps, which is one of the major difficulties in developing
Wnt signaling targeting strategies.

1.2. β-Catenin-Dependent Signaling

The β-catenin-dependent Wnt signaling pathway is more elucidated and established
compared to the β-catenin-independent pathway (Figure 1). β-catenin is an armadillo
repeat protein associated with the cytoplasmic domain of cadherins, cell–cell junction
proteins [16,17]. Intracellular levels of non-E-cadherin-bound cytoplasmic β-catenin are
very low without Wnt ligand stimulation [18]. The β-catenin destruction complex tightly
controls levels of cytoplasm β-catenin. The destruction complex consists of axis inhibitor
(AXIN), adenomatous polyposis coli (APC), casein kinase 1 (CK1), glycogen synthase
kinase 3β (GSK3β), and β-transducin repeat-containing protein (βTrCP) [10]. In the ab-
sence of a Wnt ligand (Wnt-off status), the GSK3β and CK1 of the destruction complex
phosphorylate β-catenin at Ser45 (CK1) and Thr41/Ser37/Ser33 (GSK3β) residues, respec-
tively. Phosphorylated β-catenin is sequentially ubiquitinated by the E3 ligase βTrCP and
degraded by a ubiquitin-mediated proteasomal system [3]. Upon Wnt ligand stimula-
tion (Wnt-on status), AXIN binds to the phosphorylated cytoplasmic tail of LRP5/6 and
the FZD receptor adapter Disheveled (Dvl) [3,8]. This protein interaction sequesters the
β-catenin destruction complex from the cytosol to the cell membrane and prevents the
destruction complex-mediated degradation of β-catenin. Accumulated β-catenin in the
cytoplasm translocates to the nucleus and forms a complex with the transcription factor
T cell factor (TCF) or lymphoid enhancer-binding factor 1 (LEF1), replacing Groucho and
CtBP corepressors [8,19,20]. β-catenin/transcription factor complexes bind to a co-activator
(CBP, p300) for the transcriptional activation of a variety of downstream genes, including
c-Myc, Axin2, CCND1, and CD44 [20,21].

1.3. β-Catenin-Independent Signaling

In β-catenin-independent signaling, the intracellular downstream signaling of the
Wnt/receptor interactions is mediated not by β-catenin but by various cellular signal-
ing modules, such as RAC1-JNK, RHOA-ROCK, and PLC-IP3-Ca2+ (Figure 1). Well-
characterized physiological contexts of β-catenin-independent signaling include the planar
cell polarity (PCP) pathway and Wnt/Ca2+ signaling [19]. In Wnt/PCP signaling, binding
Wnt ligands to FZDs activates the small GTPases RHOA and RAC1 [22]. Consequently,
these signals trigger the activation of Rho-associated protein kinase (ROCK) and JUN
N-terminal kinase (JNK), respectively [22]. The Wnt/PCP signaling directs the cell polarity
to induce cell asymmetry, which is crucial for various developmental processes. In the
Wnt/Ca2+ pathway, Wnt ligand–FZD formation activates phospholipase C (PLC), which
releases Ca2+ from the intracellular stores. The raised levels of Ca2+ induce the activation
of protein kinase C, protein kinase II, and calcineurin [23,24]. Although many studies
have been conducted in β-catenin-independent signaling, new Wnt ligands, unknown
modulators, and cytosolic signaling mediators are constantly being discovered. Thus, the
whole map of non-canonical Wnt signaling is still unclear and is different in each biological
context.
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2. Alterations of Wnt Signaling in Cancers

Aberrant Wnt signaling has been implicated in the tumorigenesis of various can-
cers (Figure 1). For example, genetic mutations of Wnt signaling in colorectal cancer
(CRC) are observed in more than 90% of patients and are well-known cancer-driving
alterations [25,26]. Genetic alterations in Wnt signaling primarily occur through gene mu-
tation in APC, ZNRF3, CTNNB1 (encodes β-catenin), AXIN1, and RSPOs [3]. In addition,
overexpression, downregulation, and copy number changes have also been observed in
the genes of Wnt signaling. These genetic alterations of patterns, frequency, and affected
genes vary by cancer type [26] (Figure 1). Notably, in most cancers, alterations in Wnt
signaling are mainly related to the direction of Wnt signaling activation. Additionally,
importantly, the suppression of the hyperactivation of Wnt signaling has shown excellent
tumor suppression effects in many preclinical models.

2.1. Driver Alterations of Wnt Signaling in Cancers

In colorectal cancer (CRC), the loss-of-mutation of APC and the activating mutation of
CTNNB1 are frequently observed [26,27]. The mutation frequency of APC is about 60~80%,
and that of CTNNB1 is about 5~10% [25]. The mutation of APC and CTNNB1 leads to
excessive activation of Wnt signaling by inducing the stabilization of β-catenin, which
initiates intestinal tumors [26]. In addition, about 8~13% mutations of RNF43 were found in
CRC patients [28]. Mutations in ZNRF3/RNF43 render cancer hypersensitive to Wnt ligands,
leading to the hyperactivation of Wnt signaling and promotion of tumorigenesis [28].

In gastric cancer (GC), 13~22% APC mutations are detected [4,27]. APC mutation is
sufficient to initiate gastric tumors in in vivo models [27]. Thus, the driver role of Wnt sig-
naling mutations is demonstrated. Mutations in RNF43, another Wnt signaling component,
were observed in 4.3% of the MSS (microsatellite stable) subtype (~20% of GC patients) and
54.6% of the MSI (microsatellite instable) subtype (~80% of patients) and were considered
key driver mutations [29,30]. In addition to mutations in Wnt signaling, the overexpression
of Wnt1 and Wnt6 has been observed in gastric cancer [31,32]. The overexpression of Wnt1
or a combination of prostaglandin pathways induces preneoplastic lesions or invasive gas-
tric cancer, respectively, in mouse models [33]. Indeed, Wnt signaling activations were also
observed in two major predisposed causes of gastric cancer development, CDH1 mutation
(encodes E-cadherin) and Helicobacter pylori infections [34–36]. These results imply that
Wnt signaling is involved both in tumor-driving and -promoting roles in gastric cancers.

In hepatocellular carcinoma (HCC), almost 50% of mutations in the Wnt signaling
pathway are activation mutations [37]. Approximately 20~25% of CTNNB1, encoding
β-catenin, ~10% of AXIN1, and ~3% of AXIN2, are mutated [37,38]. Additionally, FZD3,
FZD6, and FZD7 receptors, Wnt 3, Wnt4, Wnt 5A ligands, and the modulator RSPO2
are frequently overexpressed or amplified in HCC [39]. These genetic alterations in Wnt
signaling are closely associated with the progression of hepatocarcinoma (HCC). Although
the activating mutation of CTNNB1, the most frequent mutation in HCC, does not induce
a tumor, the loss-of-APC or Axin1 mutation, both less common in HCC, are able to do
so [40,41].

2.2. Cancer-Promoting Alterations of Wnt Signaling in Cancers

In addition to the oncogenic role of Wnt signaling, many genetic alterations in the
Wnt signaling of specific types of cancers do not drive tumorigenesis but play a tumor-
promoting role during cancer progression [39,42]. Additionally, Wnt signaling supporting
tumor niches is essential for promoting various primary and metastatic cancers [43,44].

In lung cancer, the mutation of CTNNB1 and APC genes is not common [45,46]. How-
ever, the hyperactivation of Wnt signaling is associated with tumor formation, relapse, and
poor prognosis [35,47]. In small-cell lung cancer (SCLC), the mutation in APC and CHD8,
which inhibits transcription mediated by CTNNB1, is related to the relapse of SCLC [48].
In non-small cell lung cancer (NSCLC), Wnt ligands (Wnt1, Wnt2, Wnt3, and Wnt5a) and
other signaling modules (FZD8, PORCN, and TCF-4) are overexpressed [49]. A recent
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elegant study shows that the Wnt-producing niche is essential for lung adenocarcinoma
tumorigenesis [38]. Moreover, this study shows that the pharmacological inhibition of
the Wnt niche by the PORCN inhibitor LGK974 suppresses lung tumor growth in in vivo
mouse models.

Pancreatic ductal acinar cell carcinoma (PDAC) exhibits approximately 4~10% muta-
tions in RNF43 and <1% mutations in APC and CTNNB1 [27]. Although genetic alterations
in Wnt signaling are rarely detected in PDAC, many studies have suggested that the activa-
tion of Wnt signaling is involved in pancreatic tumorigenesis [42,50]. Indeed, the inhibition
of the interaction between FZD and Wnt ligands prevents tumorigenesis. In addition, in
patient-derived PDAC cell lines harboring RNF43 mutations, the inhibition of porcupine
and FZD5 suppresses the growth of PDAC cells [42,51].

3. Targeting Strategies for Wnt Signaling in Cancer

Since aberrant Wnt activation initiates or promotes tumorigenesis, Wnt-targeting
strategies in cancer therapy are directed toward the downregulation or restoration of
overactivated Wnt signaling. Current Wnt targeting strategies can be classified into four
categories according to the target location in Wnt signaling: targeting Wnt ligands, targeting
Wnt receptors, targeting destruction complex, and targeting β-catenin/transcriptional
factors. Extracellular Wnt ligands and receptors are good targets for specific antibodies.
However, intracellular signaling components, such as the destruction complex and β-
catenin/transcriptional factors, cannot be targeted with antibodies. Only small chemicals
and peptides are available to target those. Thus, the enzymatic domains of Wnt signaling
components are considered key targets of intracellular components.

In this section, we describe current Wnt targeting strategies as well as recent updates,
with meaningful clinical trials involving each strategy (Tables 1 and 2, and Figure 2).

Table 1. Wnt signaling targeting agents in clinical trials for cancer treatment.

Components
Name Target Cancer Clinical Phase

Inhibition of
Canonical or

Non-Canonical
Wnt Signaling

Refs.

OMP-
131R10 RSPO • Advance Relapsed

Tumors (CRC)
Phase 1 (NCT02482441) Canonical [52]

Foxy-5 WNT5A
mimic

• Colon Cancer
• Metastatic Breast and

Colon/Prostate Cancer
• Metastatic Breast, Colon,

and Prostate Cancer

Phase 2 (NCT03883802)
Phase 1 (NCT02020291)
Phase 1 (NCT02655952)

Non-canonical [53]

LGK974 PORCN

• Metastatic Colorectal
Cancer

• Metastatic Head and
Neck Squamous Cell
Carcinoma

• Solid Malignancies

Phase 1/2 (NCT02278133)
Phase 2 (NCT02649530)
Phase 1 (NCT01351103)

Canonical/
Non-canonical [3,43,54]

RXC004 PORCN
• Colorectal Cancer
• Solid Tumor
• Advanced Solid Tumors

Phase 2 (NCT04907539)
Phase 1 (NCT03447470)
Phase 2 (NCT04907851)

Canonical/
Non-canonical [55–57]

ETC-159 PORCN • Solid Tumors Phase 1 (NCT02521844) Canonical/
Non-canonical [58,59]

OMP-54F28 FZD8
• Hepatocellular Cancer
• Ovarian Cancer
• Pancreatic Cancer/Solid

Tumors

Phase 1 (NCT02069145)
Phase 1 (NCT02092363)
Phase 1 (NCT02050178)
Phase 1 (NCT01608867)

Canonical [60–62]



Cells 2023, 12, 1110 6 of 23

Table 1. Cont.

Components
Name Target Cancer Clinical Phase

Inhibition of
Canonical or

Non-Canonical
Wnt Signaling

Refs.

Niclosamide FZD1
• Colon Cancer
• Metastatic

Prostate-Carcinoma
• Acute Myeloid Leukemia

Phase 1 (NCT02687009)
Phase 1 (NCT03123978)
Phase 1 (NCT02532114)
Phase 2 (NCT02807805)
Phase 1 (NCT05188170)

FDA-approved
antihelminth

Canonical [63]

OMP-18R5 FZD1/2/
5/7/8

• Solid Tumors
• Pancreatic Cancer
• Metastatic Breast Cancer

Phase 1 (NCT01345201)
Phase 1 (NCT01957007)
Phase 1 (NCT02005315)
Phase 1 (NCT01973309)

Canonical [64,65]

OTSA-101 FZD10 • Sarcoma Phase 1 (NCT01469975) Canonical [66]

BNC101 LGR5 • Colorectal Cancer Phase 1 (NCT02726334) Canonical/
Non-canonical [67]

DKN-01 DKK1

• Multiple Myeloma
• Advanced Solid

Tumors/Relapsed NSCLC
• Relapsed Esophagogastric

Malignancies
Cholangiocarcinoma

• Epithelial Endometrial-/
Epithelial Ovarian Cancer

Phase 1 (NCT01457417)
Phase 1 (NCT01711671)
Phase 1 (NCT02013154)
Phase 1 (NCT02375880)
Phase 2 (NCT03395080)

Canonical/
Non-canonical [68–72]

Sulindac DVL
• Breast Cancer
• Colorectal Cancer
• Lung Cancer

Phase 1 (NCT00245024)
Phase 2 (NCT04542135)
Phase 2 (NCT01856322)
Phase 2 (NCT00062023)
Phase 2 (NCT00368927)

FDA-approved
nonsteroidal

anti-inflammatory drug

Canonical [73]

Pyrvinium CK1 • Pancreatic Cancer Phase 1 (NCT05055323)
FDA-approved antihelminth Canonical [74]

E7449 TNK1/2
• Advanced Ovarian Cancer
• Advanced Solid Tumors/
• B-cell Malignancies

Phase 2 (NCT03878849)
Phase 1 (NCT01618136) Canonical [75,76]

BC2059 β-catenin
• Desmoid Tumor
• Metastatic NSCLC
• Recurrent Leukemia
• Solid Tumor

Phase 1 (NCT03459469)
Phase 1 (NCT04780568)
Phase 1 (NCT04874480)

Phase 1/2 (NCT04851119)
Canonical [77–79]

PRI-724 β-catenin/
CBP

• Advanced Solid Tumor
• Advanced Pancreatic
• Advanced Myeloid-
• Malignancies

Phase 1 (NCT01302405)
Phase 1 (NCT01764477)

Phase 1/2 (NCT01606579)
Canonical [80,81]

SM08502 CLK • Advanced Solid Tumors
• Solid Tumor

Phase 1 (NCT05084859)
Phase 1 (NCT03355066) Canonical [82]

Chloroquine v-ATPase
inhibitor

• Pancreatic Cancer
• Solid Tumors
• Ductal Carcinoma In Situ
• Glioma and

Cholangiocarcinoma
• Glioblastoma Multiforme

Phase 1 (NCT01777477)
Phase 1 (NCT02071537)

Phase 1/2 (NCT01023477)
Phase 1/2 (NCT02496741)

Phase 3 (NCT00224978)

Canonical [83]

Hydroxy
chloroquine

v-ATPase
inhibitor

• Colorectal Cancer
• Prostate Cancer
• Metastatic pancreatic

cancer

Phase 2 (NCT01006369), etc.
(total of 30 trials completed) Canonical [84–88]
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Table 2. Pre-clinical agents targeting Wnt signaling.

Target Pre-Clinical Agents Refs.

PORCN IWP1, IWP2, IWP3, IWP4, IWP12, IWP L6, C59, GNF-6231, GNF-1331 [31,89–92]

FZD1 DK-520, DK-419 [93,94]

FZD5 IgG-2919 [51]

FZD7 Fz7-21, RHPD-P1, SRI37892 [95–97]

FZD8 1094-0205, 2124-0331, 3235-0367, NSC36784, NSC654259, IgG-2919 [98]

WNT/FZD/LRP complex Salinomycin [32]

DVL BMD4702, 3289-8625, J01-017a, FJ9, KY-02061, KY-02327, NSC668036,
Peptide Pen-N3 [99–105]

CK1 SSTC3, CCT031374 [106,107]

GSK3β mimic TCS 183 [108]

TNKS XAV939, AZ1366, G007-LK, MSC2504877, G244-LM, IWR-1, JW74,
JW55, K-756, NVP-TNKS656, MN-64, RK-287107, WIKI4 [109–120]

β-catenin KY1220, KYA1797K, MSAB, [78,121]

β-catenin/TCF PKF115-584, CGP049090, AV-65, PNU-74654 [122,123]

β-catenin/EP300 Windorphen, IQ-1 [124,125]

β-catenin/BCL9 PNPB-29, ZW4864, SAH-BCL9, Carnosic acid [126–128]
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3.1. Targeting Wnt Ligands

Targeting cancer-specific Wnt ligands in certain cancers may be an excellent way to
increase the specificity of cancer treatment. However, Wnt ligands often act redundantly,
and which Wnt ligands are essential is not fully understood in each cancer context [5].
Additionally, in most cases, targeting Wnt ligands may be less helpful. This is because
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mutations in Wnt signaling mainly occur downstream of Wnt ligands [27]. Therefore,
targeting Wnt ligands is likely more beneficial in cases where Wnt acts as a component of a
cancer-propagating niche.

Indeed, the PORCN inhibitor LGK974 (also referred to as WNT974) prevents the
secretion of Wnt by inhibiting the palmitoylation of Wnt and shows dramatic suppression
of lung tumorigenesis and metastatic CRC progression [43,54]. In metastatic colorectal
cancer, WNT974 with a combination of LGX818 and cetuximab was used in a clinical trial
(NCT02278133) (Table 1 and Figure 2). Other PORCN inhibitors, RXC004 (NCT03447470,
NCT04907539, and NCT04907851) and ETC-159 (NCT02521844) have also been used in
clinical trials [57,59] (Table 1 and Figure 2). RXC004 caused the suppression of tumor growth
in pancreatic cancer xenograft and gastric cancer PDX models [57]. ETC-159 inhibits the
secretion and activity of all Wnt ligands [59].

Soluble Wnt modulators could also be a good target for Wnt-targeted therapy. Soluble
FZD-related proteins (SFRP) restrain the Wnt signaling pathway. SFRP has a cysteine-rich
domain (CRD) homologous to FZD-CRD. This domain acts as an SFRP to bind competitively
to Wnt ligands in order to inhibit Wnt signaling [129,130]. V3Nter, an SFRP-derived
polypeptide, binds to Wnt3A and inhibits Wnt signaling in CRC [129]. However, Wnt-
targeted therapeutics using SFRP have not been tested in clinical trials.

The targeting of another soluble Wnt modulator, dickkopf-related protein family
(DKK), has proved to be more promising in clinical trials. DKKs are composed of five
types, of which dickkopf-1, DKK1, binds to LRP5/6 and was initially considered to inhibit
canonical Wnt signaling [4,19,131]. However, several studies have since reported that
DKK1 is also related to activating the non-canonical Wnt pathway [132–135]. Although
the mechanism of DKK1 in regulating Wnt signaling is unclear, importantly, DKK1 over-
expression has been observed in many types of cancer [136], and the inhibition of DKK1
suppresses tumorigenesis in several cancers [137–140]. Therefore, DKK1 is emerging as an
important target for cancer therapy. DKN-01 is a humanized antibody that binds to DKK1,
inhibiting cancer progression [68]. Phase 1 and 2 clinical trials are currently underway for
monotherapy and combination therapy of DKN-01 in various cancer types, such as colorec-
tal, gastric, endometrial, and liver cancer (NCT05480306, NCT04057365, NCT03395080, and
NCT03645980) (Table 1 and Figure 2). As many clinical trials for DKN-01 are underway, we
can hopefully expect the first Wnt-targeted therapy targeting DKK1 to receive FDA (Food
and Drug Administration) approval soon.

3.2. Targeting Wnt Receptors

Targeting Wnt receptors is challenging in cancers harboring mutations downstream of
Wnt signaling components. However, cell surface receptors are relatively easy to develop
antibodies for, making them attractive drug targets. Additionally, antibodies targeting
cancer-specific Wnt receptors could give more specificity with fewer side effects [141].
Furthermore, Wnt receptor-specific antibodies can be applied to Wnt niches in monotherapy
and combination therapy with existing anticancer drugs. Here, we introduce cases using
receptor-specific antibodies or clinical trials that may be more feasible for therapeutic
application (Table 1).

A fair number of FZD-targeting antibodies are currently undergoing clinical trials
(Table 1). A monoclonal antibody (mAB), OMP-18R5, binds to five FZD receptors (FZD1,
FZD2, FZD5, FZD7, and FZD8) and blocks the canonical Wnt pathway [65]. This OMP-18R5
mAB inhibits tumor growth in colon, breast, and pancreatic cancer cells [65]. OMP-18R5 is
being tested in a phase 1 clinical trial (Table 1 and Figure 2). OTSA-101 is a mAB targeting
FZD10 and is in a phase 1 clinical trial for sarcoma [66] (Table 1 and Figure 2). An Fc
fusion protein, OMP-54F28, has an extracellular N-terminal cysteine-rich domain (CRD) of
FZD8 [60]. By acting as a competitor of FZD8, OMP-54F28 inhibits Wnt ligand signaling.
Testing OMP-54F28 is in a phase 1 clinical trial for various solid tumors, including liver,
ovarian, and pancreatic cancers (Table 1 and Figure 2).
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Naturally secreted R-spondins induce the accumulation of FZD receptors and enhance
Wnt signaling. Thus, inhibiting natural or cancer-specific RSPOs could be a therapeutic tar-
get for Wnt signaling. OMP-131R10 (Rosmantuzumab) is a monoclonal antibody targeting
R-spondin 3 (RSPO3) that has now completed a phase 1 clinical trial in advanced solid or
relapsed tumors (NCT02482441) [52] (Table 1 and Figure 2).

3.3. Targeting the β-Catenin Destruction Complex

The β-catenin destruction complex, consisting of APC, CK1, AXIN, and GSK3β,
plays a vital role in controlling the concentration of cytosol and nuclear β-catenin [142].
Loss-of-function mutations in the destruction complex components are found in multiple
cancers [27]. Thus, the restoration of the destruction complex or enhancement of its function
is required for cancer therapy [19].

CK1 and GSK3β phosphorylate β-catenin, which subsequently induces the ubiqui-
tination and proteasomal degradation of β-catenin [4]. Thus, activating CK1 and GSK3β
could enhance the function of the destruction complex. Pyrvinium is an FDA-approved
drug used initially as an effective anthelmintic against pinworms [143]. Later, people found
that Pyrvinium inhibits Wnt signaling by enhancing CK1 kinase activity [74,144] (Table 1
and Figure 2). SSTC3 is a preclinical small-molecule activator of CK1, which has better
pharmacokinetics than existing CK1-activating drugs [106]. CCT031374 is a preclinical
activator of GSK3β that may act as a Wnt signaling inhibitor by inducing the degradation
of wild-type β-catenin [107] (Table 2).

Sulindac is an FDA-approved non-steroidal anti-inflammatory drug [145]. Later,
Sulindac exhibited inhibition of the Wnt/β-catenin pathway by binding to the PDZ domain
of Dvl, blocking the destruction complex at the cell membrane [73]. Other small chemicals
bind to the PDZ domain of Dvl and are also undergoing preclinical tests [99–105] (Table 2).

Another way to enhance the destruction of complex-mediated β-catenin degradation
is to stabilize the AXIN. Tankyrase belongs to the poly ADP-ribose polymerase family
and induces the proteasomal degradation of AXIN [146,147]. Thus, tankyrase inhibition
significantly increases the stability of the AXIN protein [147]. Various tankyrase inhibitors,
including IWR-1, G007-LK, JW55, JW74, and XAV939, have been evaluated in preclinical
studies [117–120] (Table 2). E7449, an inhibitor of Poly (ADP-ribose) Polymerases (PARP)
1/2 and tankyrase (TNKS) 1/2 is undergoing phase 1 and 2 clinical trials for advanced
solid tumors (NCT03878849 and NCT01618136) [148] (Table 1 and Figure 2).

H+-ATPase (v-ATPase) mediates the vesicular acidification of lysosomes. This acidifi-
cation of lysosomes is required for the lysosomal degradation of Wnt receptors/co-receptors
and APC, which hyperactivates Wnt/β-catenin signaling [148,149]. Thus, the treatment of
v-ATPase inhibitors led to the suppression of Wnt/β-catenin signaling and tumorigenesis
in several contexts [148]. A substantial number of v-ATPase inhibitors are undergoing
phase 2 clinical trials (Table 1 and Figure 2).

Targeting the intracellular protein complex is quite challenging. Moreover, since most
Wnt-associated cancers carry APC mutations, enhancing the destruction complex’s function
is impossible. In addition, enhancing destruction complexes via v-ATPase inhibitors can
lead to a broad range of potential side effects induced by pan-lysosomal inhibition.

3.4. Targeting β-Catenin and Its Transcription Partners

β-catenin acts as a central transcriptional activator by forming a complex with its
transcriptional partner, TCF/LEF. β-catenin also recruits co-activators such as cAMP re-
sponse element binding protein (CBP) and p300 [20,21]. The interaction of these factors is
essential for the full activation of β-catenin transcriptional responses. Thus, blocking these
interactions could be a strategy for inhibiting Wnt signaling.

ICG-001 and its analog PRI-724 interfere with the interaction between β-catenin and
CBP [80,81]. Indeed, PRI-724 blocked β-catenin/CBP interaction in a liver fibrosis model [81].
The testing of PRI-724 in advanced solid cancers is currently ongoing and phase 1 clinical
trials have been completed (Table 1 and Figure 2). The stabilized α helix of BCL9 (SAH-BCL9)
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hinders the interaction between β-catenin and BCL9, a transcriptional coactivator [126].
Vitamin D3 (1α,25-dehydroxyvitamin D3) also disrupts the interaction between β-catenin
and TCF-4. The vitamin D receptor binds its ligand and competes with TCF-4 to bind the
β-catenin [150]. Several clinical trials using vitamin D3 as a supplement are underway
in phase I–III clinical trials combined with standard chemotherapy in multiple cancers
(NCT02726113, NCT04166253, NCT02603757, and NCT01150877) (Table 1 and Figure 2).

Theoretically, interfering with the binding of β-catenin to its transcriptional partner
might be an excellent strategy. It would also be ideal if we could specifically inhibit
the mutant beta-catenin. However, it is tremendously difficult to understand the specific
interactions between proteins. Moreover, finding chemicals that prevent such interactions is
another obstacle. Although there are many limitations, several small-molecule compounds
are undergoing pre- or clinical tests (Tables 1 and 2), and new small-molecule compounds
are continuously emerging.

3.5. Current Caveats of Targeting Wnt Signaling

Despite ongoing clinical trials, devastating adverse effects on tissue homeostasis
and regeneration occur while targeting Wnt signaling. Therefore, Wnt signaling-targeted
therapy holds excellent promise but carries high risks in cancer treatment [151]. In this
context, potent inhibition of general Wnt signaling might not be a smart method. Lower
doses and combination therapy with other anti-cancer therapies may provide an alternative
and rational approach to Wnt-targeted therapies. Additionally, targeting Wnt-supporting
cancer niches may be more beneficial than Wnt-targeted monotherapy.

As has been mentioned elsewhere, targeting Wnt ligands and receptors against an-
tibodies can give specificity to cancer therapy and cause fewer side effects compared to
chemical drugs [152]. However, it is difficult to identify specific ligands and receptors in
each cancer context [141]. Moreover, these strategies cannot be effective for most Wnt-
mutated cancers that carry APC or CTNNB1 mutations downstream of Wnt ligands and
receptors. Similarly, targeting intracellular destruction complexes is also not very beneficial
for these Wnt mutant cancers.

Although targeting mutant or nuclear β-catenin is theoretically ideal, finding small
chemical inhibitors that prevent β-catenin interactions is extremely challenging.

4. New Targeting Strategies for Wnt Signaling in Cancer

Though many limitations exist in Wnt targeting fields, new trials are continuously
ongoing. Moreover, clinical trials are underway for promising Wnt signaling-targeted
drugs, such as DKK1 and FZD-targeting antibodies. Thus, hope still exists to develop the
first Wnt-targeting drug. Furthermore, new advanced technologies are being developed to
turn ‘undruggable’ proteins into ‘druggable’ proteins. Here, we introduce a new wave of
Wnt-targeting strategies that makes use of the latest cutting-edge technologies.

4.1. PROTAC/Molecular Glue-Based Wnt Signaling Targeting
4.1.1. PROTAC

PROteolysis TArgeting Chimera (PROTAC) is a bifunctional molecule composed of an
E3 ligase, a protein of interest (POI), and a linker capable of linking two ligands [153].

The E3 ligase ubiquitinates POIs that interact with PROTAC, and the target protein is
eventually degraded by the proteasome [154]. PROTAC was first proposed in 2003. However,
little progress was made for a long time due to the limited number of binders and poor
intracellular delivery [154]. In recent years, PROTAC has started to make remarkable progress
thanks to various cutting-edge technologies, such as new ligands that bind with E3 ligases,
advanced linker technology, and accumulated chemical design knowledge [154]. In particular,
the discovery of small ligands for the E3 ligase cereblon (CRBN) and Von Hippel–Lindau
disease (VHL) provided great insights into the design of PROTAC and revolutionized the
PROTAC field [153–155]. As a result, PROTAC is currently attracting significant attention and
being actively studied as an efficient method of erasing target proteins.
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In Wnt-targeted cancer therapy using PROTAC, β-catenin is an attractive intracellular
target. xStAx-VHL is a PROTAC-targeting β-catenin consisting of xStAx and VHLL [153]
(Figure 3 and Table 3). xStAx is a peptide that shows high similarity with the β-catenin-
binding domain of AXIN. xStAx-VHL induces dose-dependent and lasting degradation
of β-catenin in cell lines and APC−/− organoids. Additionally, xStAx-VHL inhibits the
growth of CRC xenografts and APC Min/+-driven intestinal tumors [153].

Table 3. Wnt signaling targeting agents using the latest technologies (PROTACs, ADC, and ASO).

Technologies Name Target Refs.

PROTACs xStAx-VHL β-catenin [153]

Molecular glue NRX-252114 β-catenin/ β-TrCP [156]

ADC

Septuximab vedotin FZD7 [157]

PF-06647020 PTK7 [158]

LGR5-mc-vc-PAB-MMAE LGR5
[159]

LGR5-NMS818 LGR5

ASO
LNA-modified ASO AC104041.1 (lncRNA) [160]

β-catenin targeting ASO β-catenin [161]
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enhances the β-catenin degradation. ADCs (LGR5-mc-vc-PAB-MMAE, LRG5-NMs818, and PF-
06647020) targeting LGR5- or PTK7-expressing Wnt responder cells bind to the target cells and release
a cytotoxic drug to induce the cell death. ASO (LNA-modified ASO, β-catenin targeting ASO) binds
to the target region of RNA and suppresses expression.

Since PROTAC does not work based on equilibrium occupancy, the working doses of
PROTAC are very low, i.e., nanomolar concentrations [155]. Thus, PROTACs are expected
to have low toxicity and high selectivity compared to conventional inhibitors. For example,
the BCL-XL-specific PROTAC DT2216 shows low toxicity in vitro and inhibits the growth
of xenograft tumors [162]. Additionally, DT2216 shows target specificity to BCl-XL over all
other BCL-2 family members (BCL-2, BCl-XL, MCL-1) [162].

4.1.2. Molecular Glue

A small molecule that induces or stabilizes the neo-interaction between two different
proteins is called a ‘molecular glue.’ Some molecular glues, such as PROTAC, promote
targets’ degradation by inducing new interactions between E3 ligase and target proteins.
Additionally, molecular glue could complement PROTACs with far more advantages in
terms of molecular weight than PROTACs [156]. In this context, a recent study reports
β-catenin’s molecular glue. Usually, mutated β-catenin cannot bind to β-TrCP, a natural
E3 ligase. However, β-catenin molecular glue NRX-252114 restores the interaction and
induces the proteasome degradation of mutated β-catenin [156] (Figure 3 and Table 3).

4.1.3. Other Protein Degradation Technologies

Recently, various protein degradation technologies, such as PROTAB (proteolytic-
targeting antibody), AUTOTAC (AUTOphagy-TArgeting Chimera), and LYTAC (lysosome-
targeting chimeras), have been developed [163,164]. These new platforms could be used in
Wnt-targeting strategies for cancer treatment in the near future.

Indeed, a recent study showed a new targeting strategy, PROTAB, that uses Wnt
signaling components. PROTAB is an antibody that induces the proteolysis of extracellular
target receptors by linking to transmembrane E3 ligase ZNRF3, a negative regulator of
Wnt signaling [165]. A ZNRF3-HER2 PROTAB induces the degradation of HER2 in CRC
cells (SW48) and tumors of the SW48 xenograft model [165]. Additionally, ZNRF3-HER2
PROTAB shows tumor-specific degradation in CRC organoids. Though this platform does
not directly target Wnt signaling compartments, it might be suitable for targeting the
membrane receptors of the Wnt pathway.

4.2. Antibody–Drug Conjugate (ADC)-Based Wnt Signaling Targeting

An antibody–drug conjugate (ADC) consists of a monoclonal antibody (mAB), a cyto-
toxic drug (payload or warhead), and a chemical linker [166]. ADCs induce the apoptosis
of antibody-bounded antigen-expressing cells. ADCs may enable more precise and effec-
tive targeting and elimination of target cells, combining the advantages of monoclonal
antibodies and cytotoxic drugs [159].

Septuximab vedotin (F7-ADC) is an ADC for targeting FZD7 [157] (Figure 3 and
Table 3). It comprises a human FZD7 antibody and the microtubule-inhibiting drug
monomethyl auristatin E (MMAE). Ovarian serous cystadenocarcinoma overexpresses
the Wnt receptor FZD7 [157]. Thus, FZD7 could be a tumor-specific antigen in ovarian
serous cystadenocarcinoma. Indeed, Septuximab vedotin (F7-ADC) kills ovarian cancer
cells without toxicity in vitro and in vivo.

PTK7, involving both Wnt and VEGF signaling, is associated with cancer drive and
repression [158]. In the Wnt pathway, PTK7 is a co-receptor of Wnt ligands. WNT2A
binds to the dimer of FZD7 and PTK7. The interaction of WNT2A, FZD7, and PTK7
inhibits the canonical Wnt pathway, while the interaction of WNT5A, ROR2, and PTK7
activates Wnt/PCP pathway. Targeting PTK7 could be suitable for specifically targeting
Wnt responder CSCs in cancers. PF-06647020 is a PTK7-targeted ADC [158] (Figure 3 and
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Table 3). PF-06647020 delivered anti-cancer drugs effectively and has shown anti-cancer
effects in various cancer cell lines and PDXs (NSCLC, OVAC, and TNBC). A phase 1 clinical
trial of PF-06647020 has been completed in advanced solid tumors.

LGR5-targeted ADCs, LGR5–MC-vc-PAB–MMAE and LGR5–NMS818, were recently
developed. These LGR5-targeted ADCs target the LGR5-expressing population of tumor-
initiating cells or cancer stem cells (CSCs) [159] (Figure 3 and Table 3). These cells are highly
responsive to Wnt signaling and are essential for tumor progression [167–169]. Although
these ADCs do not directly inhibit the Wnt pathway, they kill Wnt responder cells such as
CSCs. Moreover, these LGR5-targeted ADCs can dramatically restrain tumor growth and
recurrence in vivo.

Currently, there are still difficulties in applying ADCs to cancer treatment. Most
approved ADCs have side effects such as hematotoxicity [170]. Moreover, they have
heavier molecular weights than conventional cytotoxic drugs, which causes poor delivery
efficiency of drugs to tumors [170]. Despite these limitations, ADCs have substantial
potential and are of great interest as an excellent method of targeting tumors specifically.

4.3. Oligonucleotide-Based Wnt Signaling Targeting

Oligonucleotides are emerging therapeutics that use small nucleotides (15–30 bp)
with chemical modifications mainly to regulate the target gene’s transcription [171]. These
small oligonucleotide therapeutics come in various forms, such as MicroRNAs (miRNA),
antisense oligonucleotides (ASOs), and short-interfering RNAs (siRNAs). In addition,
numerous new types of oligonucleotides, modifications, and delivery systems are continu-
ously being developed. Thus, oligonucleotide therapeutics are expected to be applicable to
cancer treatment soon, which may involve targeting Wnt signaling.

4.3.1. MicroRNAs and siRNAs

miRNAs and siRNAs consist of short sequences to target RNA through partial base
pairing [172]. In prostate cancer, miR-15a and miR-16-1 are reported as tumor suppressors
and downregulate Wnt3a in prostate cancer cells [173]. TargomiRs are minicells that contain
miR-16-based mimic microRNA, which has 23 base pairs, and target EGFR and Wnt3a on
the cell surface [174]. TargomiRs have completed clinical trials (Phase 1, NCT02369198)
for the treatment of recurrent malignant pleural mesothelioma and non-small cell lung
cancer [174]. Myc is a central effector of the β-catenin-dependent Wnt pathway [175].
DCR-Myc is an anti-Myc DsiRNA (Dicer-substrate small interfering RNA) that inhibits
tumor growth in vivo [176]. These drugs recently completed clinical trials in hepatocellular
carcinoma (Phase 1b/2, NCT02314052) and solid tumors (Phase 1, NCT02110563). Though
these miRNAs and siRNAs have been tested in clinics, oligonucleotide therapies have
potential hurdles, off-target effects, and inefficient delivery [177]. Additionally, these
miRNAs and siRNAs do not directly target Wnt-signaling compartments.

4.3.2. Antisense Oligonucleotides

Antisense oligonucleotides (ASOs) are single-stranded DNA analogs that consist of
16–22 bases [160]. ASO binds to the target RNA sequence and controls its expression via
various mechanisms (Figure 3). Recently, ribose substitutions such as 2′-O-methoxyethyl
(2′-MOE) and locked nucleic acid (LNA) have improved the stability and accuracy of target
binding [178]. Importantly, various antisense oligonucleotides (ASO) have recently gained
FDA approval [171,179–181].

Several ASOs that target the Wnt pathway indirectly or directly are undergoing pre-
clinical studies. LNA-modified ASO is reported as an indirect targeting ASO for the Wnt
pathway (Figure 3 and Table 3). The long non-coding RNA (lncRNA) AC10401.1 is highly
expressed in head and neck squamous cell carcinoma (HNSCC) and is related to poor
prognosis in HNSCC patients. It acts as a competing endogenous RNA to miR-6817-3d
in the cytoplasm and increases the stability of Wnt2B, which activates the canonical Wnt
pathway [160]. Furthermore, a combination of LNA-modified ASO and a Wnt signaling
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inhibitor restrain AC10401.1 and inhibit cancer cell growth in cell-line and patient-derived
xenograft models. This result implies that LNA-ASO can potentially suppress tumorigene-
sis by targeting Wnt signaling.

β-catenin is directly targeted by 2’-O-methoxyethyl chimeric ASO. Treatment with
this β-catenin-targeted ASO showed a specific decrease in β-catenin expression in liver
and white adipose tissue in high-fat-fed C57BL/6 mice [161] (Figure 3 and Table 3). These
data show that the specific targeting of β-catenin is feasible in in vivo models. Although
ASOs directly targeting Wnt signaling have not been tested, these results will soon emerge
in preclinical and clinical cancer models.

5. Conclusions and Future Perspectives

Despite the contribution of Wnt signaling to tumorigenesis being obvious and Wnt
signaling inhibition having shown significant effects in preclinical models, no Wnt signaling-
targeted drugs have proved clinically successful in cancer or other diseases [4,6]. The
main reason may be that Wnt signaling is responsible for a broad range of physiological
regulations [8]. This feature could trigger diverse side effects as a consequence of treatment.
Additionally, it may be because Wnt-targeted therapy itself does not have significant
benefits over conventional anticancer drugs. Thus, recent Wnt targeting methods have
focused on increasing treatment specificity, minimizing side effects, and combination
therapies that make up for the low effectiveness of safe-dose Wnt-targeting drugs.

In addition to these efforts, combining the newest targeting strategies, such as PRO-
TAC/molecular glue, ASOs, and ADCs, was recently introduced to Wnt-targeted therapy.
Adopting these technologies and accumulating knowledge on mechanisms of action from
past and current Wnt-targeting trials have allowed for a new wave of Wnt signaling-
targeting therapies.

These new targeting technologies could enhance the specificity of drugs. PROTACs
eliminate their targets; they do not inhibit them. ADC combines the advantages of anti-
bodies and cytotoxic drugs, ameliorating conventional side effects. The design of ASOs is
straightforward and assigns specificity toward targets. These three methods can help im-
prove the limitations of existing targeting strategies. Additionally, numerous combinations
of these new techniques are possible.

ASOs were first suggested in the early 2000s. However, the initial ASO system had
limitations: poor cellular delivery, not being sufficiently stable under degradation by
nuclease, and off-target effects. Additionally, some modified ASOs show high toxicity [182].
Overcoming these limitations requires time and the use of ASOs as therapeutic drugs.
Nusinersen, an ASO drug, was approved in 2016 [183]. This drug has been enormously
successful for spinal muscular atrophy patients. Additionally, many FDA-approved ASO
drugs are used to treat rare diseases [179–181]. In cancer, two ASOs, danvatirsen and
AZD5312 (NCT02144051), are currently undergoing clinical trials [184,185]. Danvatirsen
degrades STAT3 mRNA via RNase H1 and AZD5312 degrades androgen receptor mRNA.

In conclusion, before the advent of third-generation ASOs and FDA-approved ASOs,
it was assumed that ASOs could not be used for treatment. Twenty years ago, before the
success of imatinib, the first FDA-approved kinase drug [186], people thought kinase drugs
were impossible. Likewise, prior to Herceptin, antibodies were also considered unavailable
for therapeutic use [187,188]. Therefore, the first success in Wnt-targeted therapeutics will
be a significant milestone. Based on recent advanced technologies, PROTAC/molecular
glue, ASO, and ADC, and accumulated knowledge of Wnt signaling, we cautiously expect
that the first case of a new cancer treatment targeting Wnt signaling will appear in the
near future.
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